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Introduction

In this section, we briefly survey the articles dealing with the boundary behav-
ior of mappings in quasiconformal analysis. Consider two domains D, D’ C R?
bounded by Jordan curves and a conformal mapping f: D — D’. The classical
result, established independently by Carathéodory [1] and Osgood and Taylor [2],
asserts that f extends to the boundary, giving a homeomorphism f: D — D’. The
Jordan condition for the boundary is necessary, which is easy to see in the exam-
ple of a slit disk. Nevertheless, a homeomorphic extension is possible for some
generalized boundary accounting for the geometry of the domain. This construc-
tion, introduced by Carathéodory [1] and called the prime end boundary, initiated
intensive applications of the geometric approach to study the boundary behavior of
mappings.

Carathéodory’s prime end theory received developments on the plane R? [3], [4]
and in the space R™ for n > 2 [5], [6], in studying Dirichlet problems for elliptic
equations [7], and in the theory of dynamical systems [8], [9]. For more detailed
surveys of the available results and literature, see [10]-[13].

A natural development of these questions is to study the boundary behavior
of quasiconformal mappings in space. It requires a more refined analysis of the
geometric properties of domains. Indeed, in the higher-dimensional case there exist
a Jordan domain and a quasiconformal mapping admitting no homeomorphic exten-
sion to the boundary of this domain [14]. In some questions it turned out helpful
to describe the geometric properties of domains using the concept of modulus of
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a curve family [15]. With that, a simple classification of boundary points was intro-
duced: for instance, the properties of the boundary to be quasiconformally flat
or quasiconformally accessible in [16], [17], or properties P1 and P2 of [18]. This
approach became widely used in the last decade to study the geometric properties
of mappings. Let us mention only some articles concerning the boundary correspon-
dence of quasiconformal mappings [19], [20], @-homeomorphisms, see the book [21]
and the articles [13], [22] (a more detailed discussion appears in Section 4), as well
as the mappings satisfying generalized modular inequalities [23].

An alternative functional-geometric approach to study the boundary behavior
of quasiconformal mappings is based on the relation between the Euclidean geom-
etry of the domain and the functional space L. via the concept of the variational
capacity of a condenser. This approach was founded in [24]-[26] and applied also to
studying mappings which are not quasiconformal [27]. As [17] shows, the functional-
geometric approach can be interpreted in the language of moduli of curve families.

The three main approaches to the boundary behavior of mappings, using prime
ends, geometric description, and functional-geometric definition, form an hierar-
chy, as each of them adequately describes the boundary behavior of certain classes
of mappings. This article studies the problem of boundary correspondence for
Q,,q-homeomorphisms, whose fundamental properties were established in [29]-[34].
To this end, we complete the domains in special capacity metrics on the image and
the preimage, associated with the geometry of a suitable Sobolev class. The ele-
ments adjoined to the domain in the completion of the corresponding metric space
constitute an improper boundary, which we call the capacity boundary H,,.

In § 2 the study of the boundary behavior of the homeomorphism f € 9, , defined
in §1 consists in:

(1) continuing f to the capacity boundary H,, with the main result stated as
Theorem 2.22;

(2) establishing a connection between the elements of the capacity boundary
and the points of the FEuclidean boundary of the domain, see Theorem 2.37 and
Corollaries 2.38 and 2.39.

In § 3 we compare the approaches stated in the languages of moduli and capacity.
In §4 we contrast the conclusions of this article with the main results of other
approaches to the problem of boundary behavior of mappings. Some applications
of our results are given in §5.

This article naturally enters the line of publications [28]-[36], preceded by the
results of [37]-[39] and the articles cited in the bibliographies in [28]-[34] and arising
on the crossroads of the theory of Sobolev function spaces [40], [41] and geometric
theory of functions [18], [42]-[48]. Some results of this series of articles have found
applications in nonlinear elasticity, see [49].

