

В. В. Журавлева, Моделирование процессов фотосинтеза и фотодыхания C₃растений, *Матем. биология и биоинформ.*, 2015, том 10, выпуск 2, 482–507

DOI: 10.17537/2015.10.482

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 13.58.203.104 4 января 2025 г., 10:35:31

УДК: 51-76.57.036

Моделирование процессов фотосинтеза и фотодыхания С₃-растений

©2015 Журавлева В.В.*

ФГБОУ ВПО Алтайский государственный университет, Барнаул, 656049, Россия

Аннотация. В статье описан вывод математической модели фотосинтеза и фотодыхания C_3 -растений в условиях естественной среды, учитывающей влияние азотного дефицита на интенсивности этих процессов. Найдено порождающее решение для системы уравнений, описывающей, согласно построенной модели, динамику процессов фотосинтеза и фотодыхания C_3 -растений. Доказано, что построенное решение является асимптотическим приближением решения динамической системы и достаточно для вычисления суммарной суточной интенсивности фотосинтеза с удовлетворительной точностью (для задач прогнозирования урожайности). Описаны результаты численных экспериментов с суточной моделью фотосинтеза, сделан вывод, что модель адекватно отражает суточную динамику интенсивностей процессов фотосинтеза и фотодыхания C_3 -растений в посеве.

Ключевые слова: асимптотическое разложение, сингулярно возмущенная задача, модель фотосинтеза и фотодыхания, С₃-растение.

введение

С появлением концепций устойчивого и точного земледелия наметился прогресс в разработках информационных систем сельскохозяйственного назначения [1]. Инструментом формирования комплекса рекомендаций в них являются средства поддержки технологических решений, а в качестве их интеллектуального ядра выступают динамические модели продукционного процесса сельскохозяйственных культур. Использование современных математических моделей повышает эффективность информационных систем [1–3].

В настоящее время существуют перспективы повышения урожайности сельскохозяйственных растений за счет селекции сортов с высокой эффективностью фотосинтеза и создания благоприятной для светопоглощения структуры посевов [2]. В связи с этим актуальным становится исследование динамики фотосинтеза и других процессов накопления биомассы растений в широком диапазоне метеоусловий.

Не менее актуально прогнозирование изменений интенсивности фотосинтеза в древостое, связанных с повышением концентрации атмосферного углекислого газа и повышением температур. Такие модели являются основой для прогноза последствий глобального изменения климата на нашей планете.

Процессы метаболизма в растении обычно допускают теоретическое описание. Такой подход предполагает рассмотрение сути процессов и описание их динамики на языке физически или биологически интерпретируемых уравнений и не требует избыточного набора опытных данных для идентификации модели: большинство используемых параметров имеет прозрачный физический или биологический смысл. С другой стороны, адекватное отражение в модели явлений, имеющих место в среде

^{*}vvzhuravleva@mail.ru

обитания и в самом растении, может служить гарантией ее работоспособности в широком диапазоне внешних воздействий – более широком, чем тот, на котором она была идентифицирована [3–5]. Таким образом, важной задачей при построении имитационной модели формирования биомассы растений является разработка «физиологичной» модели фотосинтеза (в том числе для С₃-растений, к которым относятся зерновые культуры), как основного процесса, влияющего на биопродуктивность растений. Такая модель должна описывать адекватную реакцию растения на изменение всех основных лимитирующих фотосинтез факторов.

В ходе развития методов моделирования продукционного процесса интенсивность фотосинтеза определялась через эмпирические зависимости (световые и углекислотные кривые фотосинтеза), полуэмпирические модели, в которых диффузию молекул углекислого газа (CO₂) описывают законами биофизики, а фотосинтетический цикл описывают законами биохимии [2]. Детальные модели фотосинтеза, учитывающие кинетику наиболее важных фото- и биохимических реакций, в динамических моделях продукционного процесса не использовались (число параметров этих моделей так велико, что проведение их параметрической идентификации считается невыполнимой задачей). Большой вклад в математическое моделирование фотосинтеза внесли отечественные ученые Р.А. Полуэктов [2, 6], А.Х. Лайск [7], Ю.А. Пых [8], Ю.К. Росс, З.Н. Бихеле, Х.А. Молдау [9], Х.Г. Тооминг [10], зарубежные F.W.T. Penning de Vries, H.H. Van Laar [11], С.Т. de Wit [12], J.N.M. Thornley [13], P. Chartier [14] и другие.

Среди современных моделей фотосинтеза можно отметить отечественную работу [15]. В ней приводится эмпирическая модель зависимости суточного интеграла интенсивности фотосинтеза облиственного побега (для дуба черешчатого) от интенсивности солнечной радиации за день, условий водоснабжения и средней дневной температуры воздуха. К сожалению, подобные модели требуют проведения множества дорогостоящих экспериментов и строятся для конкретного вида растительности. Вряд ли возможно ее применение в широком диапазоне внешних условий и, тем более, для травянистых растений. Кроме того, в модели не учтено влияние стрессовых условий, поскольку средние значения метеопараметров не несут информации об их вариации в течение дня.

Известная и широко используемая за рубежом механистическая модель Фаркухара [16] и ее модификации позволяют определить интенсивность фотосинтеза С₃-растения для температуры листа, равной 25°С. Несмотря на эффективность вычислений при этой температуре, точность модели существенно снижается при высоких и низких температурах. Такая модель не пригодна для использования в естественных природных условиях, так как в основе ее лежат результаты опытов, поставленных в пробирках. Результаты работы [17] представляют собой улучшенную модель Фаркухара для интенсивности фотосинтеза листовой пластины С3-растения в широком диапазоне температур (10-40°С). Авторами были определены в естественных условиях температурные зависимости кинетических параметров для интенсивности фотосинтеза на основе наблюдений за трансгенным табаком. Эта модель дает значимые отклонения при крайне высоких и низких стрессовых температурах, и не учитывает влияния влагообеспеченности. Это может ограничивать ее применимость, например, в условиях резко континентального климата юга Западной Сибири, где в мае-июне по утрам наблюдаются крайне низкие температуры (вплоть до отрицательных), а в июле воздух может прогреваться до температур, превышающих 40°С.

В современных комплексных прикладных моделях продуктивности растений реализована так называемая квазистатическая модель фотосинтеза с контрастным дыханием [2] или ее модификации. Их анализ показал неадекватное поведение моделируемых растений при некоторых стрессовых условиях [18]. Причина этого заключается в том, что в моделях не учтено участие кислорода в борьбе за активный акцептор рибулозобифосфат (РиБФ), а также участие продуктов фотодыхания в цикле

Кальвина: одновременно с реакцией карбоксилирования в листьях С₃-растений в присутствии света идет реакция оксигенации, а скорости этих реакций определяют интенсивности процессов фотосинтеза и фотодыхания. Так, при высокотемпературном стрессе существенно изменяется соотношение между скоростями фотосинтеза и фотодыхания. Кроме того, в этих моделях использована линейная кинетика синтеза РиБФ, верная лишь при малых значениях поглощенной фотосинтетически активной радиации (ФАР).

МОДЕЛЬ ФОТОСИНТЕЗА И ФОТОДЫХАНИЯ С3-РАСТЕНИЙ

Автором статьи построена схема основных взаимодействий и потоков веществ в процессах фотосинтеза, фотодыхания и темнового дыхания листа С₃-растений [19–22], где указаны процессы диффузии CO₂ и кислорода (O₂) из окружающего пространства в лист и обратно, а так же отражено влияние метеофакторов на соответствующие процессы. На схеме (рисунок 1) показана конкуренция СО₂ и О₂ за активный акцептор РиБФ, связанный карбоксилазой. Обозначения веществ и переменных, принятые на схеме: C_A – концентрация CO₂ в атмосфере; C_i – концентрация CO₂ в газовой фазе в межклетнике; C_w – концентрация CO₂ в жидкой фазе; O_A – концентрация O₂ в атмосфере; O_i – концентрация O_2 в газовой фазе в межклетнике; O_{ω} – концентрация O_2 в жидкой фазе; Rubis – рибулозобифосфат (РиБФ); С/О – карбоксилаза/оксигеназа РиБФ; Rubis-C/O – комплекс активного РиБФ с карбоксилазой/оксигеназой (РиБФ-К/О); FPA – фонд первичных ассимилятов; SP – субстраты световой стадии фотосинтеза; PP – продукты световой стадии фотосинтеза; Pr – промежуточные продукты фотодыхания; T_L – температура листовой поверхности; u – скорость ветра в посеве; r_{st} – устьичное сопротивление; Q_{PhAR} – интенсивность поглощенной ФАР; ψ_L – водный потенциал листа; N_L – концентрация азота в листьях.

Рис. 1. Потоковая диаграмма «фотосинтез – фотодыхание – темновое дыхание» для C_3 -растений с учетом конкуренции CO_2 и O_2 за активный акцептор РиБФ. Цифрами обозначены основные процессы: 1 – световая стадия фотосинтеза, 2 – реакция карбоксилирования, 3 – реакция оксигенации, 4 – темновое дыхание листьев на свету. Двойной линией показан поток веществ в цикле Кальвина; жирной стрелкой – гликолатный путь углерода; пунктиром – влияние факторов.

Рассмотрим ряд основных процессов, регулирующих концентрацию комплекса РиБФ-К/О. Количественное описание их возможно посредством уравнений баланса тех промежуточных продуктов цикла Кальвина, которые наиболее важны с точки зрения рассматриваемых явлений. Гликолатный путь углерода должен входить в описание фотосинтеза С₃-растений не как маловажное боковое звено, а как составная часть

пентозофосфатного цикла, имеющая особое значение для фотосинтеза. Построим схему цикла Кальвина с учетом конкуренции CO₂ и O₂ за РиБФ-К/О и замыканием гликолатного пути углерода в этот цикл (рисунок 2).

Рис. 2. Схема цикла Кальвина с учетом конкуренции CO_2 и O_2 . Обозначения: k_j – постоянные скоростей реакций; PK – комплекс промежуточных продуктов цикла Кальвина; FF – фиктивный фермент реакции регенерации; M – продукт реакции оксигенации. Жирной стрелкой показан гликолатный путь углерода.

Комплексные прикладные модели третьего уровня продуктивности растений дают довольно большие ошибки при вычислении интенсивности фотосинтеза в условиях азотного стресса, так как в них не учтено влияние азота на фотосинтез. Заметим, что модели динамики минерального азота в почве и поглощения его корневой системой растений разработаны достаточно хорошо и активно используются в комплексных моделях продуктивности растений для отражения связи процессов роста и развития с минеральным питанием [23]. Следовательно, применение в комплексной модели продуктивности зависимостей фотосинтеза и фотодыхания от концентрации азота в листьях позволит получить адекватную реакцию растений на азотный дефицит.

Итак, необходимо построить «физиологичную» математическую модель фотосинтеза и фотодыхания С₃-растений, которая включает:

- конкуренцию углекислого газа и кислорода за акцептор РиБФ;

- гликолатный путь углерода;

– нелинейную кинетику синтеза РиБФ;

– влияние концентрации азота в листьях растений на концентрацию карбоксилазы и на поглощение фотосинтетически активной радиации, регулирующей подвижность устьиц и скорость синтеза РиБФ.

Опишем модель фотосинтеза и фотодыхания С₃-растений, соответствующую выдвинутым требованиям. Модель включает две логические части.

