

В. К. Захаров, О функциональном представлении инъективной: оболочки и критерии инъективности некоторых

модулей, Изв. вузов. Матем., 1973, номер 9, 27–30

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 18.217.197.197

12 сентября 2024 г., 18:24:32

УДК 519.4

В. К. Захаров

О ФУНКЦИОНАЛЬНОМ ПРЕДСТАВЛЕНИИ ИНЪЕКТИВНОЙ ОБОЛОЧКИ И КРИТЕРИИ ИНЪЕКТИВНОСТИ НЕКОТОРЫХ МОДУЛЕЙ

В работе устанавливается представление инъективной оболочки I(A) модуля A без кручения относительно фильтра \mathfrak{F}_R всех плотных идеалов кольца R посредством сечений пучка \mathfrak{A} над фильтром плотных открытых подмножеств в пространстве максимальных идеалов полупримитивного отделимого кольца R (теорема 1). Это представление является некоторым аналогом для модулей результата Банашевского [3] о представлении полупервичных колец. С помощью функционального представления A и I(A) получается алгебраическая характеризация инъективных модулей без кручения относительно \mathfrak{F}_R (теорема 2), представляющая собой обобщение критерия Андерсона [5] самоинъективности регулярного F-кольца. Определение всех используемых понятий можно найти в [1] и [2].

Определение всех используемых понятии можно наити в [1] и [2]. Приведем некоторые факты из [1] и [4], относящиеся к функциональным представлениям колец и модулей. Пусть R— коммутативное полупримитивное кольцо, для которого пространство максимальных идеалов $\mathfrak{M}(R)$ хаусдорфово. Такое кольцо будем называть отделимым. Пусть $O_p \equiv \{r \in R \mid \exists s \notin Prs = 0\}$ — компонента идеала $P \in \mathfrak{M}$. Кольцо R можно подпрямо вложить в $\Pi\{R/O_p \mid P \in \mathfrak{M}\}$, полагая $r(P) \equiv r \mod O_p$. Множество $\mathfrak{R} \equiv \bigcup \{R/O_p \mid P \in \mathfrak{M}\}$ можно превратить в пучок, рассматривая в качестве базиса открытых множеств $r(V) \equiv \{r(P) \mid P \in V\}$, где $r \in R$ и V— открытое множество в \mathfrak{M} .

Пусть A есть R-модуль. Пусть $T_P(A) \equiv \{a \in A \mid \exists s \in R, s \notin P, sa = 0\}$ — компонента идеала P в A. Модуль A можно подпрямо вложить в $\Pi\{A/T_P(A) \mid P \in \mathfrak{M}\}$, полагая $a \in P$ в $a \mod T_P(A)$. Множество $\mathfrak{A} \equiv \bigcup \{A/T_P(A) \mid P \in \mathfrak{M}\}$ можно превратить в пучок, рассматривая в качестве базиса открытых множеств $a \in P$ $a \in P$. Для любого элемента $a \in P$ обозначим $a \in P$ $a \in P$.

Напомним, что идеал $D \subset R$ называется плотным, если $rD \neq 0$ для любого $0 \neq r \in R$. Фильтр всех плотных идеалов обозначим \mathfrak{F}_R . Дадим характеризацию модулей A без кручения относительно \mathfrak{F}_R , т. е. таких модулей, что $T_{\mathfrak{F}_R}(A) \equiv \{a \in A \mid a^{-1}0 \in \mathfrak{F}_R\} = \{0\}$.

 Π е м м а. Пусть A — модуль над полупримитивным отделимым кольцом R. Следующие условия эквивалентны: а) A — модуль без кручения относительно \mathfrak{F}_R ; в) для любого $0 \neq a \in A$ \sup a является регулярным замкнутым множеством в \mathfrak{M} .

Доказательство. Предположим, что для некоторого $0 \neq b \in A$ ѕирр \hat{b} не является регулярным множеством. Тогда найдется точка $P \in \text{ѕирр}\,\hat{b}$ и окрестность $W \ni P$ такие, что W не пересекается с Int ѕирр \hat{b} . Рассмотрим элемент $r \in R$ такой, что $Sr \subset W$ и $r \notin P$. Ясно, что $a \equiv rb \neq 0$ и ѕирр $\hat{a} \subset W$. Предположим, что существует открытое множество $V \subset \text{ѕирр}\,\hat{a}$. Так как для всех $P' \in V$ $r^{\hat{a}}(P') \hat{b}(P') \neq 0$, то $\hat{b}(P') \neq 0$, что противоречит выбору окрестности W. Значит, ѕирр \hat{a} является нигде не плотным множеством. Поэтому множество $U \equiv \bigcup \{Sr \mid r \in a^{-1}0\}$ является плотным в M. Следовательно, $a^{-1}0$ является плотным идеалом и $a \neq 0$. Так как A — модуль без кручения, то это невозможно.