§ 1. Classes of Q, ,~-homeomorphisms

In what follows D and D’ stand for domains (open connected sets) in R™. The

norm |z, of a vector x = (z1,22,...,7,) € R" is defined as |z|, = (3}_; \xk|p)1/p

for p € [1,00) and |x]oo = maxg=1,. . n |Tg|. A ball in the norm |z|2 is a Euclidean
ball, while in the norm |z| it is a Euclidean cube.
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1.1. Definitions of Sobolev spaces and the capacity of condensers. For
the general theory of Sobolev spaces, the reader is referred to [40], [41]. We recall
that a function u: D — R is of Sobolev class L,(D) if u € Ly joc(D), meaning that
u € Lq(U) for every domain U compactly embedded into D, written U € D, and it
has the generalized derivatives Ou/dx; € L1 10c(D) for every j =1,...,n and finite
seminorm

1/p
| LY(D)] = (/Dw<y>|pdy> L l<peeo

where Vu(y) = (Ou/dzy,0u/dxs,...,0u/dx,) is the generalized gradient of w.
A mapping ¢ = (¢1,-..,¢n): D — R™ belongs to the Sobolev class WI}JOC(D;R")
whenever ¢;(z) € Ly 1oc(D) and 0p;/dx; € Lyioc(D) for all j, i =1,...,n.

We say that a mapping ¢: D — R"™ of Sobolev class Wll,loc(D; R™) is a mapping
with finite distortion whenever

Dy(x) = 0 almost everywhere (a.e.) on the set Z = {z € D: det Dp(x) = 0}.
(1.1)
(Meaning det Dp(z) = 0 at all points of Z except for a set of Lebesgue measure
7€ero.)

Here and henceforth Do(x) = (Op;(z)/0x;);';—; stands for the Jacobi matrix
of the mapping ¢ at € D, while |Dp(x)|, for its Euclidean operator norm, and
det Dp(z), for its determinant, the Jacobian.

A locally integrable function w: D’ — R is called a weight whenever 0 < w(y) < oo
for a.e. y € D’. A function u: D' — R belongs to the weighted Sobolev class
L) (D";w), with p € [1,00), if u € Ly 10c(D’) and du/dy; € Ly(D';w) for every
j=1,...,n. The seminorm of a function u € L,(D’;w) is then defined as

ozt = ([ 1vutmpaar) (12)

In the case w = 1 instead of L,(D’;1) we write simply L, (D).
Henceforth the symbol Lip,,.(D’) stands for the space of locally Lipschitz func-
tions on D’. It is obvious that

Liploc(D/) = Wolo,loc(D/) N O(D/)7

where Wolo,]oc(D' ) is the space of locally bounded measurable functions on D’ with
locally bounded generalized derivative.

We say that a homeomorphism ¢: D — D’ induces the bounded composition
operator

0*: L;(D’;w) N Lipy,.(D') — Lé(D)7 1<qg<p<oo,

acting as D 3 x — (¢*u)(z) = u(¢(z)), whenever for some constant K, , < co the
inequality
l™u | Lg(D)|| < Kqpllu | Ly(D';w)]

holds for every function u € L),(D’) N Lipy,.(D’).
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1.2. Condensers and their capacity in Sobolev spaces. A condenser in
a domain D C R" is a pair & = (Fy, Fy) of connected compact sets (continua) F7,
Iy € D. For a continuum F C U, where U @ D is an open connected compactly
embedded set, we denote the condenser £ = (F,0U) by £ = (F,U).

A condenser € = (F,U) is called annular whenever the complement in R™ to the
open set U \ F' consists of two closed sets each of which is connected: the bounded
connected component is the continuum F', and the unbounded component is R™\ U.

A condenser £ = (F,U) in R” is called spherical whenever U = B(z,R) =
{y e R": |y —z|]2 < R} and F = B(x,r) = {y € R": |y — x|z < r}, where
r < R, and cubical whenever U = Q(z,R) = {y € R": |y — z|oc < R} and
F=Q(z,r) ={y € R": |y — x| < r}, respectively.

