

X. И. Хакми, Сильно регулярные и слабо регулярные кольца и модули, Изв. вузов. $Mame_{M.}$, 1994, номер 5, 60–65

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 18.226.98.93 1 ноября 2024 г., 22:26:54

1994

МАТЕМАТИКА

№ 5 (384)

УДК 512.80

Х.И.ХАКМИ

СИЛЬНО РЕГУЛЯРНЫЕ И СЛАБО РЕГУЛЯРНЫЕ КОЛЬЦА И МОДУЛИ

В данной статье рассматриваются ассоциативные кольца с единицей и унитарные модули над ними.

Будем обозначать через J(R), J(M) соответственно радикал Джекобсона кольца R, правого R-модуля M, через $S=\operatorname{End}_R(M)$ - кольцо эндоморфизмов правого R-модуля M, $H=\operatorname{Hom}_R(M,J(M))$. В данной статье слабо регулярным модулем называется I-подобный модуль, введенный в [1]-[3], и поэтому напомним

ОПРЕДЕЛЕНИЕ 1. Правый R-модуль M называется слаборегулярным (I-подобный в [1]-[3]), если всякий его подмодуль, не содержащийся в радикале J(M), содержит нерадикальное циклическое прямое слагаемое модуля M.

ОПРЕДЕЛЕНИЕ 2. Правый R-модуль M называется сильно регулярным, если всякий его подмодуль, не содержащийся в радикале J(M), выделяется в M прямым слагаемым.

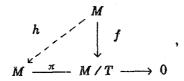
В этой работе продолжается изучение как слабо регулярных модулей и колец, так и сильно регулярных модулей и колец.

ОПРЕДЕЛЕНИЕ 3 ([4], с.109). Подмодуль A правого R-модуля M называется косущественным в M, если для любого подмодуля U модуля M такого, что M = A + U вытекает M = U.

ОПРЕДЕЛЕНИЕ 4 ([4], с.211). Пересечение всех максимальных подмодулей модуля M называется его радикалом Джекобсона и обозначается через J(M).

ОПРЕДЕЛЕНИЕ 5 ([4], с.216). Правый R-модуль M называется радикальным, если M = -J(M).

ОПРЕДЕЛЕНИЕ 6 ([7], с.439). Правый R-модуль M называется квазипроективным, если для любого подмодуля T, модуля M и всякого гомоморфизма $f \colon M {\longrightarrow} M/T$ существует гомоморфизм $h \colon M {\longrightarrow} M$ такой, что следующая диаграмма коммутативна



где π есть естественный эпиморфизм.

ОПРЕДЕЛЕНИЕ 7 ([6], с.554). Правый R-модуль M называется малопроективным, если для любого подмодуля N модуля M и любого эндоморфизма $\overline{\varphi}$: $M/N \rightarrow M/N$ найдется эндоморфизм φ -модуля M такого, что $\overline{\varphi}\pi = \pi \varphi$, где π - естественный эпиморфизм π : $M \rightarrow M/N$. Каждый квазипроективный модуль является малопроективным.

TEOPEMA 1. Пусть $M \neq J(M)$ — сильно регулярный правый R-модуль, тогда радикал Дже-кобсона J(M) является косущественным подмодулем в M.

ДОКАЗАТЕЛЬСТВО. Пусть U — подмодуль модуля M такой, что M=U+J(M). Если M=U, то утверждение очевидно.

Предположим, что $M \neq U$. Тогда ясно, что $U \not\subset J(M)$, U не максимален. Докажем в этом случае, что U является максимальным подмодулем в M. Пусть $D \neq M$ — подмодуль в M такой, что $U \subset D$, тогда $M = U + J(M) \subset D + J(M) \subset M$. Отсюда следует, что

$$U+J(M) = D+J(M).$$

(1)

