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for Bipolar Morphological Neural Networks* 
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Abstract. Bipolar morphological neural networks are aimed at efficient hardware implementation without mul-
tiplications inside the convolutional layers. However, they use resource-demanding activation functions based 
on binary logarithm and exponent. In this paper, the computationally efficient approximations for activation 
functions of bipolar morphological neural networks are considered. Mitchell's approximation is used for binary 
logarithm and demonstrates 12 times decrease in the estimated logic gate number and latency. Schraudolph's 
approximation used for exponent has 3 times lower logic gates complexity and latency. The usage of approxi-
mate activation functions provides a 12-40% latency decrease for the BM convolutional layers with a small 
number of input channels and 3x3 filters compared to standard ones. The experiments show that these approxi-
mations can be used in the BM ResNet trained for classification task with a reasonable recognition accuracy de-
creasing from 99.08% to 98.90%. 
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Introduction 

Artificial neural networks are a part of modern 
recognition technologies and are widely used in 
practical tasks [1-4]. More and more end devices 
with mobile processors, ASICs, or FPGAs become 
target devices for the inference of neural networks. 
Neural network models for efficient execution on 
such devices are actively developed. The main re-
search directions are the development of quantized 
networks that operate low-bit integer coefficients 
[5, 6] and the development of models with alterna-
tive operations within the layers or individual neu-
rons of the network [7-11]. 

An example of such a model is a bipolar mor-
phological (BM) network [10, 11]. The main com-
putations in such networks fall on the addition and 
maximum operations. These operations require 

fewer logic gates for implementation than the mul-
tiplication, so BM networks are potentially more 
energy-efficient and fast than classical ones. How-
ever, the original BM networks include complex 
activation functions based on the logarithm and 
exponent operations. In this paper, these functions 
are approximated to reduce their computational 
complexity. The resulting operation number and 
gate complexity are estimated. The accuracy of the 
BM networks with considered approximations is 
evaluated experimentally. 

1. Bipolar Morphological Networks 

Let us define exp2 and log2 operations as: 

ሻݔ2ሺ݌ݔ݁ ൌ 2௫ 
ሻݔ2ሺ݃݋݈ ൌ logଶ	x 

_________________________________________ 

* This work is partially supported by Russian Foundation for Basic Research (project 19-29-09066) 
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ା ൌ ൜

,௝ݔ ௝ݔ ൒ 0
0, ௝ݔ ൏ 0, 

௝ݔ
ି ൌ ൜

െݔ௝, ௝ݔ ൏ 0
0, ௝ݔ ൒ 0, 

where x is an input vector of length R, v+, v- are 
weight vectors of size R, v0 is bias, (·) is a nonlin-
ear activation function. It is assumed that log2(0) = 
-, which is replaced by a big enough negative 
value for actual computations. 

BM convolutional layer, which uses BM neu-
rons instead of classical ones, can be defined as: 

ܬ ൌ ߮ሺ෍෍݌ఈ݌ఉ exp2൫log2	ܫఈ ⊙ ఉ൯ݒ ൅ 	଴ሻݒ
ఉఈ

, 

where ߙ ∈ െ,൅, ߚ ∈ െ,൅, ݌ା ൌ ൅1, ି݌ ൌ െ1, ⊙ 
is a BM convolution operation: 

ሺI ⊙ ሻ୬,୫,୤ݒ ൌ maxୡୀଵ
େ  max୼௡ ୀ଴

୏ିଵ  max୼௠ ୀ଴
୏ିଵ  

൫I୬ା୼௡, ୫ା୼௠, ୡ ൅ v୼௡, ୼௠, ୡ, ୤൯, 
݂ ൌ 1, ,ܨ ݊ ൌ 1,ܰ,݉ ൌ  ,ܯ,1

where F is the number of filters, C is the number of 
input channels, KxK is the spatial dimensions of 
the filter, input image size is NxMxC, v is a set of 
convolutional filters, v0 is the bias. It is assumed 
that I is padded properly for the result to be of the 
same size. 