DEFINITION 1.1. A function u: D — R of class W}, (D) is called admissible
for a condenser £ = (Fy, Fy) C D whenever ’

(1) w is continuous,

(2) u=1on Fy, and

(3) u=0 on Fy.

We denote the collection of admissible functions for a condenser £ = (Fy, Fy) by
A(E).

The capacity of a condenser & = (F}, Fp) in the space Lé(D) with ¢ € [1,00) is
defined as

cap (&5 LY(D)) = inf [lu | LY(D)|". (1.3)

where the infimum is taken over all admissible functions u € A(€) N L} (D) for the
condenser £ = (Fy, Fy) C D.

Let us now define the weighted capacity of a condenser £ = (Fy, Fy) C D’ in the
space L (D';w) by analogy with (1.3):

cap(&; Ly (D';w)) = inf [u | Ly (D";w)|?,

where the infimum is over all admissible functions u € A(£) NLipy,.(D")N L, (D';w)
for the condenser & = (F, Fp).

See the books [41], [44], which present the properties of capacity in Sobolev
spaces. For more details on the properties of weighted capacity (for a special class
of admissible weights), see [50, Ch. 2].

The definition of capacity yields the following property.

PROPERTY 1.2 (Subordination principle). Consider two condensers &' = (Fy, F{)
and & = (F1, Fy) in a domain D" with the plates of the first condenser included in
those of the second one, F{ C Fy and F} C Fy. Then

cap(&'; L;(D’; w)) < cap(&; L;(D’; w)).

1.3. A quasi-additive set function and its properties. Denote by O(D)
a system of open sets in D with the following properties:

(1) D € O(D) and if the closure of an open ball B (cube Q) lies in D, then
BeO(D) (Qe0O(D));
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(2) if Uy,..., U, € O(D) is a disjoint system of open sets, then Ule U, € O(D),
where k£ € N is an arbitrary number.

The choice of a ball or cube in this definition depends on the choice of a system
of elementary sets with respect to which the set function is differentiated, see (1.6).

DEFINITION 1.3. A mapping ®: O(D) — [0,00] is called a quasi-additive set
function if

(1) for every point x € D there exists a number d6(z) € (0,00) such that
B(z,6(xz)) € D and 0 < ®(B(x,0)) < oo for all § € (0,(x)), and the ball in
this condition can be replaced with a cube;

(2) every finite tuple {U; € O(D)}, for i = 1,...,1, of disjoint open sets with

! !
U Ui, C U, where U € O(D), satisfies Z@(Ui) < o). (1.4)

i=1 i=1
If every finite tuple {U; € O(D)} of pairwise disjoint open sets satisfies

n

> o) —@<QU1->, (1.5)

=1

then this set function is called finitely additive, while if (1.5) holds for every count-
able tuple {U; € O(D)} of disjoint open sets, then this set function is called count-
ably additive. The function ® is monotone whenever ®(U;) < ®(Uz) as soon as
Uy C Uy C D with Uy,Us € O(D). Every quasi-additive set function is obviously
monotone. A quasi-additive set function ®: O(D) — [0,00] is called a bounded
quasi-additive set function whenever D € O(D) and ®(D) < occ.

It is known, see [51]-[53] for instance, that every quasi-additive set function ®
defined on some system O(D’) of open subsets of a domain D’ is differentiable in
the following sense: for a.e. point y € D' there exists the finite derivative®:

®(Bs)

li = P'(y); 1.
5—)01,1‘51€B5 H"(By) (); (16)
and for every open set U € O(D') we have
[ #ay <o) (1.7
U

1.4. Definition of the class of 9, ,(D’,w; D)-homeomorphisms and their
properties. Denote by O.(D’) the minimal system of open sets in D’, which
contains:

(1) D'

(2) every open cube Q whenever Q C D’;

(3) the complement Q- \ Q; whenever Q; C @2 are two cubes with a common
center and Q, C D'.