Модель I. Динамическая система уравнений, описывающих существенные моменты процессов фотосинтеза и фотодыхания C₃-растений [20–21]

Мгновенные интенсивности реакций карбоксилирования и оксигенации определяются скоростями связывания CO₂ и O₂ комплексом РиБФ-К/О:

$$\Phi_{\rm C} = k_5 [\rm CO_2] \cdot [\rm Rubis-C/O] \cdot h_L,$$

$$R_{\rm O} = k_6 [\rm O_2] \cdot [\rm Rubis-C/O] \cdot h_L,$$
(1)

где [CO₂], [O₂], [Rubis-C/O] – концентрации соответствующих веществ в листе, k_5 , k_6 – коэффициенты сродства РиБФ-К/О к CO₂ и O₂ соответственно, h_L – средняя толщина листа.

Мгновенные интенсивности процессов фотосинтеза и фотодыхания:

$$\Phi_{g} = \lambda \cdot (\Phi_{C} + \delta \cdot R_{O}),$$

$$R_{L} = (1 - \delta) \cdot R_{O},$$
(2)

где $\lambda = 1/6$ – доля углерода синтезированной в цикле Кальвина ФГК, идущая на

485

образование первичных ассимилятов, коэффициент δ = 0.9 показывает, какая доля углерода фотодыхания попадает в гликолатный путь.

Пусть t – время, отсчитываемое от восхода Солнца. Уравнения баланса комплекса РиБФ-К/О, фермента РиБФ с учетом регенерации и промежуточных продуктов цикла Кальвина (концентрация обозначена [Z]) согласно схеме на рисунке 2 имеют вид:

$$\frac{d[\operatorname{Rubis-C/O}]}{dt} = k_3[C/O] \cdot [\operatorname{Rubis}] - (k_5[CO_2] + k_6[O_2] + k_4) \cdot [\operatorname{Rubis-C/O}],$$

$$\frac{d[\operatorname{Rubis}]}{dt} = \frac{p(Q_{PhAR})}{h_L} - (k_3[C/O] + k_2) \cdot [\operatorname{Rubis}] + k_4[\operatorname{Rubis-C/O}] + k_1[FF] \cdot [Z], \quad (3)$$

$$\frac{d[Z]}{dt} = \frac{(1-\lambda)}{h_L} (\Phi_c + \delta R_o) - k_1[FF] \cdot [Z].$$

Учтем нелинейную кинетику реакции синтеза РиБФ:

$$p(Q_{PhAR}) = \frac{\alpha Q_{PhAR} \Phi_M}{\Phi_M + \alpha Q_{PhAR}},$$
(4)

где $\alpha > 0$ – наклон световой кривой, Q_{PhAR} – интенсивность поглощения ФАР единичной площадью листовой поверхности ($0 \le Q_{PhAR} \le Q_{PhAR}^{max} < \infty$), Φ_M – интенсивность синтеза при насыщающих значениях CO₂ и ФАР.

Определим производные для мгновенных интенсивностей реакций (1):

$$\frac{d\Phi_{c}}{dt} = k_{5} \frac{d[CO_{2}]}{dt} h_{L} \cdot [Rubis - C/O] + k_{5}[CO_{2}]h_{L} \cdot \frac{d[Rubis - C/O]}{dt} =$$

$$= k_{5}h_{L} \frac{d[CO_{2}]}{dt} \cdot [Rubis - C/O] + \frac{\Phi_{c}}{[Rubis - C/O]} \cdot \frac{d[Rubis - C/O]}{dt},$$

$$\frac{dR_{o}}{dt} = k_{6} \left(\frac{d[O_{2}]}{dt} \cdot [Rubis - C/O] + [O_{2}] \cdot \frac{d[Rubis - C/O]}{dt}\right) \cdot h_{L} =$$

$$= k_{6}h_{L} \cdot [Rubis - C/O] \frac{d[O_{2}]}{dt} + \frac{R_{o}}{[Rubis - C/O]} \cdot \frac{d[Rubis - C/O]}{dt}.$$
(5)

Исходя из предположений, что фермент РиБФ находится в равновесии и [C/O] + [Rubis-C/O] = $[K_0] = const$, исключим из уравнений (3) величину [Rubis]:

$$[\text{Rubis}] = \frac{h_L^{-1} p(Q_{PhAR}) + k_4 \cdot [\text{Rubis-C/O}] + k_1 [FF] \cdot [Z]}{\left(k_2 + k_3 \left(K_0 - [\text{Rubis-C/O}]\right)\right)}.$$
(6)

При малой обратимости реакции синтеза РиБФ ($k_2/k_3K_0 \approx 0$) найдем:

$$\frac{d[\text{Rubis-C/O}]}{dt} = h_L^{-1} p(Q_{PhAR}) + k_1 [FF] \cdot [Z] - (k_5 [\text{CO}_2] + k_6 [\text{O}_2]) \cdot [\text{Rubis-C/O}], \quad (7)$$

причем $0 \leq [\text{Rubis-C/O}] \leq K_0$.

Тогда формулы (5) примут следующий вид:

$$\frac{d\Phi_{\rm C}}{dt} = k_5 h_L \cdot [\text{Rubis-C/O}] \cdot \frac{d[\text{CO}_2]}{dt} + k_5 h_L [\text{CO}_2] \cdot \left(h_L^{-1} p(Q_{PhAR}) + k_1 [FF] \cdot [Z]\right) - \Phi_{\rm C} \cdot \left(k_5 [\text{CO}_2] + k_6 [\text{O}_2]\right),$$
(8)

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ФОТОСИНТЕЗА И ФОТОДЫХАНИЯ С3-РАСТЕНИЙ

$$\frac{dR_{O}}{dt} = k_{6}h_{L} \cdot [\text{Rubis-C/O}] \cdot \frac{d[O_{2}]}{dt} + k_{6}h_{L} \cdot [O_{2}] \cdot \left(h_{L}^{-1}p(Q_{PhAR}) + k_{1}[FF] \cdot [Z]\right) - R_{O} \cdot \left(k_{5}[CO_{2}] + k_{6}[O_{2}]\right)$$

Учтем, что динамика величин $C_{\omega} = [CO_2]$ и $O_{\omega} = [O_2]$ нас непосредственно не интересует. Очень быстрый характер достижения диффузионными процессами стационарного состояния (характерные времена порядка долей секунды) позволяет заменить соответствующие уравнения функциональной статической связью [2]:

$$C_{\omega} = C_{a} - \Phi_{C} \left(r_{m1} + r_{a} + \frac{1.3}{D_{T}} + 1.6r_{st} \right) + \left((1 - \delta)R_{O} + R_{d} \right) \left(r_{a} + \frac{1.3}{D_{T}} + 1.6r_{st} \right),$$

$$O_{\omega} = O_{a} + \beta \left(\Phi_{C} + \delta R_{O} \right) \left(r_{a} + \frac{1.3}{D_{T}} + 1.6r_{st} \right) - \beta \left(3(1 - \delta)R_{O} + R_{d} \right) \left(r_{m2} + r_{a} + \frac{1.3}{D_{T}} + 1.6r_{st} \right),$$
(9)

где $R_d = c_d \Phi_M$ ($0 \le c_d \le 0.3$) – интенсивность темнового (митохондриального) дыхания на свету, r_{m1} , r_{m2} – сопротивления мезофилла растворению CO₂ и O₂ соответственно; r_a , D_T – сопротивление слоя атмосферы от высоты метеобудки до верхнего слоя посева и проводимость прилистного слоя воздуха (согласно приведенным в [2] данным далее полагаем $r_a = 1$ с/см, $D_T = 3.3$ см/с); $\beta \approx 0.727$ – коэффициент перехода от мг CO₂ к мг O₂ для интенсивностей процессов фотосинтеза, фотодыхания и темнового дыхания; коэффициент 3 показывает, сколько фиксируется молекул O₂ на одну молекулу CO₂, выделенного при фотодыхании.

Упростим уравнения (8), полагая первые слагаемые равными нулю, и обозначив постоянные величины: $\Phi_M = 0.2k_1h_L[K_0][FF]$, $\varepsilon = h_L[K_0]$, сопротивления реакций карбоксилирования и оксигенации $r_x = (k_5h_L[K_0])^{-1}$, $r_y = (k_6h_L[K_0])^{-1}$. Получим:

$$\varepsilon \cdot \frac{d\Phi_{C}}{dt} = \frac{C_{\omega}}{r_{x}} \cdot \left(p(Q_{PhAR}) + 5\frac{\Phi_{M}[Z]}{[K_{0}]} \right) - \Phi_{C} \cdot \left(\frac{C_{\omega}}{r_{x}} + \frac{O_{\omega}}{r_{y}} \right),$$

$$\varepsilon \cdot \frac{dR_{O}}{dt} = \frac{O_{\omega}}{r_{y}} \cdot \left(p(Q_{PhAR}) + 5\frac{\Phi_{M}[Z]}{[K_{0}]} \right) - R_{O} \cdot \left(\frac{C_{\omega}}{r_{x}} + \frac{O_{\omega}}{r_{y}} \right),$$

$$\frac{d[Z]}{dt} = \frac{5}{6h_{L}} \left(\Phi_{C} + \delta R_{O} \right) - 5\frac{\Phi_{M}}{h_{L}} \cdot \frac{[Z]}{[K_{0}]}.$$
(10)

Дополним систему (10) уравнением, описывающим изменение сопротивления устьичного аппарата от метеоусловий [2]:

$$\tau_{st} \frac{dr_{st}}{dt} = r_{st}^0 (Q_{PhAR}, \psi_L) - r_{st}.$$
(11)

Здесь константа τ_{st} порядка 300 с, а функция стационарного устьичного сопротивления (ограниченная убывающая функция переменной Q_{PhAR}) описывается зависимостью [2, 9]:

$$r_{st}^{0}(Q_{PhAR}, \Psi_{L}) = \frac{Q_{PhAR} + K_{R1}}{Q_{PhAR} + K_{R2}} \cdot \frac{a_{1} + a_{2} \cdot \Psi_{L}}{\Psi_{M} + \Psi_{L}},$$
(12)

где ψ_L – водный потенциал листа (эта переменная меняется исключительно медленно и в рамках данной модели может считаться константой), ψ_M – потенциал завядания (константа, зависящая от вида растения); K_{R1} , K_{R2} , a_1 , a_2 – коэффициенты аппроксимации ($K_{R1} >> K_{R2}$).