Обратно, пусть для любого $0 \neq a \in A$ ѕиррa является регулярным множеством. Пусть $a \in T_{\mathfrak{F}_R}(A)$ и $U \equiv \bigcup \{Sr | r \in a^{-1}0\}$. Тогда для любой точки $P \in U$ существует $r \in R$ такой, что $r \notin P$ и ra = 0. Значит, a(P) = 0 и поэтому $a \mid U = 0$. Так как $a^{-1}0$ — плотный идеал, то U— плотное множество. Следовательно, по предположению, a = 0. Значит, A—модуль без кручения относительно \mathfrak{F}_R .

Пусть $\mathfrak U$ обозначает направленное по убыванию множество всех плотных открытых подмножеств в $\mathfrak M$. Пусть $\lim_{\longrightarrow} \{\Gamma(U, \mathfrak A) \mid U \in \mathfrak U\}$ обозначает индуктивный предел по направлению $\mathfrak U$ модулей $\Gamma(U, \mathfrak A)$ относительно отображений сужения. Если A — модуль без кручения относительно $\mathfrak F_R$, то в силу леммы A мономорфно вкладывается в этот предел.

 \mathfrak{F}_R над полупримитивным отделимым кольцом R и I(A) — инъективная оболочка A. Тогда

$$I(A) \cong \lim_{\longrightarrow} \{\Gamma(U, \mathfrak{A}) \mid U \in \mathfrak{U}\}.$$

Доказательство. Пусть K—произвольный идеал в R и $V \equiv \bigcup \{Sr \mid r \in K\}$. Пусть $f \in \operatorname{Hom}_R(K, S(A))$, где S(A) обозначает описанный индуктивный предел. Пусть $\sigma(fr) \in \Gamma(U, \mathfrak{A})$ — некоторый элемент из класса эквивалентности $fr, r \in K$. Пусть $P \in Sr$, т. е. $\hat{r}(P) \notin P/O_P$. Так как R/O_P —локальное кольцо, то P/O_P —единственный максимальный идеал в этом кольце, следовательно, $\hat{r}(P)$ обратим в R/O_P , т. е. существует $s \in R$ такой, что $\hat{r}(P)\hat{s}(P) = \hat{1}(P)$. Поэтому мы можем корректно определить некоторое сечение $\sigma(h)$ пучка \mathfrak{A} над плотным открытым подмножеством в множестве V, положив $\sigma(h)(P) \equiv \sigma(fr)(P)/r(P)$ для $P \in U \cap Sr$.

Пусть \circ (fr') \in $\Gamma(U', \mathfrak{A})$ для $r' \in K$. Так как для всех $P \in U \cap Sr \cap U' \cap Sr'$ выполнено \circ (fr) (P) $\nearrow \hat{r}$ (P) \circ (fr) (P) $\nearrow \hat{r}$ (P), то приведенное определение корректно. Доопределим \circ (fr) нулем вне \overline{V} . Итак, \circ (fr) определено на плотном открытом подмножестве в \mathfrak{M} и, следовательно, определяет элемент fr0 (fr1).

Для любых $r\in K$ и $P_0\in V$ найдутся окрестность $Sr'\ni P_0$ и плотное открытое подмножество $U\cap U'\cap Sr'$ этой окрестности такие, что для всех $P\in U\cap U'\cap Sr'$ выполнено

$$\sigma(fr)(P) = r^{\hat{r}}(P)\sigma(fr)(P)/r^{\hat{r}}(P) = r^{\hat{r}}(P)\sigma(fr')(P)/r^{\hat{r}}(P) = r^{\hat{r}}(P)\sigma(h)(P).$$

Для любой точки $P \in \mathfrak{M} \setminus \overline{V}$ найдется $s \in R$ такой, что $P \in Ss \subset \mathfrak{M} \setminus \overline{V}$. Тогда из rs = 0 следует sf(r) = f(rs) = 0. Так как $\sigma(sfr) = s\sigma(fr)$, то $\sigma(fr)(P') = 0$ для всех P' из некоторого плотного открытого подмножества в $\mathfrak{M} \setminus V$. Значит, для этих точек P' имеем $\sigma(fr)(P') =$ $= \stackrel{\wedge}{r}(P') \circ (h) (P').$

Окончательно получаем, что $\sigma(fr)$ и $r\sigma(h)$ совпадают на плотном открытом подмножестве в \mathfrak{M} , следовательно, fr=rh. По критерию Бэра это означает, что R-модуль S(A) инъективен. Пусть B— подмодуль в S(A) и $A \cap B = 0$. Предположим, что существует $0 \neq b \in B$. Пусть $\sigma \in \Gamma(U, \mathfrak{A})$ — некоторый элемент из класса эквивалентности b. Тогда существует $r \in R$ такой, что $r\sigma \neq 0$ и $r\sigma \in A$. Следовательно, $0 \neq rb \in A \cap B$, что невозможно. Итак, B=0. Значит, S(A) — существенное расширение A и, следовательно, инъективная оболочка.