The operations of log2 and exp2 process activa-
tion vectors only, which means they are less com-
putationally intensive than the BM convolution. 
However, they still require time and hardware to 
be performed. 

2. Floating�Point Arithmetic  

Computations in classical neural network mod-
els are performed in floating-point numbers. The 
most widely used data formats for representing 
such values in computers are defined by IEEE 754 
floating-point arithmetic standard. This standard 
was developed by the Institute of Electrical and 
Electronics Engineers (IEEE) in 1985 and then up-
dated in 2008 and 2019. The latest version of the 
standard includes [12]: 

 

1. Binary and decimal floating-point data for-
mats. 

2. Definitions of arithmetic operations: addi-
tion, subtraction, multiplication, division, fused 
multiply-add, square root, compare, and other op-
erations. 

3. Rules for converting between integer and 
floating-point formats. 

4. Rules for converting between different float-
ing-point formats. 

5. Rules for converting floating-point data to 
external representations (for example, strings). 

6. Formats and rules for handling floating-
point exceptions, including the handling of non-
numeric data. 

This standard ensures the same calculation re-
sults for software, hardware, or combined imple-
mentations of floating-point arithmetic, and pro-
vides a unified error format that is not limited to a 
specific implementation. 

Floating-point data in binary formats of IEEE 
754 consists of 3 ordered fields: 

a) 1-bit sign S. 
b) w-bit biased exponent E = e + bias 
c) (t = p − 1)-bit trailing significand field digit 

string T = d1d2…dp-1; the leading bit of the signifi-
cand, d0, is implicitly encoded in the biased expo-
nent E. 

The value v of the floating-point datum is ob-
tained from these fields as follows: 

a) If E = 2w − 1 and T ≠ 0, then v is NaN and d1 
allows one to distinguish between quiet NaN and 
signaling NaN. 

b) If E = 2w − 1 and T = 0, then v = (−1)S · (+∞). 
c) If 1 ≤ E ≤ 2w − 2, then the number is consid-

ered normal and v = (−1)S · 2E-bias · (1 + 21-p · T). 
d) If E = 0 and T ≠ 0, then the number is consid-

ered subnormal and v = (−1)S · 2emin · (0 + 21-p · T), 
where emin is a minimal value of e. 

e) If E = 0 and T = 0, then v = (−1)S · (+0). 
Machine learning tasks most commonly use float-

ing-point format binary32 with binary encoding  
and 32-bit width. It uses w = 8, p = 24, bias = 127, 
emin = −127. 

,ݔ஻ெሺݕ ,ାݒ ,ିݒ ଴ሻݒ ൌ 
ൌ φ൫݁ݔܽ݉ 2݌ݔ௝ୀଵ

ோ ൫݈ݔ 2݃݋௝
ା ൅ ௝ݒ

ା൯ െ ௝ୀଵݔܽ݉ 2݌ݔ݁
ோ ൫݈ݔ 2݃݋௝

ା ൅ ௝ݒ
ି൯ െ ௝ୀଵݔܽ݉ 2݌ݔ݁

ோ ൫݈ݔ 2݃݋௝
ି ൅ ௝ݒ

ା൯
൅ ௝ୀଵݔܽ݉ 2݌ݔ݁

ோ ൫݈ݔ 2݃݋௝
ି ൅ ௝ݒ

ି൯ ൅  ,଴൯ݒ

Then one BM neuron can be defined as follows: 
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Note that the input of a neural network usually 
consists of normal floating-point values. If the in-
put data and weight coefficients are correctly set, 
all the computations inside the network results are 
finite and non-NaN values. Subnormal values can 
appear as a result of multiplication or subtraction. 
However, these are very small numbers around ze-
ro, which can be assumed to be zero for a neural 
network. Therefore, in this paper only normal real 
values are considered. 