Для удобства дальнейшего исследования преобразуем уравнения (10):

$$\frac{\varepsilon}{\Phi_{M}} \cdot \frac{d\Phi_{C}}{dt} = \frac{C_{\omega}}{r_{x}} \cdot \left(\frac{p(Q_{PhAR})}{\Phi_{M}} + 5\frac{[Z]}{[K_{0}]}\right) - \frac{\Phi_{C}}{\Phi_{M}} \cdot \left(\frac{C_{\omega}}{r_{x}} + \frac{O_{\omega}}{r_{y}}\right),$$

$$\frac{\varepsilon}{\Phi_{M}} \cdot \frac{dR_{O}}{dt} = \frac{O_{\omega}}{r_{y}} \cdot \left(\frac{p(Q_{PhAR})}{\Phi_{M}} + 5\frac{[Z]}{[K_{0}]}\right) - \frac{R_{O}}{\Phi_{M}} \cdot \left(\frac{C_{\omega}}{r_{x}} + \frac{O_{\omega}}{r_{y}}\right),$$

$$\frac{\varepsilon}{\Phi_{M}[K_{0}]} \cdot \frac{d[Z]}{dt} = 5\left(\frac{\Phi_{C} + \delta R_{O}}{6\Phi_{M}}\right) - 5\frac{[Z]}{[K_{0}]}.$$
(13)

Сделаем замену, разделив переменные на характерные величины:

$$X = \Phi_{C} / \Phi_{M},$$

$$Y = R_{O} / \Phi_{M},$$

$$Z = [Z] / [K_{0}].$$
(14)

Полученные переменные – безразмерные. Первые две можно понимать как относительные интенсивности реакций карбоксилирования и оксигенации, третью как удельный объем промежуточных продуктов цикла Кальвина. Уравнения динамики (13) будут иметь следующий вид:

$$\frac{\varepsilon r_x}{C_a} \cdot \frac{dX}{dt} = \frac{C_{\omega}}{C_a} \cdot \left(\frac{p(Q_{PhAR})}{\Phi_M} + 5Z\right) - X \cdot \left(\frac{C_{\omega}}{C_a} + \frac{r_x}{r_y}\frac{O_{\omega}}{C_a}\right),$$

$$\frac{\varepsilon r_x}{C_a} \cdot \frac{dY}{dt} = \frac{r_x}{r_y}\frac{O_{\omega}}{C_a} \cdot \left(\frac{p(Q_{PhAR})}{\Phi_M} + 5Z\right) - Y \cdot \left(\frac{C_{\omega}}{C_a} + \frac{r_x}{r_y}\frac{O_{\omega}}{C_a}\right),$$

$$\frac{\varepsilon r_x}{C_a} \cdot \frac{dZ}{dt} = \frac{5r_x \Phi_M}{C_a} \left(\frac{1}{6}(X + \delta Y) - Z\right).$$
(15)

Выполним ту же операцию с переменной в уравнении (11) и переменной времени:

$$S = \frac{1.6r_{st} + r_e}{r_0}, \quad t_1 = \frac{t}{\tau_{st}}.$$
 (16)

Кроме того, сделаем замену вспомогательных величин:

$$C_{\omega 1} = \frac{C_{\omega}}{C_a}, \quad O_{\omega 1} = \frac{r_x}{r_y} \frac{O_{\omega}}{C_a}.$$
(17)

Обозначим $S_0(Q_{PhAR}) = (1.6 r_{st}^0 (Q_{PhAR}, \psi_L) + r_e)/r_0, \quad p_1(Q_{PhAR}) = \frac{p(Q_{PhAR})}{\Phi_M} - \phi$ ункции

переменной Q_{PhAR} ; $r_e = r_a + 1.3 / D_T$ – суммарное сопротивление проникновению воздуха в полость листа; $r_0 = 81.4$ с/см.

Будем искать решение X, Y, Z, S на временном отрезке от 0 (момент восхода Солнца) до T (момент заката Солнца). Учтем, что в начальный момент $Q_{PhAR} = 0$ и реакции карбоксилирования и оксигенации не происходят, т.е. X = Y = Z = 0.

Итак, получаем задачу Коши для $t_1 \in [0;1]$:

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ФОТОСИНТЕЗА И ФОТОДЫХАНИЯ С3-РАСТЕНИЙ

$$\mu \frac{dX}{dt_1} = C_{\omega 1} \left(p_1(Q_{PhAR}) + 5Z \right) - X \cdot \left(C_{\omega 1} + O_{\omega 1} \right),$$

$$\mu \frac{dY}{dt_1} = O_{\omega 1} \left(p_1(Q_{PhAR}) + 5Z \right) - Y \cdot \left(C_{\omega 1} + O_{\omega 1} \right),$$

$$\mu \frac{dZ}{dt_1} = a_{\mu} \left(\frac{1}{6} (X + \delta Y) - Z \right),$$

$$\frac{dS}{dt_1} = S_0(Q_{PhAR}) - S$$
(18)

со связями

$$C_{\omega 1} = 1 - \hat{\Phi}_{M} X \left(\frac{r_{m1}}{r_{0}} + S \right) + \hat{\Phi}_{M} \left((1 - \delta) Y + c_{d} \right) S,$$

$$O_{\omega 1} = \hat{O}_{a} + \frac{r_{x}}{r_{y}} \left[\beta \hat{\Phi}_{M} \left(X + \delta Y \right) S - \beta \hat{\Phi}_{M} \left(3(1 - \delta) Y + c_{d} \right) \left(\frac{r_{m2}}{r_{0}} + S \right) \right]$$
(19)

и начальными условиями

при
$$t_1 = 0$$
 $X(0) = Y(0) = Z(0) = 0$, $S(0) = S_0(0) = 1$. (20)

Кроме того, следует учесть естественные ограничения:

$$X \ge 0, Y \ge 0, Z \ge 0.$$
 (21)

Безразмерный параметр, определяющий скорости переходных процессов, описанных первыми тремя уравнениями системы (18), задается формулой

$$\mu = \frac{\varepsilon r_x}{\tau_{st} C_a}.$$
(22)

Параметры, характерные для С₃-растения [2]:

$$h_L = 0.1 \text{ cm}, \Phi_M = 1.2 \cdot 10^{-7} \text{ r/(cm}^2 \cdot \text{c}), r_{m1} = 1 \text{ c/cm}, r_{m2} = 30 \text{ c/cm}, r_x = 0.8 \text{ c/cm}$$

Значения C_a , O_a для условий природной среды принадлежат ограниченной области $\Omega = \{C_{ao} - \sigma_1 \le C_a \le C_{ao} + \sigma_1, O_{ao} - \sigma_2 \le O_a \le O_{ao} + \sigma_2\}$, где средние концентрации CO₂ и O₂ в воздухе $C_{ao} = 0.7 \cdot 10^{-6}$ г/см³, $O_{ao} = 283 \cdot 10^{-6}$ г/см³, σ_1 , σ_2 – малые величины.

Безразмерные параметры:
$$\hat{\Phi}_M = \frac{\Phi_M r_0}{C_a}, \quad \hat{O}_a = \frac{r_x O_a}{r_y C_a}, \quad a_\mu = \frac{5r_x \Phi_M}{C_a}.$$

Отметим, что постоянные скоростей реакций карбоксилирования и оксигенации k_5 (см³·c⁻¹·мкгCO₂⁻¹), k_6 (см³·c⁻¹·мкгO₂⁻¹) свойственны ферменту РиБФ и поэтому не зависят от вида растения. При равных концентрациях кислорода и углекислого газа в среде окисление молекулы РиБФ примерно в 80 раз менее вероятно, чем ее карбоксилирование [7]. Поэтому $r_y/r_x = k_5/k_6 \approx 82.92\cdot32/44 \approx 60.3$.

Замечание 1: Найдем предел

$$\lim_{Q_{PhAR}\to\infty}\frac{p(Q_{PhAR})}{\Phi_{M}} = \lim_{Q_{PhAR}\to\infty}\frac{\alpha Q_{PhAR}}{\Phi_{M} + \alpha Q_{PhAR}} = \lim_{Q_{PhAR}\to\infty}\frac{\alpha}{\left(\frac{\Phi_{M}}{Q_{PhAR}} + \alpha\right)} = 1$$

и, следовательно, получим: $0 \le \frac{p(Q_{PhAR})}{\Phi_M} < 1$, то есть $0 \le p_1(Q_{PhAR}) < 1$.

489

Замечание 2: Поясним, почему параметр µ можно считать малым, используя технику анализа размерностей [24].

Значения безразмерных параметров в выражениях (19) можно оценить для C₃-растений следующим образом:

$$\hat{\Phi}_{M} \approx 14, \quad \hat{O}_{a} \approx 6.7, \quad \frac{r_{m1}}{r_{0}} \approx 0.01, \quad \frac{r_{m1}}{r_{0}} \approx 0.4.$$
 (23)

Заметим, что второе и третье слагаемое в первом равенстве (19) имеют один порядок и их разность не изменяет порядок величины $C_{\omega 1}$. Приведенный параметрический анализ позволяет сделать вывод, что величина $C_{\omega 1}$ имеет порядок 1. Аналогично получаем, что $O_{\omega 1}$ порядка 1. Параметр $a_{\mu} \approx 0.7$. В уравнениях (18), (19) безразмерные переменные X, Y, Z и S имеют порядок 1. Легко проверить, что и правые части уравнений системы (18) имеют порядок 1. В трех уравнениях слева имеется безразмерный параметр μ , который, с учетом приведенных значений констант, можно оценить как $1.71 \cdot 10^{-4}$.

Итак, процессы, описываемые первыми тремя уравнениями системы (18), действительно можно считать быстрыми, а параметр µ – малым.

Таким образом, система (18), (19) с условиями (20) представляет собой сингулярно возмущенную динамическую систему, включающую одновременное описание быстрых и медленных процессов. Укажем проблемы, связанные с поиском численного решения данной задачи:

а) сложность операторов, описывающих изучаемые процессы: нелинейные зависимости относительно переменных *X*, *Y* в правых частях уравнений (18);

b) наличие внутренних колебательных процессов, которые навязывают недопустимо малый шаг интегрирования при численном решении;

с) существование области очень быстрого изменения переменных (пограничный слой);

d) очень высокая размерность задачи (при моделировании описываемых процессов в агроэкосистеме выделяется ряд компартментов по вертикали, а при применении модели на больших по площади территориях необходим учет пространственной неоднородности, связанной с кривизной поверхности почвы).

ОПРЕДЕЛЕНИЕ ГЛАВНОГО ЧЛЕНА АСИМПТОТИКИ

Применим для решения поставленной задачи асимптотические методы. Далее приводится постановка сингулярно возмущенной задачи в общем виде, перечисляются условия теоремы Васильевой и приводится ее формулировка в соответствии с [25].

Постановка задачи

Рассмотрим систему дифференциальных уравнений

$$\mu \frac{dz}{dt} = F(z, y, t), \quad \frac{dy}{dt} = f(z, y, t), \tag{24}$$

где *z* и *F* – *M*-мерные вектор-функции, *y* и *f* – *m*-мерные вектор-функции, $\mu > 0$ – малый параметр. Начальные условия (при $t_0 = 0$):

$$z(0,\mu) = z^{o}, \quad y(0,\mu) = y^{o},$$
 (25)

где z^o и y^o не зависят от μ .

Исследуем решение задачи (24), (25) на сегменте $0 \le t \le T$. Если положить в (24) $\mu = 0$, то получим вырожденную систему

490

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ФОТОСИНТЕЗА И ФОТОДЫХАНИЯ С3-РАСТЕНИЙ

$$0 = F(\overline{z}, \overline{y}, t), \quad \frac{d\overline{y}}{dt} = f(\overline{z}, \overline{y}, t), \tag{26}$$

для которой оставим начальное условие:

$$\overline{y}(0) = y^{o}.$$
(27)

Поставим вопрос о том, будет ли при малых μ решение $z(t, \mu)$, $y(t, \mu)$ задачи (24), (25) близко к решению $\overline{z}(t)$, $\overline{y}(t)$ вырожденной задачи (26), (27).

Чтобы решить систему (26), нужно определить \overline{z} из первого равенства, подставить выбранное решение $\overline{z} = \varphi(\overline{y}, t)$ во второе уравнение и решить

$$\frac{d\overline{y}}{dt} = f(\varphi(\overline{y}, t), \overline{y}, t), \quad \overline{y}(0) = y^{\circ}.$$
(28)

Можно ожидать, что $\overline{z}(t)$ не будет удовлетворять начальному условию (25), и поэтому в некоторой окрестности начальной точки порождающее решение не будет близко к решению исходной системы (24).