Докажем, что $U\cap J(M)=D\cap J(M)$. Так как $U\subset D$, то $U\cap J(M)\subset D\cap J(M)$. Докажем обратное включение. Пусть $a\in D\cap J(M)$, тогда $a\in D$, $a\in J(M)$. Предположим, что $a\notin U$, поскольку $U\not\subset J(M)$, то $U+aR\not\subset J(M)$. Тогда из сильнорегулярности модуля M следует, что U+aR выделяется в M прямым слагаемым, т.е. $M=(U+aR)\oplus U_0$ для некоторого подмодуля U_0 . Так как $(U+aR)\cap U_0=0$, то в силу закона модулярности для подмодулей $U\subset U+aR$, U_0 имеем

$$(U+aR)\bigcap (U+U_0) = U+\left[(U+aR)\bigcap U_0\right] = U.$$

Поскольку $a \in J(M)$, то aR является косущественным подмодулем в M, тогда $M = U \oplus U_0$. Отсюда следует, что $U = (U + aR) \cap (U + U_0) = (U + aR) \cap M = aR + U$. Итак, получили $a \in aR \subset U$. Пришли к противоречив), следовательно, $a \in U \cap J(M) \ \forall a \in D \cap J(M)$. Отсюда следует, что $D \cap J(M) \subset U \cap J(M)$. Тогда

$$D \cap J(M) = U \cap J(M). \tag{2}$$

Из $U \subset D$ и (1), (2) согласно лемме 1.4 ([5], с.75) имеем, что U = D, т.е. U - максимальный подмодуль в M. Получено противоречие с предположением, что $M \neq U$. Это значит, что J(M) - косущественный подмодуль в M. Теорема доказана.

TEOPEMA 2. Пусть $M \neq J(M)$ — малопроективный правый R-модуль. Тогда эквивалентны следующие условия.

- (1) Модуль М слабо регулярный.
- (2) Для любого эндоморфизма $\varphi \in S$ такого, что $\operatorname{Im} \varphi \not\subset J(M)$, $\operatorname{Im} \varphi$ содержит нерадикальное прямое слагаемое модуля M.

ДОКАЗАТЕЛЬСТВО. (1) \Longrightarrow (2) следует из определения.

 $(2)\Longrightarrow(1)$. Пусть A – подмодуль модуля M такой, что $A\not\subset J(M)$. Тогда существует максимальный подмодуль D модуля M такой, что $A\not\subset D$. Отсюда следует, что M=A+D. В силу леммы 2.1 ([6], с.558) существуют гомоморфизмы $f_1\colon M\longrightarrow D$, $f_2\colon M\longrightarrow A$ такие, что $1=f_1+f_2$. Тогда $\mathrm{Im} f_2\not\subset J(M)$. Если $\mathrm{Im} f_2\subset J(M)$, то поскольку $1=f_1+f_2$, следует, что $M=\mathrm{Im} f_1+\mathrm{Im} f_2\subset D+J(M)\subset D\subset M$, т.е. D=M. Пришли к противоречию с максимальностью D. Это значит, что $\mathrm{Im} f_2\not\subset J(M)$. В силу условия (2) теоремы 2 имеем, что $\mathrm{Im} f_2$ содержит нерадикальное прямое слагаемое M_0 модуля M, т.е. $M_0\subseteq \mathrm{Im} f_2\subseteq A$. Следовательно, модуль M слабо регулярный. Теорема доказана.

TEOPEMA 3. Пусть $P \neq J(P)$ — малопроективный правый R-модуль такой, что J(P) ко-существенен в P. Тогда, если $S = \operatorname{End}_R(P)$ — слабо регулярное кольцо, то модуль P является слабо регулярным.