3. Binary Logarithm Approximation 

In computing systems, the binary logarithm is 
calculated via different approximations. The com-
plexity of the approximation depends on the de-
sired accuracy. Let us use a floating-point repre-
sentation of the real numbers to decompose the 
log2 calculation: 

ሻݔ2ሺ݃݋݈ ൌ logଶ൫2௘ሺ1 ൅ ሻ൯ݕ ൌ ݁ ൅ logଶሺ1 ൅  ,ሻݕ

where e is an integer, and y is a real value in the [0, 
1) range. Now the problem of binary logarithm ap-
proximation is reduced to the approximation of 
log2(1 + y). 

3.1. Polynomial Approximation 

In [13] a polynomial approximation of the 5th 
order was introduced to use in BM networks: 

݂ሺݕሻ ൌ logଶሺ1 ൅ ሻݕ → ݃ሺݕሻ ൌ ∑ ௜ݕ௜ܥ
ହ
௜ୀ଴ , 

where y is from [0, 1). Then f(y) and g(y) were equat-
ed at three equally spaced points as well as the values 
of f'(y) and g'(y). The resulting coefficients were  
C = {0, 1.44269504, -0.71249131, 0.42046732, -
0.1955884, 0.04491735} with a maximum approxi-
mation error of about 7 · 10-5 in [0, 1) range (estimat-
ed numerically). The approximation is shown in Fig. 
1. It takes 5 multiplications and 6 additions (includ-
ing the one to get e, which can actually require fewer 
computations depending on hardware implementa-
tion) for calculation using Horner's method, and bit 
manipulations to get the sign, significand, and expo-
nent, which are free for hardware. 

3.2. Mitchell’s Approximation 

An extremely most low-cost approximation of 
the binary logarithm is the one proposed by 
J. N. Mitchell [14]. He simply uses the first term of 
the Maclaurin series to approximate  

logଶሺ1 ൅ yሻ ൎ y 
Then the 

logଶሺݔሻ ൌ ݁ ൅  ,ݕ

where e and y are obtained from the exponent and 
significand of x correspondingly. Bit manipulations 
to obtain e and y are considered to be free for 
hardware. So, Mitchell's binary logarithm requires 
only one addition for computation and thus is ex-
tremely efficient. At the same time, it has quite a 
large error of about 0.08639 in the range [0, 1) 
which was found analytically. However, neural 
networks allow us to approximate the computa-
tions in a wide range and the experimental section 
of the paper shows the performance of Mitchell’s 
approximation for BM networks.  

The approximation is shown in Fig. 1. It can be 
seen that it is piecewise linear with the end of each 
interval at the integer powers of two.  

3.3. Approximation Efficiency 

In order to estimate the efficiency of the con-
sidered approximations the following metrics were 
computed: 

a) The number of elementary mathematical op-
erations required for computations. In this case, 
those are addition and multiplication. 

b) The number of logic gates required for 
hardware implementations of the log2 module. To 
estimate it, the numbers of gates for 16 nm addi-
tion and multiplication modules from [11] were 
used. Those values were obtained by describing 
modules on Verilog HDL and using Synopsys De-
sign Compiler to implement them at gate-level and 
get logic gate complexity and latency characteris-
tics. The latency of the resulting module was esti-
mated as an accumulated latency for all underlying 
modules and will be less in actual implementation. 

The properties of considered approximations 
are summarized in Table 1. One can see that the 
Mitchell’s logarithm requires 6 times fewer addi-
tions and no multiplications compared to the poly-
nomial approximation. It has about 12 times fewer 
logic gates and 12.7 times lower latency. 

4. Exponent Approximations 

4.1. Basic Exponent Approximation  

Modern Intel’s processors include a special in-
struction for fast exponent computation [15]. It is 
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based on a look-up table and the polynomial ap-
proximation of the 2nd order. Its relative error is 
less than 2-23, which means that it provides a pre-
cise result for binary32 data. This approximation 
requires 3 addition and multiplication operations. 