Условия теоремы Васильевой

I. Функции F(z, y, t) и f(z, y, t) непрерывны и бесконечно дифференцируемы в некоторой открытой области *G* пространства переменных (z, y, t).

II. Уравнение F(z, y, t) = 0 относительно *z* имеет в некоторой ограниченной замкнутой области \overline{D} пространства переменных (y, t) решение $z = \varphi(y, t)$ такое, что

1) $\phi(y, t)$ – непрерывная функция в \overline{D} ,

2) точки ($\phi(y, t), y, t$) \in G при (y, t) $\in \overline{D}$,

3) корень *z* = $\varphi(y, t)$ является изолированным в \overline{D} , т. е. существует такое $\eta > 0$, что *F*(*z*, *y*, *t*) ≠ 0 при 0 < ||*z* - $\varphi(y, t)$ || < η , (*y*, *t*) ∈ \overline{D} .

III. Система (28) имеет единственное решение $\overline{y}(t)$ на сегменте $0 \le t \le T$, причем точки ($\overline{y}(t), t$) $\in D$ при $t \in [0, T]$, где D – множество внутренних точек области \overline{D} .

IV. Для собственных значений $\lambda_i(t)$ матрицы $\overline{F}_z(t) = F_z(\overline{z}(t), \overline{y}(t), t)$ выполняется условие асимптотической устойчивости:

$$\operatorname{Re}\lambda_{i}(t) < 0$$
 при $0 \le t \le T$, $i = 1, ..., M$. (29)

V. Рассмотрим присоединенную систему

$$\frac{d\tilde{z}}{d\tau} = F(\tilde{z}, y, t), \quad \tau \ge 0, \tag{30}$$

в которой *у* и *t* рассматриваются как параметры. В силу условия II $\tilde{z} = \varphi(y, t)$ является изолированной точкой покоя системы (30) при $(y, t) \in \overline{D}$.

Рассмотрим систему (30) при $y = y^{o}$, t = 0:

$$\frac{d\tilde{z}}{d\tau} = F(\tilde{z}, y^o, 0), \quad \tau \ge 0, \tag{31}$$

с начальным условием

$$\tilde{z}(0) = z^{o}. \tag{32}$$

Решение $\tilde{z}(\tau)$ задачи (31), (32) существует и удовлетворяет условиям:

1) $\tilde{z}(\tau) \rightarrow \phi(y^o, 0)$ при $\tau \rightarrow \infty$,

2) точки $(\tilde{z}(\tau), y^{o}, 0) \in G$ при $\tau \ge 0$.

В этом случае говорят, что начальное значение z^o принадлежит области влияния

точки покоя $\tilde{z} = \phi(y^o, 0)$, а условие V называют условием притяжения.

Общий подход к нахождению асимптотического разложения для сингулярно возмущенных задач описан в [25]. Это разложение имеет вид:

$$x(t,\mu) = \overline{x}(t,\mu) + \Pi x(\tau,\mu), \tag{33}$$

где $\tau = t/\mu$, $x = \{z, y\}$, регулярная часть асимптотики –

$$\overline{x}(t,\mu) = \overline{x}_0(t) + \mu \overline{x}_1(t) + \dots + \mu^k \overline{x}_k(t) + \dots, \qquad (34)$$

погранслойная часть асимптотики -

$$\Pi x(\tau, \mu) = \Pi_0 x(\tau) + \mu \Pi_1 x(\tau) + \dots + \mu^k \Pi_k x(\tau) + \dots$$
 (35)

Обозначим через $X_n(t, \mu)$ частичную сумму асимптотического разложения:

$$X_{n}(t,\mu) = \sum_{k=0}^{n} \mu^{k} \left[\overline{x}_{k}(t) + \Pi_{k} x(\tau) \right].$$
(36)

Теорема Васильевой. При условиях I-V ряд (33) является асимптотическим рядом для решения задачи(24), (25) при $\mu \rightarrow 0$ на отрезке $0 \le t \le T$, т.е. справедлива оценка

$$\max_{0 \le t \le T} \|x(t,\mu) - X_n(t,\mu)\| = O(\mu^{n+1}).$$
(37)

Определение главного члена асимптотики

Утверждение 1. При любых значениях $(C_a, O_a) \in \Omega$ и значениях параметров, характерных для C_3 -растения, для динамической системы (18)–(20) имеется единственное порождающее решение, удовлетворяющее ограничениям (21).

Доказательство. Для краткости используем обозначение $p_1(Q_{PhAR}) = p_1$, поскольку эта величина не зависит от переменных X, Y, Z, S (суточная динамика Q_{PhAR} очень сложна и определяется в комплексной модели блоком радиационного режима).

Составим порождающую систему:

$$0 = C_{\omega 1} (p_1 + 5Z) - X \cdot (C_{\omega 1} + O_{\omega 1}),$$

$$0 = O_{\omega 1} (p_1 + 5Z) - Y \cdot (C_{\omega 1} + O_{\omega 1}),$$

$$0 = \frac{1}{6} (X + \delta Y) - Z,$$

$$\frac{dS}{dt_1} = S_0 (Q_{PhAR}) - S,$$

(38)

где

$$C_{\omega 1} = 1 - \Phi_{MC} X (1 + 81.4S) + 8.14 \Phi_{MC} YS + 81.4 \Phi_{MC} c_d S,$$

$$O_{\omega 1} = O_{aC} + 0.981 \Phi_{MC} XS + \Phi_{MC} Y (0.589S - 0.109) - \Phi_{MC} c_d (0.362 + 0.981S),$$
(39)

с начальным условием

$$S(0) = 1.$$
 (40)

Выражения для связей (23) здесь переписаны в компактной форме и обозначены относительные величины-параметры:

$$\Phi_{MC} = \frac{\Phi_M}{C_a}, \quad O_{aC} = \frac{O_a}{60.3C_a}, \tag{41}$$

средние значения которых в условиях природной среды равны 0.171 и 6.7 492 соответственно и незначительно колеблются.

Четвертое уравнение системы не зависит от *X*, *Y*, *Z* и легко интегрируется (в комплексной модели этот интеграл ищется в численном виде):

$$\widehat{S} = S_0(Q_{PhAR}) - e^{-t_1} \cdot \int_0^{t_1} e^t \frac{d}{dt} (S_0(Q_{PhAR})) dt .$$
(42)

Полученная функция (42) удовлетворяет начальному условию, а ее значения для $t_1 \in [0; 1]$ принадлежат промежутку (S_{\min} ; 1].

Решим задачу (38)–(40). Выразим $Z = (X + \delta Y)/6$ и решаем систему двух нелинейных уравнений с переменными *X*, *Y* (учтем значение δ):

$$0 = C_{\omega 1} \left(p_1 + \frac{5}{6} X + \frac{3}{4} Y \right) - X \cdot \left(C_{\omega 1} + O_{\omega 1} \right),$$

$$0 = O_{\omega 1} \left(p_1 + \frac{5}{6} X + \frac{3}{4} Y \right) - Y \cdot \left(C_{\omega 1} + O_{\omega 1} \right).$$
(43)

Преобразуем систему (43) к виду:

$$C_{\omega 1} \cdot (6p_1 + 4.5Y - X) - O_{\omega 1} \cdot 6X = 0,$$

$$O_{\omega 1} \cdot (6p_1 + 5X - 1.5Y) - C_{\omega 1} \cdot 6Y = 0.$$
(44)

Полученная система для $O_{\omega 1} \neq 0$ и $C_{\omega 1} \neq 0$ имеет решение при условии

$$\frac{O_{\omega l}}{C_{\omega l}} = \frac{6Y}{\left(6p_1 + 5X - 1.5Y\right)} = \frac{\left(6p_1 + 4.5Y - X\right)}{6X},\tag{45}$$

то есть при таких значениях X, Y, которые являются корнем уравнения

$$27Y^{2} + 48XY + 20X^{2} - 144p_{1}^{2} - 96p_{1}X - 72p_{1}Y = 0.$$
 (46)

Решая квадратное уравнение (46) относительно У, получим два корня:

$$Y = 4p_1 - \frac{2}{3}X, \quad Y = -\frac{4}{3}p_1 - \frac{10}{9}X.$$
(47)

Рассмотрим корень $Y = 4p_1 - \frac{2}{3}X$. Решим с учетом равенств (39) уравнение

$$C_{\omega 1} \cdot 2(6p_1 - X) - O_{\omega 1} \cdot 3X = 0.$$
(48)

Получаем квадратное уравнение вида $AX^2 - BX + C = 0$, где коэффициенты

$$A = \Phi_{MC} (1.782 + 171.89S),$$

$$B = 2 + 3O_{aC} + \Phi_{MC}c_d (159.857S - 1.086) + \Phi_{MC}p_1 (1114.108S + 10.692),$$

$$C = p_1 (12 + \Phi_{MC}S(976.8c_d + 390.72p_1)).$$
(49)

Корни уравнения (48) имеют вид

$$X_1 = \frac{B - \sqrt{B^2 - 4AC}}{2A}, \quad X_2 = \frac{B + \sqrt{B^2 - 4AC}}{2A}.$$
 (50)

Учитывая, что $0 < S_{\min} \le S \le 1$, получим A > 0, B > 0, $C \ge 0$. Кроме того, $0 < D < B^2$ [21]. Следовательно, корни X_1 , X_2 – действительные, причем $0 \le X_1 < B/(2A) < X_2$. Корень X_1 всегда имеет физический смысл, а корень X_2 – посторонний, так как не удовлетворяет условию $X \le 6p_1$ (равносильному $Y \ge 0$).

Корень $Y = -\frac{4}{3}p_1 - \frac{10}{9}X$ уравнения (46) не имеет физического смысла, тем не менее, найдем с его помощью решение системы (44), которое соответствует линейному относительно *X* уравнению

$$C_{\omega 1} + O_{\omega 1} = 0. \tag{51}$$

С учетом равенств (39) и выражения для У получим:

$$X_{3} = \frac{1 + O_{aC} + \Phi_{MC}c_{d} \left(80.419S - 0.362\right) - \Phi_{MC}p_{1} \left(11.339S - 0.145\right)}{\Phi_{MC} \left(90.118S + 0.879\right)}.$$
 (52)

При любых значениях $S \in [S_{\min}; 1]$ числитель и знаменатель выражения (52) строго положительны, поэтому получаем $Y_3 < -\frac{4}{3}p_1 \le 0$.

Кроме того, заметим, что система (44) в предельных случаях $O_{\omega I} = 0$ и $C_{\omega I} = 0$ не имеет решений.

Таким образом, при любых (С_a, O_a) из Ω получаем порождающее решение в виде:

$$\hat{X} = \frac{B - \sqrt{B^2 - 4AC}}{2A}, \quad \hat{Y} = 4p_1(Q_{PhAR}) - \frac{2}{3}\hat{X}, \quad \hat{Z} = (\hat{X} + \delta\hat{Y})/6,$$

$$\hat{S} = S_0(Q_{PhAR}) - e^{-t_1} \cdot \int_0^{t_1} e^t \frac{d}{dt} (S_0(Q_{PhAR})) dt,$$
(53)

где *A*, *B*, *C* задаются выражениями (49) при $S = \hat{S}$, $p_1(Q_{PhAR}) = \frac{\alpha Q_{PhAR}}{\Phi_M + \alpha Q_{PhAR}}$.