ДОКАЗАТЕЛЬСТВО. Пусть A – подмодуль модуля P такой, что $A \not\subset J(P)$. Тогда существует максимальный подмодуль D модуля P такой, что $A \not\subset D$. Отсюда следует, что P = A + D. Тогда согласно лемме 2.1 ([6], c.558) существуют гомоморфизмы $\varphi_1 \colon P \longrightarrow A$, $\varphi_2 \colon P \longrightarrow D$ такие, что $1 = \varphi_1 + \varphi_2$. Кроме того, $\varphi_1 \not\in J(S)$. Если $\varphi_1 \in J(S)$, то из равенства $1 = \varphi_1 + \varphi_2$ следует, что $S = \varphi_1 S + \varphi_2 S$. Тогда существует $\lambda \in S$ такой, что $1 = \varphi_2 \lambda$. Отсюда $P = \operatorname{Im} \varphi_2 \lambda \subseteq \operatorname{Im} \varphi_2 \subseteq D$, т.е. P = D, что противоречит максимальности D. Тогда $\varphi_1 \not\in J(S)$. Из слаборегулярности кольца S имеем, что $\varphi_1 S$ содержит идемпотентный элемент $e \ne 0$. Тогда $e = \varphi_1 \mu$ для некоторого $\mu \in S$. Значит, $\operatorname{Im} e \subset C$ $\operatorname{Im} \varphi_1$, где $\operatorname{Im} e = n$ прямое слагаемое в P и $\operatorname{Im} e \ne J(\operatorname{Im} e)$. Что и требовалось доказать.

TEOPEMA 4. Пусть $P \neq J(P)$ — конечно порожденный квазипроективный правый R-модуль. Тогда эквивалентны следующие условия.

- (1) Модуль Р слаборегулярный.
- (2) Для любого φ ∈S такого, что φ \notin J(S), Im φ содержит нерадикальное прямое слагае-мое модуля P.

ДОКАЗАТЕЛЬСТВО. Поскольку P — конечно порожденный правый R—модуль, то согласно следствию 2.30 ([8], с.319) следует, что $J(S) = \{f: f \in S; \text{ Im } f \text{ косуществен в } P\}$. Так как любой косущественный подмодуль в P содержится в J(P), то $J(S) \subseteq \operatorname{Hom}_R(P, J(P))$. Так как модуль P конечно порожден, то из теоремы 9.2 ([4], с.216) вытекает, что J(P) — косущественный подмодуль в P. Тогда, если $\psi \in S$ такой, что $\operatorname{Im} \psi \subset J(P)$, следует, что $\operatorname{Im} \psi$ косущественен в P. Отсюда $\operatorname{Hom}_R(P, J(P)) \subseteq J(S)$. Итак, $J(S) = \operatorname{Hom}_R(P, J(P))$.

- $(1) \Longrightarrow (2)$ следует из определения.
- $(2) \Longrightarrow (1)$ следует из теоремы 2, поскольку всякий квазипроективный модуль является мало проективным.

ЛЕММА. Пусть M – правый R-модуль, A – минимальный подмодуль в M такой, что A \not \bot J(M). Тогда имеет место следующее.

- (1) $J(A)=A \cap J(M)$.
- (2) J(A) косущественный подмодуль в A.
- (3) Если М слабо регулярный модуль, то А является прямым слагаемым в М.

ДОКАЗАТЕЛЬСТВО. (1) Ясно, что $J(A) \subseteq A \cap J(M)$. Пусть $a \in A \cap J(M)$. Докажем, что aR косуществен в A. Пусть U — подмодуль модуля A такой, что aR + U = A. Отсюда следует, что $U \not\subseteq J(M)$. В противном случае получим, что $A = aR + U \subset J(M)$, приходим к противоречию с условием $A \not\subseteq J(M)$. В силу минимальности A следует, что A = U, т.е. aR косущественен в A. Отсюда $aR \subseteq J(A)$, т.е. $J(A) = A \cap J(M)$.

(2) Докажем, что J(A) косущественен в A. Пусть B — подмодуль модуля A такой, что J(A)+B=A. Из $A\neq J(A)$ следует, что $E\nsubseteq J(A)$. Тогда из (1) следует, что $B\nsubseteq J(M)$. В силу минимальности A получим, что B=A. Это значит, что J(A) косущественен в A.

Утверждение (3) следует непосредственно из слабой регулярности модуля *М*. Лемма доказана.

TEOPEMA 5. Пусть M — слаборегулярный правый R-модуль, $M \neq J(M)$ и радикал J(M) — косущественный подмодуль в M. Тогда эквивалентны следующие условия.