In the following Definition 1.4 and Theorem 1.6, we consider the mapping
®: O, (D) — [0,00) as the bounded quasi-additive set function.

!Here and henceforth Bj is an arbitrary ball B(z,§) C D’ containing the point y. The ball in
this proposition can be replaced with a cube.
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DEFINITION 1.4 [31]. Given two domains D, D' C R™, for n > 2, we say that
a homeomorphism f: D’ — D is of class? CRQ, 4(D’,w; D), where 1 < ¢ < p < 00
forn >3 and 1 < ¢ < p < oo for n =2, while w € Ly 15c(D’) is a weight function,
if there exist

(1) a constant K, > 0 for ¢ = p or

(2) a bounded quasi-additive function ¥, , defined on the system O(D’) of open
sets in D’ for ¢ < p
such that for every cubical condenser & = (Q(z,r),Q(z,R)) C D’ with 0 <r < R
with the image (&) = (f(Q(x,r)), f(Q(xz, R)) C D we have

{capl/p(f(g); L},(D)) < K, capl/p(é'; L;(D/;w)) if ¢ = p,
cap'/?(f(£); LY(D)) < ¥, 4(Q(z, R) \ Q(z,7))"/7 cap'/?(&; LL(D';w)) if q < p,
(1.8)

where 1/o0 =1/q —1/p.

DEFINITION 1.5 [31], [32]. Let D and D’ be open sets in R” withn > 2,1 < ¢ <
p<ooforn>3andl < g <p<ooforn =2 and w € Ly o(D’) be
a weight function. We say that a homeomorphism ¢: D — D’ belongs to the
class Q) 4(D’,w; D), whenever each condenser £ = (Fi, Fy) in D’ with the preim-
age ¢ 1(&) = (p71(F1), o7 (Fp)) in D satisfies

cap'/? (o™ (€); Ly (D))

q
o f(pcapl/p(é’;l/ll](D’;w)), 1<qg=p<oo, (1.9)

S\ (DN (Fy U Fy))Ye cap'/P(&; LL(D";w)), 1<q<p< oo, .
where 1/0 = 1/¢—1/p, while U is some bounded quasi-additive set function defined
on open subsets of D'.

It is easy to see that if ¢ € Q, (D', w; D), then f = ¢~ € CRQ, 4(D’,w; D).
The following Theorem 1.6 gives an analytic description of the mappings with
inverses of class CRQ, ,(D’,w; D).

THEOREM 1.6 [33, Theorem 1|. A homeomorphism f: D' — D belongs to the
class CRQp (D' ,w; D) with 1 < ¢ < p < oo forn >3 and 1 < g < p < oo for
n = 2 if and only if the inverse homeomorphism ¢ = f~': D — D' enjoys one of
the following properties:

(1) the composition operator ¢*: Ly (D';w) N Lipy, (D) = Li(D), with 1 < ¢ <
p < 00, is bounded,

(2) the homeomorphism ¢: D — D' is of class Q) 4(D’,w; D) in the sense of
Definition 1.5, with some bounded quasi-additive set function T defined on open
subsets of D’;

(3) a homeomorphism p: D — D’

(a) is of Sobolev class W}, (D),

q,loc
(b) has finite distortion in the sense of (1.1), and

2In the acronym CRQ the letters stand for the words “cube”, “ring”, and “quasiconformal”.
Therefore, CRQ is quasiconformality determined by cubical condensers.
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(c) the operator distortion function

[De()]