4.2. Schraudolph’s Approximation 

In 1999 N. N. Schraudolph proposed an ex-
tremely fast approximation of exponential func-
tion, which was based on the structure of IEEE 754 
format for floating-point numbers [16]. He consid-
ered binary64 or double data, but his approach can 
be directly expanded to binary32 data. 

Since v = (−1)S · 2E-bias · (1 + 21-p · T), to calcu-
late 2x with an integer x one needs to write x+bias 
to the exponent field of the value: 

݅ ൌ 2௣ିଵሺݔ ൅  ,ሻݏܾܽ݅
where i is an integer representation of the result. 
Using non-integer x in such an operation modifies 
the highest bits of significand. This modification 
provides a linear interpolation between adjacent 
integer exponents. So, Schraudolph’s approxima-
tion for binary32 data is: 

݅ ൌ ݔܽ ൅ ሺܾ െ ܿሻ, 

where i is an integer representation of the resulting 
value, a = 223, b = 127 · 223, and c is an adjustment 
parameter, which was set to 486411 in this work. 

So, this approximation uses one integer addition 
and one floating-point multiplication. Its accuracy 
in the [0, 1) range is 0.05798 and was estimated 
numerically. The approximation is shown in Fig. 2. 

4.3 Approximation Efficiency 

In order to estimate the efficiency of the con-
sidered approximations, we used the same metrics 
as in Section 3.3 The properties of considered ap-
proximations are summarized in Table 1. One can 
see that the Schraudolph’s exponent requires 3 
times fewer additions and multiplications com-
pared to accurate approximation and has 3 times 
fewer logic gates and latency. 

5. BM Layer Complexity  
with Approximate Activations 

The BM neurons are mostly used in convolu-
tional layers of neural networks. So, let us estimate 
the number of logic gates and clock cycle latency 
for a convolutional BM layer with approximate  

Fig. 1. The comparison of binary logarithm approximations 

Table 1. The comparison of logarithm and exponent approximations 

Module (16 nm) add Mul gates latency accuracy in (0, 1] 
addition 1 0 2659 3 - 

multiplication 0 1 3247 4 - 
polynomial log2 6 5 32189 38 7 · 10-5 
Mitchell’s log2 1 0 2659 3 0.08639 

basic exp2 3 3 17718 21 - 
Schraudolph's exp2 1 1 5906 7 0.05798 
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activations and compare them to the ones for a 
standard convolutional layer. The layer’s gate 
number is accumulated for all modules used to per-
form necessary computations to obtain the total 
gate number. The latency is accumulated for all 

modules of one pathway (for positive input and 
weights) because pathways can be computed in 
parallel [13]. The 2-pathway model of the BM lay-
er corresponding to a preceding ReLU activation is 
evaluated. The result is shown in Table 2. 

Fig. 2. The comparison of accurate and approximated exp2 functions 

Table 2. The assessment of the gate number and latency ratios for standard, BM, and BM with fast activation convolutional layers 
F is a channel number, C is a number of channels, KxK is a kernel size 

F C K Gates, 
(std/BM) 

Latency, 
(std/BM) 

Gates, 
(std/BM approx) 

Latency, 
(std/BM approx) 

16 1 1 0.11 0.22 0.21 0.43 
16 16 1 0.52 0.78 0.74 1.19 
32 1 1 0.11 0.22 0.21 0.43 
32 32 1 0.68 1.00 0.82 1.29 
64 1 1 0.11 0.23 0.21 0.44 
64 64 1 0.77 1.17 0.87 1.34 

128 1 1 0.11 0.23 0.21 0.44 
128 128 1 0.84 1.27 0.89 1.37 
256 1 1 0.12 0.23 0.21 0.44 
256 256 1 0.88 1.33 0.90 1.38 
512 1 1 0.12 0.23 0.21 0.44 
512 512 1 0.90 1.37 0.91 1.39 
16 1 3 0.51 0.87 0.67 1.12 
16 16 3 0.85 1.29 0.89 1.37 
32 1 3 0.51 0.88 0.67 1.12 
32 32 3 0.88 1.34 0.90 1.39 
64 1 3 0.51 0.89 0.67 1.12 
64 64 3 0.90 1.37 0.91 1.39 