- (1) R-модуль M имеет минимальный подмодуль A, не содержащийся в радикале J(M).
- (2) Кольцо эндоморфизмов $S = \operatorname{End}_R(M)$ имеет примитивный идемпотентный элемент.

ДОКАЗАТЕЛЬСТВО. (1) \Longrightarrow (2). Пусть A — минимальный подмодуль модуля M, удовлетворяющий условию $A \not\subseteq J(M)$. Тогда согласно лемме модуль A выделяется прямым слагаемым B M. Пусть $f: M \longrightarrow A$ — проекция, тогда f является идемпотентом, т.е. $f = f^2$, $f \in S$. Покажем, что f — примитивный идемпотент. Действительно, если $f = e_1 + e_2$, $e_1 = e_1^2$, $e_2 = e_2^2$, $e_1 e_2 = e_2 e_1 = 0$, то Im $f = \operatorname{Im} e_1 \oplus \operatorname{Im} e_2$, ибо $u \in \operatorname{Im} e_1 \cap \operatorname{Im} e_2$ влечет $u = e_1(m_1) = e_1^2(m_1) = e_1e_2(m_2) = 0$. Если $\operatorname{Im} e_1 \subseteq J(M)$ Im $e_2 \subseteq J(M)$, то $A = \operatorname{Im} f \subseteq J(M)$, что противоречит условию, поэтому либо $\operatorname{Im} e_1 \not\subseteq J(M)$, либо $\operatorname{Im} e_2 \not\subseteq J(M)$. Пусть $\operatorname{Im} e_1 \not\subseteq J(M)$. Поскольку $\operatorname{Im} e_1 \subseteq A$, $\operatorname{Im} e_1 \not\subseteq J(M)$, то из минимальности A и свойства $A \not\subseteq J(M)$ вытекает, что $\operatorname{Im} e_1 = A$. Отсюда B силу $\operatorname{Im} e_2 \subseteq A$, $\operatorname{Im} e_1 = A$ и $\operatorname{Im} e_1 \cap \operatorname{Im} e_2 = 0$ имеет место, что $\operatorname{Im} e_2 = 0$, $e_2 = 0$, $f = e_1$. Следовательно, f — примитивный идемпотент.

(2) \Longrightarrow (1). Пусть 0≠f ∈ S, f – примитивный идемпотент, тогда

$$M = \operatorname{Im} f \oplus \operatorname{Im}(1-f). \tag{3}$$

Положим $B=\operatorname{Im} f$. Покажем, что B – минимальный подмодуль в M со свойством $B \not\subseteq J(M)$.

Во-первых, если $B \subseteq J(M)$, то в силу косущественности радикала J(M) из (3) следует, что M = Im(1-f), Im $f \subseteq J(M)$. Отсюда Im f = 0, f = 0. А так как по предположению $f \ne 0$, то $B \not\subseteq J(M)$.

Во-вторых, если B — не минимальный подмодуль в M со свойством $B \not\subseteq J(M)$, то существует подмодуль $k \neq 0$, $k \subset B$, $k \neq B$ такой, что $k \not\subseteq J(M)$. В силу слаборегулярности модуля M следует, что $M = k_0 \oplus k_0^*$, $k = k_0 \oplus \tilde{k}_1$, $k_0 \not\subseteq J(M)$ и $B = k_0 \oplus k_1$. Пусть $k_1 \not\subseteq J(M)$. Так как $M = \text{Im } f \oplus \text{Im}(1-f) = k_0 \oplus \text{Im}(1-f) = k_0 \oplus k_1 \oplus \text{Im}(1-f)$, то положив f_1 , f_2 проекцию модуля M соответственно на подмодули k_0 и k_1 , получим $1 = f_1 + f_2 + (1-f)$, $f = f_1 + f_2$, $f_1 = f_1^2 \neq 0$, что противоречит примитивности элемента f. Значит, $k_1 \subseteq J(M)$. Тогда $M = B \oplus \text{Im}(1-f) = k_0 \oplus k_1 \oplus \text{Im}(1-f)$ и в силу косущественности радикала J(M) имеем $M = k_0 \oplus k_1 \oplus \text{Im}(1-f) = k_0 \oplus \text{Im}(1-f)$, т.е. $k_1 = 0$, $B = k_0$ и B = k. Получено противоречие с предположением $k \neq B$. Следовательно, B = Im f — минимальный подмодуль молучя M со свойством $B \not\subseteq J(M)$. Теорема доказана.