D3 we Ki(a,g) = { Aot Dpw) T oy © ‘DA 70
0 if det Dp(x) =0

(1.10)

belongs to Ly(D), where 1/o =1/g—1/p if 1 < q¢<p < o0 and 0 = o0

if ¢ =p;
(4) if n =2, then claims (1)—(3) also hold in the case 1 = q < p < .
Note that Theorem 1.6 is a consequence of [29, Theorem 1], [30], and [31], [32,
Theorem 1|, see details in [33, Theorem 1|. The smallest quantities K, and K,
(quasiadditive functions ¥ and W) in (1.8), (1.9) satisfy

forg=p || =K. 2()| Leo(D)]| = K, = K, (1.11)
(forg<p |oiwl® = KL() | Lol {(W))||” = (W) = ¥(W))  (1.12)

for an open set W C D', where ||}, | is the norm of the restriction
pw i Ly(W;w) N Lipo(W) = Ly(D);

here Liploc(W) stands for the space of locally Lipschitz functions vanishing on the
boundary of W, see [34, Theorem 4].
Let us formulate the following corollary of Theorem 1.6.

COROLLARY 1.7. A homeomorphism f: D — D' is of class CRQ, 4(D’,w; D)
withl <g<p<ooforn=>3andl<q<p<oco forn=2ifand onlyif o= f~!
is also of class Q) 4(D’,w; D).

Therefore, from now on we use only Q,,(D’,w;D) to refer to both classes
CRQp (D' ,w; D) and Q, 4(D’',w; D).

The differential properties of mappings of the classes 9, ,(D’,w; D) are estab-
lished in [30] and [31, Theorem 2].

REMARK 1.8. The homeomorphisms ¢: D — D' with f = ¢~ € Q, ,(D’,w; D)
in the cases

(1) g =p =n and w = 1 coincide with quasiconformal mappings [18], [42]-[45];

(2) 1 < ¢=p<ooand w=1 were studied in [28];

(3) 1 < g <p< ooand w=1 were studied in [28], [37]-{39].

Let us extract from Theorem 1.6 and Corollary 1.7 the following two examples
of @ q-homeomorphisms.

EXAMPLE 1.9 [29], [32]. If a homeomorphism ¢: D — D’ induces a bounded
composition operator ¢*: L}(D';w) N Lipy,.(D’') = Liy(D), with 1 < ¢ < p < o0
forn > 3and 1 < ¢ < p < o for n = 2, then the inverse homeomorphism
=91 D — Disof class Q, ,(D’,w; D).

ExXAMPLE 1.10 [29], [32]. Consider a homeomorphism ¢: D — D’ of Sobolev

class qu_’lOC(D) with finite distortion (1.1) and the operator function distortion (1.10)

of class L,(D), where 1/o =1/q¢—1/pfor 1 < ¢ <p < oo and o = oo for ¢ = p.
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Ifl<g<p<ooforn>3and 1< qg<p< oo forn =2, then the inverse
homeomorphism f = ¢~': D’ — D is of class Q, ,(D’,w; D).

In addition to Examples 1.9 and 1.10, other classes of mappings in the family
Q,.q(D’,w; D) were considered in [31]. Let us present some of them.

ExaMmPLE 1.11 [31, Example 3|. Consider a homeomorphism ¢: D — D’ of
Sobolev class I/Vpl’IOC(D)7 where 1 < p<ooforn >3 and 1 < p < oo forn =2,
with finite distortion. The inverse homeomorphism f = ¢~': D’ — D is of class

Qp p(D’,w; D) with the constant K, = 1 and the weight function

Dol W)I” AR
D5y wly) = 4 [det Do(p1(yyy] 1Y EPNEUED,

1 otherwise.

(1.13)

REMARK 1.12. As [31, Theorem 5| shows, the weight function (1.13) is locally
integrable.

ExAaMPLE 1.13 [31, Example 4|. For n — 1 < s < 0o consider a homeomorphism
f: D" — D of open domains D', D C R™, where n > 2, such that

(1) f € Wé—l,loc(D/);

(2) the mapping f has finite distortion;

(3) the outer distortion function

[Df ()l :
DIByHKl’l (v, f) = W if det Df(y) # 0,

n—1,s (114)
0 if det Df(y) =0

lies in L, (D), where 0 = (n — 1)p with p = s/(s — (n — 1)).