Утверждение доказано.

Замечание 3: Для порождающего решения (53) при $t_1 = 0$ имеем $Q_{PhAR} = 0$, тогда $p_1(Q_{PhAR}) = 0$, значит C = 0 и, следовательно,

$$\widehat{X}(0) = \frac{\left(B - |B|\right)}{2A} = 0, \quad \widehat{Y}(0) = 4p_1 - \frac{2}{3} \cdot 0 = 0, \quad \widehat{Z}(0) = 0.$$
(54)

Утверждение 2. При любых значениях $(C_a, O_a) \in \Omega$ и значениях параметров, характерных для C_3 -растения, порождающее решение (53) является главным членом асимптотического разложения решения сингулярно возмущенной задачи (18)–(20).

Доказательство. Проверим выполнение условий I–V для найденного порождающего решения.

I) Перепишем для краткости систему (18) в виде

$$\mu \frac{dz}{dt_1} = F(z, S, t_1), \quad \frac{dS}{dt_1} = f(z, S, t_1), \tag{55}$$

где $z = (X, Y, Z)^{TRAN}$ – вещественный вектор быстрых переменных, нелинейная вещественная вектор-функция $F = (F_1(z, S, t_1), F_2(z, S, t_1), F_3(z, S, t_1))^{TRAN}$ (здесь TRAN – знак транспонирования матрицы).

Функции $F_1(z, S, t_1), F_2(z, S, t_1), F_3(z, S, t_1)$ задаются формулами:

$$F_{1} = C_{\omega 1} (p_{1} + 5Z) - X (C_{\omega 1} + O_{\omega 1}),$$

$$F_{2} = O_{\omega 1} (p_{1} + 5Z) - Y (C_{\omega 1} + O_{\omega 1}),$$
(56)

$$F_{3} = \frac{a_{\mu}}{6} (X + \delta Y) - a_{\mu} Z,$$

$$f = S_{0} (Q_{PhAR}) - S,$$

где $C_{\omega 1}$ и $O_{\omega 1}$ определяются выражениями (39), зависящими линейно от X, Y, S.

В силу естественных ограничений решаемой задачи, функции $F(z, S, t_1)$ и $f(z, S, t_1)$ определяются на выпуклых областях D_F и D_f . Непрерывность и дифференцируемость функций (56) относительно X, Y, Z, S очевидна (так как p_1 – непрерывная функция).

II) Решение $X_1 = \hat{X}$, $Y_1 = \hat{Y}$, $Z_1 = \hat{Z}$ для системы $F(z, S, t_1) = 0$ (формулы (53)) найдено в ограниченной замкнутой области $\overline{D} = \{(S, t_1): 0 < S_{\min} \le S \le 1; 0 \le t_1 \le 1\}$ и удовлетворяет всем пунктам условия II.

Поясним условие 3. В доказательстве утверждения 1 перечислены все корни системы $F(z, S, t_1) = 0$. Приведем интерпретацию корней в пространстве переменных (X, Y, Z, S, t_1) . Все три корня лежат на гиперплоскости $Z = (X + \delta Y)/6$. При $(S, t_1) \in \overline{D}$ корень $\langle X_1, Y_1 \rangle$ лежит в подпространстве $\{X \ge 0, Y \ge 0\}$, два других корня $\langle X_2, Y_2 \rangle$ и $\langle X_3, Y_3 \rangle$ – в подпространстве $\{X \ge 0, Y \le 0\}$.

III) Функция $f(z, S, t_1)$ линейна по S и не зависит от переменных X, Y, Z. Поэтому интеграл (42) является единственным и удовлетворяет условию III.

IV) Проверим условие асимптотической устойчивости:

$$\operatorname{Re}\zeta_i(t_1) < 0$$
 при $0 \le t_1 \le 1$, $i = 1, 2, 3$, (57)

где $\zeta_i(t_1)$ – собственные значения матрицы Якоби F_z , вычисленной на порождающем решении.

Вычислим элементы матрицы Якоби $F_z(z, S, t_1)$:

$$\frac{\partial F_{i}}{\partial X} = \frac{\partial C_{\omega 1}}{\partial X} \left(p_{1} + 5Z \right) - \left(C_{\omega 1} + O_{\omega 1} \right) - X \left(\frac{\partial C_{\omega 1}}{\partial X} + \frac{\partial O_{\omega 1}}{\partial X} \right),$$

$$\frac{\partial F_{i}}{\partial Y} = \frac{\partial C_{\omega 1}}{\partial Y} \left(p_{1} + 5Z \right) - X \left(\frac{\partial C_{\omega 1}}{\partial Y} + \frac{\partial O_{\omega 1}}{\partial Y} \right),$$

$$\frac{\partial F_{i}}{\partial Z} = 5C_{\omega 1},$$

$$\frac{\partial F_{2}}{\partial X} = \frac{\partial O_{\omega 1}}{\partial X} \left(p_{1} + 5Z \right) - Y \left(\frac{\partial C_{\omega 1}}{\partial X} + \frac{\partial O_{\omega 1}}{\partial X} \right),$$

$$\frac{\partial F_{2}}{\partial Y} = \frac{\partial O_{\omega 1}}{\partial Y} \left(p_{1} + 5Z \right) - \left(C_{\omega 1} + O_{\omega 1} \right) - Y \left(\frac{\partial C_{\omega 1}}{\partial Y} + \frac{\partial O_{\omega 1}}{\partial Y} \right),$$

$$\frac{\partial F_{2}}{\partial Z} = 5O_{\omega 1},$$

$$\frac{\partial F_{3}}{\partial Z} = 5O_{\omega 1},$$

$$\frac{\partial F_{3}}{\partial X} = \frac{2\Phi_{MC}}{3},$$

$$\frac{\partial F_{3}}{\partial Z} = -4\Phi_{MC},$$
(58)

где
$$\frac{\partial C_{\omega_1}}{\partial X} = -\Phi_{MC} \left(1 + 81.4S \right), \quad \frac{\partial C_{\omega_1}}{\partial Y} = 8.14 \Phi_{MC}S, \quad \frac{\partial O_{\omega_1}}{\partial X} = 0.981 \Phi_{MC}S,$$

495

 $\frac{\partial O_{\omega 1}}{\partial Y} = \Phi_{MC} \left(0.589S - 0.109 \right).$

Определим выражения (58) при
$$\hat{Z} = \frac{1}{6}(\hat{X} + \delta\hat{Y}), \ \hat{Y} = 4p_1 - \frac{2}{3}\hat{X}$$
:
 $F'_{1X} = \Phi_{MC}\left(0.362c_d - 3.564p_1 - 80.42\hat{S}c_d - 360.5\hat{S}p_1 + \hat{X}\left(1.594 + 139.5\hat{S}\right)\right) - O_{aC} - 1,$
 $F'_{1Y} = \Phi_{MC}\left(32.56\hat{S}p_1 + \hat{X}\left(0.109 - 6.016\hat{S}\right)\right),$
 $F'_{1Z} = \Phi_{MC}\left(407\hat{S}c_d + 162.8\hat{S}p_1 - \hat{X}\left(5 + 434.1\hat{S}\right)\right) + 5,$
 $F'_{2X} = \Phi_{MC}\left(325.6\hat{S}p_1 + 4p_1 - \hat{X}\left(0.667 + 53.286\hat{S}\right)\right),$
 $F'_{2Y} = \Phi_{MC}\left(\hat{X}\left(0.8183 + 92.25\hat{S}\right) + 0.362c_d + 0.436p_1 - 80.42\hat{S}c_d - 67.48\hat{S}p_1\right) - O_{aC} - 1,$
 $F'_{2Z} = 5O_{aC} + \Phi_{MC}\left(\hat{X}\left(0.363 + 2.942\hat{S}\right) - 1.81c_d - 2.18p_1 - 4.905\hat{S}c_d + 11.78\hat{S}p_1\right),$
 $F'_{3X} = 0.667\Phi_{MC}, \quad F'_{3Y} = 0.6\Phi_{MC}, \quad F'_{3Z} = -4\Phi_{MC},$

где \hat{X} , \hat{S} определяются выражениями (53).

Найдем собственные значения, решая уравнение $\left| \overline{F}_{z}(t_{1}) - \zeta E \right| = 0$. Получаем кубическое уравнение $\zeta^{3} + a\zeta^{2} + b\zeta + c = 0$ с коэффициентами $a, b, c \in R$:

$$a = -F'_{1X} - F'_{2Y} - F'_{3Z},$$

$$b = \begin{vmatrix} F'_{1X} & F'_{3X} \\ F'_{1Z} & F'_{3Z} \end{vmatrix} + \begin{vmatrix} F'_{1X} & F'_{2X} \\ F'_{1Y} & F'_{2Y} \end{vmatrix} + \begin{vmatrix} F'_{2Y} & F'_{3Y} \\ F'_{2Z} & F'_{3Z} \end{vmatrix},$$

$$c = -\begin{vmatrix} F'_{1X} & F'_{2X} & F'_{3X} \\ F'_{1Y} & F'_{2Y} & F'_{3Y} \\ F'_{1Y} & F'_{2Y} & F'_{3Y} \\ F'_{1Z} & F'_{2Z} & F'_{3Z} \end{vmatrix}.$$
(60)

С учетом выражений (59) найдем зависимости для коэффициентов (60):

$$a = a(\hat{X}) = \Phi_{MC} \left(4 + (3.128 + 428\hat{S}) p_1 + (-0.724 + 160.8\hat{S}) c_d - -\hat{X} \left(2.412 + 231.8\hat{S} \right) \right) + 2(1 + O_{aC}),$$

$$b = b(\hat{X}) = b_2 \hat{X}^2 - b_1 \hat{X} + b_0,$$

$$b_2 = \Phi_{MC}^2 \left(1.377 + 263\hat{S} + 12555\hat{S}^2 \right),$$

$$b_1 = \Phi_{MC} \left(1 + O_{aC} \right) \left(2.412 + 231.8\hat{S} \right) + \Phi_{MC}^2 \left(6.534 + 639.5\hat{S} + + (-0.873 + 110.1\hat{S} + 18644\hat{S}^2) c_d + (2.658 + 660.3\hat{S} + 38988\hat{S}^2) p_1 \right),$$

$$b_0 = (1 + O_{aC})^2 + \Phi_{MC} \left(4.667 + 5O_{aC} \right) + + \left(\Phi_{MC}^2 + \Phi_{MC} \left(1 + O_{aC} \right) \right) \left(3.128 p_1 + 428\hat{S}p_1 - 0.724c_d + 160.8\hat{S}c_d \right),$$

$$c = c(\hat{X}) = c_2 \hat{X}^2 - c_1 \hat{X} + c_0,$$

$$c_2 = \Phi_{MC}^3 \left(1.102 + 208.7\hat{S} + 9882\hat{S}^2 \right),$$

(61)

$$c_{1} = \Phi_{MC}^{2} \left(1.806 + 172.1S + \left(2.115 + 200.8S \right) O_{aC} \right) + \\ + \Phi_{MC}^{3} \left(\left(-0.766 + 72.25\widehat{S} + 13811\widehat{S}^{2} \right) c_{d} + \left(2.787 + 643.3\widehat{S} + 36033\widehat{S}^{2} \right) p_{1} \right), \\ c_{0} = \Phi_{MC} \left(1 + O_{aC} \right) \left(0.667 + O_{aC} \right) + \Phi_{MC}^{2} \left(\left(\left(133.7\widehat{S} - 0.724 \right) O_{aC} + 106.9\widehat{S} - 0.603 \right) c_{d} + \\ + \left(\left(406.3\widehat{S} + 3.128 \right) O_{aC} + 394.6\widehat{S} + 3.273 \right) p_{1} \right) + \Phi_{MC}^{3} \left(\left(0.131 - 48.4\widehat{S} + 4285\widehat{S}^{2} \right) c_{d}^{2} + \\ + \left(-1.132 + 116.3\widehat{S} + 31733\widehat{S}^{2} \right) c_{d} p_{1} + \left(-1.554 - 37.48\widehat{S} + 12977\widehat{S}^{2} \right) p_{1}^{2} \right).$$

Очевидно, что a > 0 при $0 \le \hat{X} \le 6p_1 < 6$. Для *b* и *c*, представленных в виде квадратных многочленов относительно \hat{X} , имеем положительные коэффициенты при старших степенях, то есть $b \hat{X}$ и *c* \hat{X} – выпуклые функции по \hat{X} .