ТЕОРЕМА 6 ([1], с.368). Для кольца R эквивалентны следующие условия.

- (1) R полусовершенное кольцо.
- (2) R слабо регулярное кольцо и удовлетворяет условию максимальности идемпотент-

TEOPEMA 7. Если кольцо R удовлетворяет условию максимальности идемпотентных элементов, тогда эквивалентны следующие условия.

- (1) Всякий М∈тоd-R является слаборегулярным.
- (2) Всякий $M \in \text{mod} R$ является суммой локальных R-модулей и всякий локальный подмо-дуль aR модуля M такого, что $aR \not = J(M)$, выделяется прямым слагаемым.

ДОКАЗАТЕЛЬСТВО. (1) \Longrightarrow (2). Согласно теореме 6 кольцо R является полусовершенным. Тогда согласно предложению 22.19 ([9], с.250) кольцо R является полулокальным SBI-кольцом. Отсюда и из 18.25 ([9], с.77) следует, что любой правый R-модуль M представляется в виде суммы локальных подмодулей, т.е. $M = \sum_{i \in I} u_i R$, $u_i R$ – локальный подмодуль в M.

Пусть aR – локальный подмодуль в M такой, что $aR \not\subseteq J(M)$, тогда в силу слаборегулярности модуля M следует, что aR содержит нерадикальное прямое слагаемое vR модуля M. Поскольку aR неразложим, то aR = vR.

(2) ⇒ (1). Пусть M — правый R-модуль. Если M = J(M), доказательство очевидно. Пусть $M \neq J(M)$ и bR — подмодуль в M такой, что $bR \not \in J(M)$, тогда в силу условия (2) теоремы 7 вытежает, что $bR = \sum_{i \in I} b_i R$, где $b_i R$ — локальные R-модули. Так как $bR \not \in J(M)$, то $\exists i_0 \in I$ такой, что $b_i R \not \in J(M)$. Тогда $b_i R$ выделяется в M прямым слагаемым. Следовательно, M является слабо регулярным модулем. Теорема доказана.

TEOPEMA 8. Пусть M — нётеров слабо регулярный R-модуль. Тогда M имеет разложение $M = \sum\limits_{i=1}^n \oplus M_i$, где M_i неразложимый и $S_i = \operatorname{End}_R(M_i)$ — локальное кольцо (i=1,2,...,n).

ДОКАЗАТЕЛЬСТВО. Так как M нётеров, то согласно теореме 7.2.9 ([4], с.177) имеем, что $M = \sum\limits_{i=1}^n \oplus M_i$ и M_i неразложимый (i=1,2,...,n). Пусть $S_i = \operatorname{End}_R(M_i)$. Докажем, что $J(S_i) = \operatorname{End}_R(M_i,J(M_i))$. Пусть $\varphi \in J(S_i)$, предположим, что $\operatorname{Im} \varphi \not\subseteq J(M_i)$. Тогда из слаборегулярности модуля M_i следует, что $\operatorname{Im} \varphi$ содержит нерадикальное прямое слагаемое A_0 модуля M_i . Так как M_i неразложим, то $M_i = A_0 \subseteq \operatorname{Im} \varphi$. Отсюда $M_i = \operatorname{Im} \varphi$. Тогда из теоремы 6.4.1 ([4], с.156) следует, что φ — автоморфизм. Пришли к противоречию. Следовательно,