Then the inverse homeomorphism ¢ = f~': D — D’ has the properties

(4) p € W, (D), p = 5/(s — (n— 1));

(5) ¢ has finite distortion;
while the homeomorphism f: D' — D

(6) is of class Q, ,(D’,w; D) with the constant K, = 1 and the weight function
w € L1 10c(D’) defined as

ladj Df (y)[”
w(y) = { [det Df(y)[P~!
1 otherwise,

ifye D'\ 7/,
ify € D'\ (1.15)

where Z/ = {y € D': Df(y) = 0}.

Say that a mapping f € WilOC(D’) has finite codistortion if the adjoint matrix
adj Df(y) of the differential equals 0 a.e. on the zero set of the Jacobian

Z={yeD' |detDf(y) =0}.

ExAaMPLE 1.14 [31, Example 5|. For n —1 < s < o0, consider a homeomorphism
f: D" — D of domains D', D C R™, with n > 2, such that
(1) f €W, 4 10e(D);

1,loc
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(2) the mapping f has finite codistortion;
(3) the inner distortion function

ladj Df(y)| .
D3y Kyl (v, f) =} ldet Df(y)| =/ i det Df(y) #0, (1.16)

0 if det Df(y) =

belongs to L,(D’), where p=s/(s —(n—1)) and n — 1 < s < o0.

Then the inverse homeomorphism ¢ = f~!: D — D’ has the properties

(4) ¢ € W, o(D) and p = /(s — (n — 1));

(5) ¢ has finite distortion;
and the homeomorphism f: D’ — D

(6) is of class Q, ,(D’,w; D) with the constant K, = 1 and the weight func-
tion (1.15);

(7) has finite distortion forn — 1 < s <n+1/(n —2).

EXAMPLE 1.15 [35, Definition 11, Theorem 34]. A homeomorphism f: D’ — D
is called a homeomorphism with inner bounded 0-weighted (s, r)-distortion, or of
class ID(D’; s,7;6,1), where n — 1 < s < r < 0o, whenever:

( ) f € W IIOC(‘D/);
(2) the mapping f has finite codistortion;
(3) the function of local #-weight (s,r)-distortion

0= D/* (z)[adj D f ()|

if det D

D' sz KO a, f) =3 |det Df(a)[e0/r T (@) #0,
0 otherwise

(1.17)

belongs to L,(€2), where g can be found from the condition 1/p = (n —1)/s —
(n—1)/r, and p = oo for s = 7.

Then under the condition n—1< s <r < oo and the local summability of
the function w(z) = == D/(=(=1) () the homeomorphism f: D’ — D belongs
to Qpq(D',w; D), where ¢ = r/(r — (n — 1)) and p = s/(s — (n — 1)), for 1 <
g < p < oo. Furthermore, the factors on the right-hand side of (1.8) are equal to

Ky = K81, £) | Lo()] for g = p and

Uy (Qa, R)\ Qv = [|KZ2 (- f) | Lo(Qa, )\ Q(,r))|| for g <p

where 1/o=1/¢—1/p=1/p.

EXAMPLE 1.16 [36, Definition 3, Theorem 19]. A homeomorphism f: D" — D
is of class OD(D’;s,736,1), with n — 1 < s < r < 00, and is called a mapping with
outer bounded O-weighted (s,r)-distortion, whenever:

(1) few, 110c(D/)%

(2) the mappmg / has finite distortion;

(3) the function of local f-weighted (s, r)-distortion

0"/ (x)|Df(x)]
—— = if detD 0

D'5ae K0 e, ) = { [det Do T IPIOF
0 otherwise
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belongs to L,(D’), where p can be found from the conditions 1/p = 1/s — 1/r and
p=oc for s=r.