Так как $b \ \hat{X}$ – выпуклая и $b' \ 0 = -b_1 < 0$, $b' \ 6p_1 = 12b_2p_1 - b_1 < 0$, $b \ 6p_1 > 0$ при допустимых значениях параметров, то $b = b \ \hat{X} > 0$ при $0 \le \hat{X} \le 6p_1$.

Аналогично $c = c \ \widehat{X} > 0$ при $0 \le \widehat{X} \le 6p_1$, так как $c \ \widehat{X}$ – выпуклая и $c' \ 0 = -c_1 < 0, \ c' \ 6p_1 = 12c_2p_1 - c_1 < 0, \ c \ 6p_1 > 0.$

Итак, действительные корни уравнения $\zeta^3 + a\zeta^2 + b\zeta + c = 0$ – отрицательны.

Предположим, что есть пара комплексно-сопряженных корней, тогда следует оценить их действительную часть. Корни кубического уравнения оценим методом Виета-Кардано. Определим

$$U = (a^2 - 3b)/9, \quad W = (2a^3 - 9ab + 27c)/54.$$
 (62)

Если $W^2 < U^3$, то все три корня – действительные. Исследуем случай $W^2 \ge U^3$, при котором один корень – действительный и два – комплексно-сопряженных, либо два действительных корня (вырожденный случай):

$$\zeta_{1} = (J+V) - \frac{a}{3},$$

$$\zeta_{2,3} = -\left[\frac{J+V}{2} + \frac{a}{3}\right] \pm i\sqrt{3} \cdot \frac{J-V}{2},$$
(63)

где $J = -\text{sign}(W) \left(|W| + \sqrt{W^2 - U^3} \right)^{1/3}, \quad V = \frac{U}{J}$ при $J \neq 0$ или V = 0 при J = 0.

Оценим возможные значения выражений U и W с учетом (61):

$$\begin{split} 9U &= UU(\hat{X}) = u_2 \hat{X}^2 - u_1 \hat{X} + u_0, \\ u_2 &= \Phi_{MC}^2 (1.688 + 329.168 \hat{S} + 16067.7 \hat{S}^2), \\ u_1 &= \Phi_{MC} (2.412 + 231.778 \hat{S})(1 + O_{aC}) + \Phi_{MC}^2 (-0.303 - 64.14 \hat{S} + \\ &+ (-0.873 + 110.094 \hat{S} + 18639.4 \hat{S}^2) c_d + (7.119 + 1534.14 \hat{S} + 81458.6 \hat{S}^2) p_1), \\ u_0 &= (1 + O_{aC})^2 + \Phi_{MC} (2 + O_{aC} + (-0.724 + 160.838 \hat{S})(1 + O_{aC}) c_d + \\ &+ (3.128 + 427.992 \hat{S})(1 + O_{aC}) p_1) + \Phi_{MC}^2 (16 + (161.819 \hat{S} - 0.362) c_d - \\ &- (16.436 + 1365.16 \hat{S}) p_1 + (0.131 - 58.223 \hat{S} + 6467.22 \hat{S}^2) c_d^2 + \\ &+ (-1.132 + 96.618 \hat{S} + 34418.7 \hat{S}^2) c_d p_1 + (14.446 + 2818.34 \hat{S} + 142003 \hat{S}^2) p_1^2), \end{split}$$

$$\begin{split} 54W = WW(\bar{X}) = w_3\bar{X}^3 - w_2\bar{X}^2 + w_1\bar{X} + w_0, \\ w_1 = \Phi_{Mc}^3(1.822 + 490.42\bar{S} + 43614.87\bar{S}^2 + 1278905\bar{S}^3), \\ w_2 = \Phi_{Mc}^2(7.33 + 1379.744\bar{S} + 64756.65\bar{S}^2)(1 + O_{ac}) + \\ + \Phi_{Mc}^3(22.025 + 4508.758\bar{S} + 229618\bar{S}^2 + \\ + (-2.653 + 89.969\bar{S} + 87515.73\bar{S}^2 + 5207665\bar{S}^3)c_d - \\ - (12.752 + 3343.364\bar{S} + 289752.9\bar{S}^2 + 8295016\bar{S}^3)p_1), \\ w_1 = \Phi_{Mc}(7.237 + 695.334\bar{S})(1 + O_{ac})^2 + \\ + \Phi_{Mc}^2(25.422 + 2691.902\bar{S} + 24.313O_{ac} + 2611.091\bar{S}O_{ac} + \\ + (-5.24 + 660.563\bar{S} + 111836.1\bar{S}^2)(1 + O_{ac})D_d + \\ + (2.561 + 1339.93\bar{S} + 106443.1\bar{S}^2)(1 + O_{ac})D_d + \\ + (2.561 + 1339.93\bar{S} + 106443.1\bar{S}^2)(1 + O_{ac})D_d + \\ + (142.216 + 28701.08\bar{S} + 1462136\bar{S}^2)D_1 + \\ + \Phi_{Mc}^3(3.64 + 769.684\bar{S} + (-8.801 + 1100.285\bar{S} + 216559.3\bar{S}^2)c_d + \\ + (142.216 + 28701.08\bar{S} + 1462136\bar{S}^2)D_1 + \\ + (0.948 - 330.243\bar{S} + 6318.56\bar{S}^2 + 4496875\bar{S}^3)c_d^2 + \\ + (-0.927 - 279.075\bar{S} + 69223.41\bar{S}^2 + 8560048\bar{S}^3)c_d P_1 - \\ - (100.541 + 27797.42\bar{S} + 2534148\bar{S}^2 + 75961277\bar{S}^3)p_1^2), \\ w_0 = -2(1 + O_{ac})^3 + \Phi_{Mc}(1 + O_{ac})[-3(2 + O_{ac}) + \\ + (2.172 - 482.514\bar{S})(1 + O_{ac})c_d - (9.384 + 1283.976\bar{S})(1 + O_{ac})p_1] + \\ + \Phi_{Mc}^3[12(2 + O_{ac}) + (3.258 + 2.172O_{ac} - 967.971\bar{S} - 726.714O_{ac}\bar{S})c_d - \\ - (104.076 + 117.384O_{ac} + 10375.28\bar{S} + 11345.02O_{ac}\bar{S})p_1 + \\ + (-0.786 + 349.34\bar{S} - 38803.29\bar{S}^2)(1 + O_{ac})c_d^2 + \\ + (6.794 - 579.705\bar{S} - 206512.1\bar{S}^2)(1 + O_{ac})c_d^2 + \\ + (6.794 - 579.705\bar{S} - 206512.1\bar{S}^2)(1 + O_{ac})c_d^2 + \\ + (6.794 - 579.705\bar{S} - 326371\bar{S} + 3934\bar{S} - 32832\bar{S}^2)p_1^2 + \\ + (0.095 - 63.231\bar{S} + 14946.79\bar{S}^2 - 1040174\bar{S}^3)c_d^3 + \\ + (104.957 + 32432.82\bar{S} + 3232304\bar{S}^2 + 103930400\bar{S}^3)p_1^3 + \\ + (0.095 - 63.231\bar{S} + 14046.79\bar{S}^2 - 1040174\bar{S}^3)c_d^3 + \\ + (104.957 + 32432.82\bar{S} + 3232304\bar{S}^2 + 103930400\bar{S}^3)p_1^3 + \\ + (-2.751 + 1396.244\bar{S} + 604417.7\bar{S}^2 + 24325788\bar{S}^3)c_dp_1^2 + \\ + (-1.23 + 378.111\bar{S} + 14069.04\bar{S}^2 - 8303750\bar{S}^3)c_d^2p_1.$$

Здесь $u_2 > 0$, то есть $UU \ \hat{X}$ – выпуклая и $UU \ 6p_1 > 0$, $UU' \ 0 = -u_1 < 0$, $UU' \ 6p_1 = 12u_2p_1 - u_1 < 0$ при допустимых значениях параметров, поэтому $9U = UU \ \hat{X} > 0$ при $0 \le \hat{X} \le 6p_1$.

Рассмотрим кубическую по переменной \hat{X} функцию WW \hat{X} и оценим ее значения при $0 \le \hat{X} \le 6p_1$ и допустимых значениях параметров. Коэффициент $w_3 > 0$, поэтому

участок убывания функции (если он есть) расположен между двумя участками возрастания. Так как $WW'' \ 0 = -2w_2 < 0$ и $WW'' \ 6p_1 = 36p_1w_3 - 2w_2 < 0$, то $0 \le \hat{X} \le 6p_1$ полностью принадлежит участку вогнутости функции. Кроме того, $WW' \ 0 = w_1 > 0$ и $WW' \ 6p_1 = 108p_1^2w_3 - 12p_1w_2 + w_1 > 0$, поэтому при $0 \le \hat{X} \le 6p_1$ функция $WW \ \hat{X}$ строго возрастает. При $\hat{X} = 6p_1$ значение $WW \ 6p_1 < 0$, следовательно, при допустимых значениях параметров верна оценка W < 0.

Таким образом, получаем J > 0, V > 0 и (J + V) > 0. Следовательно, действительные части корней $\operatorname{Re}\zeta_2 = \operatorname{Re}\zeta_3 = -\left[\frac{J+V}{2} + \frac{a}{3}\right] < 0$. Итак, условие IV выполнено.

V) Рассмотрим присоединенную систему вида (30), в которой S и t_1 рассматриваются как параметры. В силу условия II $\hat{z}(S,t_1) = (\hat{X}, \hat{Y}, \hat{Z})$ является изолированной точкой покоя присоединенной системы при $(S, t_1) \in \overline{D}$.

Составим присоединенную систему при S = S(0) = 1 и $t_1 = 0$ (тогда $p_1 = 0$):

$$\frac{dX}{d\tau} = 5\tilde{Z}C_{\omega 1}^{0} - \tilde{X}\left(C_{\omega 1}^{0} + O_{\omega 1}^{0}\right),$$

$$\frac{d\tilde{Y}}{d\tau} = 5\tilde{Z}O_{\omega 1}^{0} - \tilde{Y}\left(C_{\omega 1}^{0} + O_{\omega 1}^{0}\right),$$

$$\frac{d\tilde{Z}}{d\tau} = a_{\mu}\left(\frac{1}{6}\left(\tilde{X} + \delta\tilde{Y}\right) - \tilde{Z}\right),$$
(65)

где

$$C_{\omega 1}^{0} = 1 - 82.4 \Phi_{MC} \tilde{X} + 8.14 \Phi_{MC} \tilde{Y} + 81.4 \Phi_{MC} c_{d},$$

$$O_{\omega 1}^{0} = O_{aC} + 0.98 \Phi_{MC} \tilde{X} + 0.48 \Phi_{MC} \tilde{Y} - 1.34 \Phi_{MC} c_{d},$$
(66)

с начальным условием $\tilde{X}(0) = \tilde{Y}(0) = \tilde{Z}(0) = 0$.