$$J(S_i) \subseteq \operatorname{Hom}_{R}(M_i, J(M_i))$$

— обратное включение. Пусть $\varphi \in S_i$ такой, что $\operatorname{Im} \varphi \subseteq J(M_i)$. Тогда $M_i = \operatorname{Im} s \varphi + \operatorname{Im} (1-s \varphi)$ для всякого $s \in S_i$. Так как M_i конечно порожден, то $J(M_i)$ — косущественный подмодуль в M_i . Отсюда следует , что $\operatorname{Im} s \varphi$ — косущественный подмодуль в M_i . Тогда $M_i = \operatorname{Im} (1-s \varphi)$. Опять в силу теоремы 6.4.1 ([4], c.156) $(1-s \varphi)$ — автоморфизм для любого $s \in S_i$. Это значит, что $\varphi \in J(S_i)$, т.е.

$$J(S_i) = \operatorname{Hom}_R(M_i, J(M_i)).$$

Пусть $f \in S_i$. Если $f \in J(S_i)$, то (1-f) обратим. Пусть $f \notin J(S_i)$, тогда $\operatorname{Im} f \not\subseteq J(M_i)$, откуда в силу слаборегулярности модуля M_i следует, что $\operatorname{Im} f$ содержит нерадикальное прямое слагаемое B модуля M_i ; поскольку M_i неразложим, то $M_i = B \subseteq \operatorname{Im} f \subseteq M_i$, т.е. $\operatorname{Im} f = M_i$ и f = S обратим. Снова из теоремы 6.4.1 ([4], с.156) следует, что f = S автоморфизм, т.е. f = S обратим. Отсюда $S_i = S$ локальное кольцо $S_i = S$ обратим.

TEOPEMA 9. Пусть P – конечно порожденный проективный правый R-модуль. Тогда следующие условия эквивалентны.

- (1) Р полусовершенный модуль.
- (2) Р слабо регулярный и удовлетворяет условию максимальности прямых слагаемых.
- (3) Если A подмодуль e P, то $A = P_0 + D$, где P_0 прямое слагаемое модуля P и модуль $D \subseteq J(P)$.
 - (4) Р слабо регулярный и Р/Ј(Р) полупростой.

ДОКАЗАТЕЛЬСТВО. (1) \Longrightarrow (2). Поскольку P — полусовершенный модуль, то согласно следствию 2.3 ([10], с.348) имеем, что всякий подмодуль модуля P либо содержится в ращикале J(P), либо содержит некоторое прямое слагаемое модуля P, т.е. P слабо регулярный. Так как P конечно порожден, полусовершенен, то в силу теоремы 6.1 ([10], с.355) имеем, что $S = \operatorname{End}_R(P)$ — полусовершенное кольцо. Пусть $P_1 \subseteq P_2 \subseteq \ldots \subseteq P_k \subseteq \ldots$ — возрастающая цепочка прямых слагаемых модуля P. Обозначим через $f_i \colon P \longrightarrow P_i$ проекции. Тогда $f_i = f_i^2$ ($i = 1, 2, \ldots$) и имеем $\operatorname{Im} f_1 \subseteq \operatorname{Im} f_2 \ldots \subseteq \operatorname{Im} f_k \subseteq \ldots$ В силу леммы 2.1 ([11], с.77) имеем, что $f_1 S \subseteq f_2 S \subseteq \ldots \subseteq C \subseteq f_k S \subseteq \ldots$, поскольку S — полусовершенное кольцо, то существует n такой, что $f_n S = f_{n+1} S \ldots$ Отсюда $\operatorname{Im} f_{n+1} \subseteq \operatorname{Im} f_n$, т.е. $\operatorname{Im} f_n = \operatorname{Im} f_{n+1} = \ldots$ Итак, получили $P_n = P_{n+1} = \ldots$