Then under the condition n—1 < s < r < oo and the local summability of w(x) =
g~ (n=1/(s=(=1))(z), the homeomorphism f: D’ — D belongs to Qp.q(D',w; D),
where ¢ = r/(r — (n—1)) and p = s/(s— (n — 1)) with 1 < ¢ < p < oco. The
factors on the right-hand side of (1.8) are equal to K, = [|[KZH (-, f) | Loo(D')||"
for ¢ = p and

W0 (Q, R)\ Q)7 = ||KE (- ) | Lo(Q, B)\ Q)"
for ¢ < p, where 1/o =1/¢—1/p=(n—1)/0.

It is shown in [36, Theorem 8] that the inclusion
OD(D';s,1;0,1) C ID(D';s,7;0,1)

holds under the condition n —1 < s < r < co. Moreover, for every homeomorphism
f: D" — D of class OD(D’'; s,r;6,1), with n — 1 < s < r < 0o, we have

IS f) | L (DO < IS L ) T LoD

where the numbers p and o are defined in Examples 1.15 and 1.16.
More examples of OD(D’; s,7; 6, 1)-homeomorphisms in R? can be found in [54].

§ 2. Behavior of mappings with respect to the capacity metric

Fix two domains D, D’ C R", a locally integrable weight function w: D’ — R
on D', and a mapping f € Q, (D', w; D) withn —1 < ¢ < p < 0.

Recall that Corollary 1.7 guarantees that f satisfies (1.9) for every condenser
&= (F17FQ) in D'.

Fix some continuum Fy C D’ with nonempty interior such that the open set
D'\ Fy is connected.

2.1. Capacity metric functions in domains for the homeomorphisms of
class Q, ,(D',w; D) for n—1 < g < p < n. Observe that in thecasen—1<g¢g<n
the left-hand side of (1.9) is nonzero as long as the continuum f(F}) is distinct from
a point. Indeed, we have the following proposition.

LEMMA 2.1. In a domain D C R™ fix two balls By €@ D and By € D satisfying
BoNB, = 3. Then forn—1 < q < n, a fized continuum Ty C By, and an arbitrary
continuum Ty C By, the relation

cap'/?((Ty, Tp); LY(D)) — 0 (2.1)

holds® if and only if diam T} — 0.

3In other words, the left-hand side of (1.9) is small if and only if diam 7} is small (under the
condition that the continuum 77 lies in some ball By € D with Bo N By = @).
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PROOF. Let us present the scheme of the proof of Lemma 2.1.

Necessity. By [48, Lemma 3], there is a John domain [48, Definition 8] 2 € J(«, 8)
compactly embedded into D, with some positive parameters o and g depending
on D and the balls By and Bj, which includes the closures of both balls. On the
domain 2 under the conditions 1 < ¢ < n and ¢ < ¢* < ng/(n — q) we have the
following Poincaré inequality [55, Theorems 4 and 9]:

«

B

||u—cu|Lq*<Q>||<cQ( ) (diam Q)T [T | L), (2.2)

where ¢, and Cq are constants, with C > 0 independent of u, «, and 5. By (2.1)

there exists a sequence of continua T} j, C By and admissible functions u, € C(Q2)N
L1(Q) for the capacity cap((T1,x, To); L} (€2)) such that

urlr,, =1, uplr, =0, 0<up <1 and |[Vug | Le(Q)| -0 as k — oo.

(2.3)
And hence, the inequality (2.2) implies that ||ux — ¢y, | Lg= ()] — 0 as k — oo.
Note that the sequence of numbers {¢,, } is bounded. Indeed, if {¢,, } is not bounded
then, due to the relations 0 < ug < 1, the left-hand side of (2.2) is also not bounded,
which contradicts the right convergence in (2.3). Therefore, we may assume that
cu,, converges to some number ¢y, and up to subsequence uy—c,, — 0fora.e. x € Q
as k — oo. Hence, up — ¢o for a.e. x € Q as k — oo, and due to ug|p, = 0 we
deduce ¢y = 0. In addition, §2 is a bounded domain, and the Lebesgue dominated
convergence theorem shows that

lur | Lg()[] =0 as [ — oo. (2.4)