128 1 3 0.52 0.90 0.67 1.12 
128 128 3 0.91 1.38 0.91 1.40 
256 1 3 0.52 0.90 0.67 1.12 
256 256 3 0.91 1.39 0.92 1.40 
512 1 3 0.52 0.90 0.67 1.12 
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One can see that the gate efficiency of the BM 
convolutional layer decreases slightly because activa-
tion functions have much less contribution than the 
operations inside the layer. The latency for convolu-
tions with a big number of input channels and filters 
is almost not affected for the same reason. However, 
the assessment shows that fast activations fix the po-
tential slowdown for a small input channel number 
with 3x3 and bigger filters. For 3x3 kernels, the BM 
convolutional layer demonstrates 12-40% lower la-
tency than the standard one.  

6. Experimental Evaluation 

The approximations considered above provide 
fast inference and a low number of logic gates but 
alter the results of computations. In order to test their 
performance, an image classification problem of 
MNIST dataset was considered. MNIST demon-
strates 70000 gray handwritten digit images of size 
28x28 pixels, 60000 images for the training set, and 
10000 for the test set [17]. 

The BM network of ResNet-22 architecture was 
trained according to [13]. Such an architecture  

contains 22 BM convolutional layers (Fig. 3). Then 
1) each BM convolutional layer from the first to the 
last was converted to use custom log2 and exp2; 2) 
converted layer was trained to fine-tune the classifi-
cation quality. To use error backpropagation, gradient 
of Mitchell’s logarithm was implemented. Since the 
Mitchell’s logarithm is continuous, it was simply dif-
ferentiated to obtain a piecewise-constant gradient. 
Schraudolph’s exponent uses bit representations and 
is non-differentiable, so the gradient of non-
approximate function was used. The accuracy after 
layer-by-layer conversion and after fine-tuning is 
shown in Fig. 4.  

This experiment demonstrates how weights of 
the layers can adapt to approximate activations and 
restore the previous precision, and therefore char-
acterized the expressive power of the BM layer 
with custom log2 and exp2.  

It can be seen that classification accuracy on the 
testing set decreased from 99.08% to 98.90% in 
total. The resulting error rate increased from 0.92% 
to 1.10%, which is a 1.2-time increase. However, 
the 17th layer still preserved the original accuracy, 
and the accuracy drop happened between 17 and 

Fig. 3. The ResNet architecture with 22 convolutional layers used in experiments. 
Batch normalization and activations are omitted for simplicity 

Fig. 4. MNIST classification accuracy for BM network with approximate activations after conversion and after fine�tuning 
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22 layers. Moreover, this decrease is not steady 
and depends on the layer number. It means that it 
depends on the weight values and layer sizes and 
training from scratch with approximate activations 
is reasonable. 

Conclusion 

This paper considers activation approximations 
for convolutional layers of BM networks. BM activa-
tions use binary logarithm and 2-based exponent op-
erations. In this work, Mitchell’s logarithm and 
Schraudolph’s exponent approximations were con-
sidered. They are extremely fast and allow efficient 
implementations in hardware. An approximate loga-
rithm requires 6 times fewer additions and no multi-
plications compared to the polynomial approximation 
used in previous works. It has about 12 times fewer 
logic gates and almost 13 times lower latency. The 
exponent was approximated with Schraudolph's 
method and used 3 times fewer additions and multi-
plications compared to accurate approximation and 
has 3 times fewer logic gates and latency as well. The 
usage of approximate activations noticeably decreas-
es the latency of the BM layer for a small number of 
input channels. For 3x3 kernels, the BM convolu-
tional layer demonstrates 12-40% lower latency than 
the standard one. 

Experimental evaluation showed that these ap-
proximations can be used in a real BM network. 
Although the recognition accuracy dropped from 
99.08% to 98.90%, it is still high enough for prac-
tical usage considering the efficiency increase. 
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