Решением задачи (65), (66) будет $\tilde{X}(\tau) = \tilde{Y}(\tau) = \tilde{Z}(\tau) = 0$, причем, при $\tau \to \infty$ данное решение стремится к начальному решению задачи (18)–(20).

Пункт 2 очевиден. Итак, начальное значение принадлежит области влияния точки покоя, и условие притяжения V выполняется.

Таким образом, найдена регулярная часть нулевого приближения, удовлетворяющая условиям I–V. В точке $t_1 = 0$ значение порождающего решения (53) совпадает с начальным условием решаемой задачи, поэтому $\Pi_0 z(0) = z^0 - \overline{z_0}(0) = 0$. Следовательно, $\Pi_0 z(\tau) = 0$. Таким образом, в нулевом приближении решение задачи не имеет погранслоя. Утверждение доказано.

Учтем оценку (37) теоремы Васильевой и $\mu = const$ на рассматриваемом временном отрезке $0 \le t_1 \le 1$ (в течение одного дня). Тогда найденное нулевое приближение (53) в прикладных задачах прогноза урожайности вполне удовлетворительно может заменить точное решение задачи (18)–(20).

Мгновенные интенсивности процессов фотосинтеза и фотодыхания можно определить по формулам (2) с учетом равенств (1) и (14):

$$\Phi_{g} = \frac{1}{6} \Phi_{M} \hat{X} + 0.15 \Phi_{M} \hat{Y} = \frac{1}{15} \Phi_{M} \left(\hat{X} + 9 p_{1} \right),$$

$$R_{L} = 0.1 \Phi_{M} \hat{Y} = 0.1 \Phi_{M} \left(4 p_{1} - \frac{2}{3} \hat{X} \right),$$
(67)

где \hat{X} определяется по (53). Заметим следующее: предельное значение $\hat{X} = 6p_1$ (соответствует $\hat{Y} = 0$) показывает, что при отсутствии фотодыхания интенсивность фотосинтеза определяется зависимостью

$$\Phi_g = \Phi_M p_1 = \frac{\alpha Q_{PhAR} \Phi_M}{\Phi_M + \alpha Q_{PhAR}},$$
(68)

что соответствует стационарной интенсивности фотосинтеза при насыщающем значении углекислоты, а также согласуется с опытными данными и с результатами других моделей [2, 7–13].

Модель II. Модель влияния дефицита минерального азота на интенсивности процессов фотосинтеза и фотодыхания С₃-растений [26]

Интенсивность поглощения фотосинтетически активной радиации единицей листовой поверхности описывается уравнением Михаэлиса-Ментен:

$$v_{PhAR}(N_L) = Q_{PhAR} \frac{N_L}{N_L + K_{M1}},$$
(69)

где Q_{PhAR} – максимальная интенсивность поглощения ФАР при высокой концентрации азота в листьях N_L , K_{M1} – константа Михаэлиса, равная концентрации субстрата N_L , при которой скорость составляет половину от максимальной. Множитель-дробь в формуле (69) показывает, как влияет торможение синтеза молекул хлорофилла в результате недостатка минерального азота на поглощение растением ФАР. Величина (69) в описанной выше модели выполняет роль переменной Q_{PhAR} , которая регулирует подвижность устьиц и скорость синтеза РиБФ.

От концентрации комплекса РиБФ-К/О в реактивных центрах зависят скорости реакций карбоксилирования и оксигенации. Так, Φ_M прямо пропорционально концентрации РиБФ-К/О. Так как минеральный азот является субстратом при синтезе ферментов, а температура T_L листовой поверхности влияет на скорость синтеза, то величину максимальной интенсивности фотосинтеза при колебании температуры листа и дефиците минерального азота можно определить по формуле:

$$\Phi_M = \Phi_{M0} \cdot F_{1str}(T_L) \cdot F_{2str}(N_L).$$
(70)

Функции стресса по температуре и концентрации азота в листьях N_L имеют вид:

$$F_{1str}(T_L) = \begin{cases} e^{-(T_L - 12)^2/9}, & T_L \le 12^{\circ} \mathrm{C}, \\ 1, & 12^{\circ} \mathrm{C} \le T_L \le 25^{\circ} \mathrm{C}, \\ e^{-(T_L - 25)^2/25}, & 25^{\circ} \mathrm{C} \le T_L, \end{cases}$$
(71)

$$F_{2str}(N_L) = \frac{N_L}{N_L + K_{M2}},$$
(72)

где K_{M2} – константа Михаэлиса, равная концентрации субстрата N_L , при которой скорость синтеза РиБФ-К/О снижается вдвое.

Заметим, что изменение условий азотного питания происходит столь медленно [23], что динамикой величины N_L в течение суток можно пренебречь, а соответствующие множители в формулах (69), (70) представляют собой поправочные коэффициенты.

Функция стресса по концентрации азота в листьях (72) отражает влияние поглощенного растением минерального азота на концентрацию РиБФ-К/О. Она должна быть введена множителем в формулу для определения малого параметра µ. Тогда при азотном стрессе значение параметра µ будет уменьшаться в течение сезона вегетации,

что положительно отразится на точности приближенного решения динамической системы уравнений фотосинтеза и фотодыхания.

ИССЛЕДОВАНИЕ МОДЕЛИ ФОТОСИНТЕЗА И ФОТОДЫХАНИЯ С₃-РАСТЕНИЙ В ОДНОРОДНОМ ПОСЕВЕ

Проведем анализ адекватности построенной модели фотосинтеза и фотодыхания С₃растений, исследуя суточную динамику интенсивности этих процессов. Для этой цели была разработана суточная модель фотосинтеза посева с учетом взаимосвязанного влияния метеофакторов, реализованная в виде комплекса программ на языке Turbo Pascal. Кроме блока фотосинтеза суточная модель включает блок радиационного режима, блок микроклимата посева, блок тепло- и влагопереноса в почве и блоки динамики углекислого газа и кислорода в межлистном пространстве, в которых вычисляются профили определяющих факторов внутри посева с учетом архитектоники качестве входных переменных суточной [18, 21, 27]. В модели выступают метеоусловия в текущие сутки, текущая дата (для определения длины светового дня и интенсивности приходящей к посеву ФАР в блоке радиационного режима) и характеристики текущего состояния посева.

При построении блока фотосинтеза возникает задача интегрирования полученной зависимости для интенсивности фотосинтеза единичной площадки листа по времени и по пространству (по всей надземной биомассе для выделенного фрагмента поля). Результатом работы блока являются суточные суммы накопленных ассимилятов.

Согласно общепринятому подходу в моделировании агроэкосистем, будем рассматривать посев как мутную среду, свойства которой однородны и изотропны в горизонтальной плоскости (в пределах выделенного фрагмента поля). Для загущенных посевов это предположение не вызывает серьезных возражений [2–4, 28].

При моделировании ранних стадий развития растений в посеве целесообразно при расчетах пользоваться эффективными свойствами среды, получаемыми осреднением характеристик оголенной почвы и посева по единице площади подстилающей поверхности. При этом вклад каждой из составляющих определяется текущим коэффициентом проективного покрытия – долей поверхности почвы под растениями [2–4, 28].

При указанном подходе пространственная неоднородность фотосинтеза в посеве наблюдается лишь в вертикальном направлении. Тогда динамика прироста первичных ассимилятов по времени определяется в первую очередь суточным ходом солнечной радиации [2]:

$$\Phi_{S} = \int_{0}^{T} \int_{0}^{H_{C}} \Phi_{n} \left(Q_{PhAR} \left(h, t \right) \right) \cdot dh \cdot dt,$$
(73)

где Φ_S – суточный прирост первичных ассимилятов на единицу площади поля, t – переменная времени, T – длина светового дня, h – вертикальная координата слоя посева, отсчитываемая от верхней кромки посева, H_C – высота посева, $Q_{PhAR}(h, t)$ – интенсивность ФАР, поглощенной элементарной листовой площадкой, вертикальная координата которой равна h.

Интенсивность нетто-фотосинтеза Φ_n определяется с учетом (67) по формуле

$$\Phi_n = \Phi_g - R_L = \frac{1}{15} \Phi_M \left(2\hat{X} + 3p_1 \right).$$
(74)

Для реализации на компьютере построенной модели фотосинтеза и фотодыхания следует перейти к дискретному описанию. Разобьем посев по высоте на одинаковые по величине значений листового индекса *NL* слоев. Интенсивность ФАР, поглощаемой

тонким слоем, определим как разность потоков радиации, доходящих до его верхней и нижней границ или в пределе [2]:

$$Q_{PhAR}(L,t) = -Q_{PhAR}(0,t)\frac{\partial}{\partial L}A_{PhAR}(L,t), \qquad (75)$$

где $A_{PhAR}(L, t)$ – функция пропускания посевом ФАР, $Q_{PhAR}(0, t)$ – интенсивность ФАР на верхней границе посева.

Используем в качестве пространственной переменной суммарный листовой индекс L (для верхней кромки посева L = 0, для нижнего уровня L = LAI, где LAI - интегральный листовой индекс посева). Тогда, учитывая зависимость (75), формула (73) примет вид:

$$\Phi_{S} = \int_{0}^{T} \int_{0}^{LAI} \Phi_{n} \left(Q_{PhAR} \left(0, t \right) \frac{\partial}{\partial L} A_{PhAR} \left(L, t \right) \right) \cdot dL \cdot dt.$$
(76)

При дискретизации выражение (76) преобразуется к виду

$$\Phi_{S} = \sum_{i=1}^{NT} \sum_{j=1}^{NL} \Phi_{n} \left(\overline{Q_{PhAR}} \left(0, t \right) \cdot \left(A_{PhAR} \left(L_{j-1}, t_{i} \right) - A_{PhAR} \left(L_{j}, t_{i} \right) \right) \right) \cdot \Delta L_{j} \cdot \Delta t_{i},$$
(77)

где NT – число шагов по времени в течение светового дня, Δt_i – временной шаг блока фотосинтеза, NL – количество слоев посева, ΔL_j – дискретный шаг по листовому индексу, L_j – суммарный листовой индекс расчетных слоев, находящихся выше текущего, $\overline{Q_{PhAR}}(0, t)$ – средняя за промежуток времени $[t_i, t_{i+1}]$ интенсивность приходящей к верхнему ярусу посева ФАР. Формулы для определения величин $\overline{Q_{PhAR}}(0, t)$ и $A_{PhAR}(L, t)$ можно найти в книге [2].

Проведенный анализ влияния временной и пространственной дискретизации на точность вычислений по разработанной модели фотосинтеза и фотодыхания позволил сделать вывод, что для широкого класса внешних условий и характеристик состояния культуры удовлетворительным будет выбор шага по времени порядка 0.1 ч. и пространственного разбиения посева на слои при *LAI*: *NL* = 0.4.

Идентификация параметров формул (69), (72) и верификация разработанной модели осуществлялись по экспериментальным данным о приросте биомассы яровой пшеницы сорта «Саратовская-29», полученным в 1972–1979 гг. и 1987–1990 гг. (НИИСХ Юговостока, Саратов) и ярового ячменя сорта «Белогорский» за 1983–1989 гг. (Меньковская опытная станция Агрофизического НИИ, С-Петербург) с учетом реальных метеоданных.