 $(2) \Longrightarrow (3)$. Пусть A — подмодуль модуля P. Если $A \subseteq J(P)$, то утверждение очевидно. Пусть $A \not\subseteq J(P)$. Тогда из слаборегулярности модуля P следует, что A содержит ненулевое прямое слагаемое модуля P. В силу условия максимальности пусть P_0 — максимальное прямое слагаемое модуля P, содержащееся в A. Тогда $P = P_0 \oplus L$ и $A = P_0 \oplus (L \cap A)$. Докажем, что $(L \cap A) \subseteq J(P)$. Предположим, что $(L \cap A) \not\subseteq J(P)$, тогда $(L \cap A)$ содержат ненулевое прямое слагаемое модуля P. Итак, $B \subseteq (L \cap A) \subseteq L$, следовательно, $L = B \oplus B_0$, где B_0 — подмодуль в P. Тогда $P = P_0 \oplus B \oplus B_0$ и $P_0 \oplus B \subseteq A$. Пришли к противоречию с максимальностью модуля P_0 . Отсюда следует, что $(L \cap A) \subseteq J(P)$, т.е. $A = P_0 + D$ и $D = (L \cap A) \subseteq J(P)$.

$(3) \rightarrow (4)$. Очевидно.

(4) \Longrightarrow (1). Имеем, что P/J(P) полупрост и J(P) косущественен в P, поскольку P конечно порожден. Докажем, что всякое прямое слагаемое модуля P/J(P) является образом некоторого прямого слагаемого модуля P при гомоморфизме $P \Longrightarrow P/J(P)$. Пусть α : $P \Longrightarrow P/J(P)$ — ест

тественный эпиморфизм. Поскольку $\overline{P} = P/J(P)$ полупрост, то $\overline{P} = \sum_{i=1}^n \oplus \overline{P}_i$, где \overline{P}_i – простые R-модули. С другой стороны, гомоморфизм α является проективной оболочкой модуля \overline{P} . Обозначим через $\alpha_i \colon P_i \to P_i/J(P)$ естественные эпиморфизмы, поскольку \overline{P}_i – простой R-модуль, то $\overline{P}_i = P_i + J(P)$ и P_i подмодуль в P, который не разложим, и $P_i \not\subseteq J(P)$. Тогда в силу слаборегулярности модуля P следует, что P_i является прямым слагаемым модуля P, т.е. P_i проективен, i=1,2,...,n, кроме того, $\ker \alpha_i = P_i \cap J(P) = J(P_i)$. Тогда согласно теореме 11.2.2 ([4], с.273) всякое разложение модуля P/J(P) можно поднять относительно α . Отсюда и в силу теоремы 11.3.1 ([4], с.274) модуль P является полусовершенным.

Выражаю благодарность своему руководителю доценту И.И.Сахаеву за помощь в работе над статьей.

ЛИТЕРАТУРА

- 1. Nicholson W.K. I-rings // Trans. Amer. Math. Soc. 1975. V.207. P.361-373.
- 2. Хакми Х. О некоторых свойствах І-подобных колец. 1991. 28 с. Деп. в ВИНИ-ТИ 9.10.91, № 2920-В91.
 - 3. Хакми Х. І-подобные модули // Изв. вузов. Математика. 1993. №9. С.65-70.
 - 4. Каш Ф. Модули и кольца. М.: Мир, 1981. 368 с.
- 5. Fisher J.W. Nil subrings of endomorphism rings of modules // Proc. Amer. Math. Soc. 1972. V.34. Nº 1. P.75-78.
- 6. Туганбаев А.А. Строение модулей, близких к проективным // Матем. сб. 1978. Т.106. № 4. С.554-565.
- 7. Wu L.E.T., Jans J.P. On quasi projectives // Illinois J. Math. 1967. V.11. N 3. P.439-448.
- 8. Varadarajan K., Wani P.R. Modules over endomorphism rings II // Acta Math. hung. 1989. V.53. № 3-4. P.309-337.
 - 9. Фейс К. Алгебра: кольца, модули и категории. Т.2. М.: Мир, 1979. 464 с.
 - 10. Mares E. Semi-Perfect modules // Math. Z. 1963. Bd. 82. S.347-360.
- 11. Azumaya G. F-semi-perfect modules // J. Algebra. 1991. V.136. № 1. P.73-85.
 - г. Казань Поступила 18.10.1993