Tеорема 2. Пусть A-модуль без кручения относительно над полупримитивным отделимым кольцом R. Следующие утверждения эквивалентны: a) A-инъективный модуль над R; в) для любого максимального множества $\{r_{\gamma} \in R \mid \gamma \in \Gamma\}$ попарно ортогональных элементов и любого множества $\{a_{\gamma} \in A | \gamma \in \Gamma\}$ такого, что из $s \in R$ и $sr_r = 0$ следует $sa_r = 0$, существует элемент $a\in A$ такой, что $r_{,a}=a_{,}$ для каждого $\gamma\in\Gamma$.

Доказательство. Предположим, что выполнено утверждение в). Пусть K — произвольный идеал в R и $f \in \operatorname{Hom}_R(K, A)$. Рассмотрим открытое подмножество $U \equiv \bigcup \{Sr \mid r \in K\}$ и максимальную систему попарно ортогональных элементов из K. Дополним ее до максимальной системы $\{r_{\gamma}\}$ в R. Рассмотрим элементы $a_{\gamma} \equiv fr_{\gamma} \in A$. По условию, найдется элемент $a \in A$ такой, что $r_{\gamma}a = a_{\gamma}$. Тогда для каждого $r \in K$ и любой точки $P \in \bigcup \{Sr_{\gamma} \mid r_{\gamma} \in K\}$ будет выполнено

$$\widehat{fr}(P) = \widehat{r}_{\gamma}^{\hat{n}}(P) \widehat{fr}(P) / \widehat{r}_{\gamma}(P) = \widehat{r}(P) \widehat{fr}_{\gamma}(P) \widehat{r}_{\gamma}^{\hat{n}}(P) =$$

$$= \widehat{r}(P) \widehat{r}_{\gamma}(P) \widehat{a}(P) / \widehat{r}_{\gamma}(P) = \widehat{r}_{\epsilon}^{\hat{n}}(P) \widehat{a}_{\epsilon}^{\hat{n}}(P).$$

Для любой точки $P \notin \overline{U}$ будет выполнено $\widehat{fr}(P) = 0 = r(P) \widehat{a}(P)$. Так как $\bigcup \{Sr_{\gamma} | r_{\gamma} \in K\}$ плотно в U, то получилось, что для всех точек P из плотного открытого подмножества в \mathfrak{M} имеем fr(P) = $=\widehat{r}(P)\,\hat{a}\,(P)$. Так как A- модуль без кручения относительно \mathfrak{F}_R , то по лемме fr = ra. По критерию Бэра, модуль A инъективен.

Обратно, предположим, что выполнено утверждение а). Пусть $\{r_{\gamma}\}$ — максимальное множество попарно ортогональных элементов из R и $\{a_{\mathbf{r}}\}$ — соответствующее множество из A. Рассмотрим сечение $\sigma \in \Gamma(\bigcup Sr_{\tau}, \mathfrak{A})$ такое, что $\sigma | Sr_{\tau} = \hat{a}_{\tau} / \hat{r}_{\tau} | Sr_{\tau}$. По теореме 1

имеем $\sigma \in I(A) = A$. Значит, $\sigma = \stackrel{\hat{}}{a}$ для некоторого $a \in A$. Так как $\stackrel{\hat{}}{r_{\gamma}}(P) \stackrel{\hat{}}{a}(P) = \stackrel{\hat{}}{r_{\gamma}}(P) \sigma(P) = \stackrel{\hat{}}{r_{\gamma}}(P) \stackrel{\hat{}}{a}(P) / \stackrel{\hat{}}{r_{\gamma}}(P) = \stackrel{\hat{}}{a}_{\gamma}(P)$ для каждой точки $P \in Sr_{_{7}}$ и $\hat{r}_{_{7}}(P)\hat{a}(P) = 0 = \hat{a}_{_{7}}(P)$ для всех $P \notin \overline{Sr}_{_{7}}$, то в силу леммы получается $r_{x}a = a_{x}$. Это и означает выполнимость утверждения в).

г. Ленинград

Поступило 10 1 1973

ЛИТЕРАТУРА

1. Ламбек И. Кольца и модули. М., "Мир", 1971. 2. Мищина А. П., Скорняков Л. А. Абелевы группы и модули. М., "Наука", 1969.

3. Banaschewski B. Maximal rings of quotients of semi-simple commutative rings. Arch. Math., v. 16, № 6, 1965, p. 414—420.
4. Lambek J. On the representation of modules by sheaves of factor modules. Canad. Math. Bull., v. 14, № 3, 1971.
5. Anderson F. Lattice-ordered rings of quotients. Canad. J. Math., v. 17, № 3, 1965. 1965, p. 434-448.