В численных экспериментах характеристики посева (интегральный листовой индекс, высота посева) были заданы константами, так как динамика этих величин в течение суток несущественна. Так же постоянными величинами в течение дня задавались скорость ветра, облачность и обеспеченность азотом (средние значения). Такое допущение оправдано при оценке характера влияния температурного, водного и радиационного режимов на суточный ход фотосинтеза. При постановке численных экспериментов по суточной модели временной шаг был принят равным 6 минутам, выбрано разбиение посева по высоте на 6 одинаковых слоев.

В результате многократного прогона суточной модели в широком диапазоне метеоусловий был сделан вывод об адекватной реакции моделируемого посева на основные метеофакторы. Характерные результаты вычисления интенсивностей процессов нетто-фотосинтеза и фотодыхания по слоям посева приведены на рисунках 3–4, где для сравнения приведены соответствующие графики по модели фотосинтеза

имитационной системы AGROTOOL (разработана в Агрофизическом НИИ, г. Санкт-Петербург) [29].

Рис. 3. Динамика нетто-фотосинтеза (нг·см⁻²·с⁻¹) по слоям посева в течение суток: a – по модели системы AGROTOOL; δ – по разработанной модели.

Рис. 4. Динамика фотодыхания ($Hr \cdot cm^{-2} \cdot c^{-1}$) по слоям посева в течение суток: a – по модели системы AGROTOOL; δ – по разработанной модели.

503

На рисунках 5–6 показана суточная динамика суммарного нетто-фотосинтеза посева при нормальном температурном фоне и при высокотемпературном стрессе соответственно. Результаты расчетов приведены по разработанной модели и по модели фотосинтеза имитационной системы AGROTOOL.

Необходимо заметить, что получаемые интегральные кривые нетто-фотосинтеза и фотодыхания для целого посева могут качественно отличаться от соответствующих кривых для отдельного листа, что обуславливается временной и пространственной неоднородностью динамики фотосинтеза.

Рис. 5. Суточная динамика суммарного нетто-фотосинтеза посева (мкг·см⁻²·c⁻¹) при нормальном температурном фоне: a – по модели системы AGROTOOL; δ – по разработанной модели.

Рис. 6. Суточная динамика суммарного нетто-фотосинтеза посева (мкг·см⁻²·c⁻¹) при высокотемпературном стрессе: a – по модели системы AGROTOOL; δ – по разработанной модели.

С целью оценки количественной точности разработанная модель была подключена к комплексной моделипродукционного процесса системы AGROTOOL. В качестве основного показателя продукционного процесса рассматривался суточный прирост надземной биомассы растений.

На рисунке 7 приведены результаты расчетов для двух моделей. Сравнение результатов производилось с экспериментальными данными о приросте биомассы яровой пшеницы сорта «Саратовская-29» (взяты из базы данных системы AGROTOOL). Данные по 1973 и 1979 годам использовались для верификации, данные по другим годам – для идентификации параметров моделей.

Рис. 7. Динамика накопления надземной биомассы (ц/га) в посеве яровой пшеницы: *а* – 1973 г.; *б* – 1979 г.

Отклонения расчетных значений надземной биомассы в посеве яровой пшеницы для двух сравниваемых моделей для благоприятного по метеоусловиям 1973 года незначительны и мало отклонение от экспериментальных данных (рисунок 7,a). Для неблагоприятного по водному и температурному режиму 1979 года различия расчетных значений по двум моделям существенны. Следует отметить, что кривая, полученная по разработанной модели, точнее описывает динамику накопления биомассы (рисунок 7, δ).

Для разработанной модели максимальное отклонение суммы суточных ассимилятов от экспериментальных значений составило 9.8%, для модели фотосинтеза, используемой в имитационной системе AGROTOOL, соответственно 18%. Полученные результаты свидетельствуют об адекватности разработанной модели и большей точности по сравнению с моделью фотосинтеза имитационной системы AGROTOOL.

ЗАКЛЮЧЕНИЕ

Автором разработана «физиологичная» математическая модель, учитывающая наиболее существенные моменты процессов фотосинтеза и фотодыхания С₃-растений, в том числе конкуренцию углекислого газа и кислорода за активный акцептор РиБФ и замыкание гликолатного пути углерода в цикл Кальвина. В разработанной модели учтена связь между потреблением минерального азота и интенсивностями процессов фотосинтеза и фотодыхания.

Построено асимптотическое приближение для решения задачи (18)–(20), достаточное для вычисления суммарной суточной интенсивности фотосинтеза с

удовлетворительной точностью (для задач прогнозирования урожайности в однородном посеве). Приведенные формулы (77), (74), (53) и (49) позволяют определить интенсивность нетто-фотосинтеза посева в зависимости от распределения поглощаемой ФАР и метеофакторов по времени и пространству.

Проведенные с суточной моделью фотосинтеза численные эксперименты при различных сценариях погодных условий показали, что модель адекватно отражает суточную динамику интенсивности процессов фотосинтеза и фотодыхания С₃-растений в однородном посеве.

Полученная в результате данного исследования модель фотосинтеза и фотодыхания С₃-растений может быть использована в качестве блока расчета первичных ассимилятов комплексной модели продукционного процесса С₃-растений для однородного посева в условиях естественной природной среды. С помощью построенной модели можно оценивать степень влияния ряда метеорологических факторов (в широком диапазоне, включающем стрессовые значения) и азотного стресса на количественные и качественные характеристики продукции растениеводства, анализировать течение продукционного процесса зерновых культур. Результаты исследования могут использоваться в прикладных моделях прогноза урожайности зерновых культур.

Кроме того, разработанная модель представляет собой и самостоятельный инструмент научного исследования, позволяя имитировать реакцию посевов (изменение их фотосинтетической активности) в зависимости от своего текущего состояния на различные внешние раздражения (температуру, уровень освещенности, концентрацию углекислого газа и т.д.). В качестве примера можно привести исследование того, какой вклад листья разных ярусов вносят в суммарный суточный фотосинтез посева.

СПИСОК ЛИТЕРАТУРЫ

- 1. Якушев В.П. *На пути к точному земледелию*. СПб.: Изд-во ПИЯФ РАН, 2002. 458 с.
- 2. Полуэктов Р.А., Смоляр Э.И., Терлеев В.В., Топаж А.Г. Модели продукционного процесса сельскохозяйственных культур. СПб.: Изд-во СПбГУ, 2006. 396 с.
- 3. Хворова Л.А., Брыксин В.М., Гавриловская Н.В., Топаж А.Г. Математическое моделирование и информационные технологии в экологии и природопользовании. Барнаул: Изд-во Алт. ун-та, 2013. 277 с.
- 4. Хворова Л.А., Топаж А.Г. Динамическое моделирование и прогнозирование в агрометеорологии. Барнаул: Изд-во Алт. ун-та, 2010. 263 с.
- 5. Журавлева В.В. Математические модели процессов регуляции в физиологии растений. *Известия АГУ*. 2008. № 1(57). С. 43–57.
- 6. Миршель В., Полуэктов, Р.А., Топаж А.Г. Сравнение эмпирического и теоретического подходов в математическом моделировании агроэкосистем на примере описания фотосинтеза. *Математическое моделирование*. 1998. Т. 10. № 70. С. 25–36.
- 7. Лайск А.Х. Кинетика фотосинтеза С₃-растений. М.: Наука, 1991. 261 с.
- 8. Пых Ю.А. Математические модели фотосинтеза листа в общей модели продуктивности агроэкосистем. В: Управление продуктивностью экологических систем. Сб. трудов по агрономической физике. 1976. Вып. 38. С. 30–46.
- 9. Бихеле З.Н., Молдау Х.А., Росс Ю.К. Математическое моделирование транспирации и фотосинтеза растений при недостатке почвенной влаги. Л.: Гидрометеоиздат, 1980. 223 с.
- 10. Тооминг, Х.Г. *Солнечная радиация и формирование урожая*. Л.: Гидрометеоиздат, 1977. 139 с.

- 11. Penning de Vries F.W.T., Van Laar H.H. Simulation of plant growth and crop production. Wageningen: Pudoc, 1982. 308 p.
- 12. De Wit C.T. Simulation of assimilation, respiration and transpiration of crops. Wageningen: Pudoc, 1978. 140 p.
- 13. Торнли Дж.Г.М. *Математическое моделирование в физиологии растений*. Киев: Наукова думка, 1982. 312 с.
- 14. Chartier P. A model of CO₂ assimilation in the leaf. *Prediction and measurement of photosynthetic productivity*. 1970. P. 307–315.
- 15. Молчанов А.Г. Простая модель оценки влияния водообеспеченности на дневную изменчивость световых кривых фотосинтеза. *Математическая биология и биоинформатика*. 2012. Т. 7. № 1. С. 197–205. doi: <u>10.17537/2012.7.197</u>.
- 16. Farquhar G.D., Von Caemmerer S., Berry J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. *Planta*. 1980. V. 149. P. 78–90.
- 17. Bernacchi C.J., Singsaas E.L., Pimentel C., Portis A.R., Long S.P. Improved temperature response functions for models of Rubisco-limited photosynthesis. *Plant, Cell and Environment.* 2001. V. 24. P. 253–259.
- 18. Гриценко А.А., Журавлева В.В., Плинокосова Л.Н., Хворова Л.А. Результаты анализа и компьютерного тестирования блоков радиации и фотосинтеза. Известия АГУ. 2001. № 1(19). С. 61–64.
- 19. Журавлева В.В. Математическая модель дыхания С₃-растений во время фотосинтеза. *Известия АГУ*. 2007. № 1(53). С. 45–49.
- Журавлева В.В. Математическая модель фотосинтеза и фотодыхания С₃-растений. Обозрение прикладной и промышленной математики. 2008. Т. 15. Вып. 3. С. 470– 473.
- 21. Журавлева В.В. Математическое моделирование процессов накопления биомассы С₃-растений в процессе вегетации: Дис. ... канд. физ.-мат. наук. Барнаул, 2008. 120 с.
- 22. Журавлева В.В. Качественный анализ модели фотосинтеза и фотодыхания С₃растений. Известия АГУ. 2009. № 1(61). С. 56–59.
- 23. Хворова Л.А. Моделирование влияния азотного питания на продукционный процесс люцерны: Дис. ... канд. тех. наук. СПб., 1992. 202 с.
- 24. Найфэ А. Введение в методы возмущений. М.: Мир, 1984. 535 с.
- 25. Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высшая школа, 1990. 207 с.
- 26. Журавлева В.В. Моделирование влияния азотного дефицита на процесс фотосинтеза. *Обозрение прикладной и промышленной математики*. 2008. Т. 15. Вып. 4. С. 666.
- 27. Гриценко А.А., Рудова Л.Н., Сукачева В.В., Хворова Л.А. Моделирование радиационного режима. *Известия АГУ*. 1999. № 1(11). С. 36–39.
- 28. Хворова Л.А., Топаж А.Г. Построение моделей агроэкосистем и их адаптация к конкретным условиям. *Научно-технические ведомости СПбГПУ*. 2011. № 1(115).
- 29. AGROTOOL Портал. URL: <u>http://agrotool.ru/</u> (дата обращения 15.06.2015).

Материал поступил в редакцию 18.12.2014, опубликован 30.11.2015.