From (2.3) and (2.4) we infer that [ju; | W, (Q)|| = 0 as | — co. We can extend
the restrictions wp, to the functions @; € W,/ (R™) so that the extension operator
is bounded. Therefore,

| | W;(R")H —0 as [ — oo

We obtain then that the capacity of the continua T} ; in the space W, (R™) of Bessel
potentials is positive and tends to 0 as | — oo. For n — 1 < ¢ < n the latter is
possible only if diam Ty ; — 0 as [ — oo; see the details in [56], [41].
The case ¢ = n reduces to the previous one using Hoélder’s inequality.
Sufficiency. Since Property 1.2 yields

cap((T1,To); Ly(D)) < cap((T1, Bo); Ly(D)),

it suffices to prove that cap((T1, Bo); Ly (D)) — 0 as diam T} — 0.

Put R = dist(By, B1) and suppose that the continuum T} satisfies 7, < R. Then
we may assume that every admissible function for the condenser (B(z, 7, ), B(z, R))
is also admissible for the condenser (77,7p), and so

cap((Tl7 To); Lé(D)) < cap((B(x, ro ), B(x, R)) ; Lé(B(x, R)))
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From Example 2.7 below for a = 0, we conclude

cap((B(0,7), B(0, R)); L(II(B(O7 R)))

0n1<" ‘1) (rla=m)/(@=1) _ Rla-m/(-D)1~0 for g <,

n—1

1-n
On_1 <ln R) for ¢ = n,

r

where 7 € (0, R), while 0,,_; is the measure of the unit (n — 1)-dimensional sphere
in the space R™. Thus,

cap((B(x,rTl),B(J;,R));Lé(B(m,R)) —0 as rp —0,

and the proof of Lemma 2.1 is complete.

COROLLARY 2.2. Forn—1<g<n, the existence of a mapping f € Q, 4(D’,w; D)
is ensured by the condition

capl/p(E;L;(D’;w)) #0 (2.5)

for an arbitrary condenser € = (v, Fy), where v: [a,b] — D'\ Fy is an arbitrary
closed curve with distinct endpoints © = vy(a) and y = ~(b).

PROOF. Since the continuum Fy C D’ has nonempty interior, _there exists
a closed ball B C Fj and a closed ball B C D' centered on «y such that B1NB, = .
Consider the condenser £ = (y N By, By). By (1.8), it suffices to show that

cap(f(£): Ly(D)) # 0. (2.6)

The latter follows from Lemma 2.1. Indeed, there are closed disjoint balls B
f(B{) and BY C f(B}) whose intersection v N B} is a nondegenerate continuum.
Then, Lemma 2.1 and (1.8) yield

0 # cap((y N BY, By); Ly(D)) < cap(f(€): Ly(D)).

This justifies Corollary 2.2.

With (2.5) we can define a metric function similar to the one introduced in [25],
[26, Ch. 5] in the unweighted case.

DEFINITION 2.3. The capacity (w,p)-metric function between two distinct
points z,y € D'\ Fy with respect to Fj is defined as

Py o (T, y) = i%"capl/p((xfy? Fo); Ly (D' w)), (2.7)

where the infimum is over all curves Ty in D"\ Fy with endpoints z,y € D'\ Fp.
By analogy, we define the capacity g-metric function pg (r,)(a,b) between two
points a,b € D\ f(Fp) with respect to the continuum f(Fp) in the image D'

Pa.s(r)(a,0) = inf cap'/*((ab, f(Fo)); Ly (D). (2.8)
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PROPOSITION 2.4. If a homeomorphism f: D' — D belongs to Q, ,(D’',w; D),
wheren—1<qg<p<nforn>3andl <q<p<2 forn=2, then the capacity
metric functions satisfy

{Pp,fu%) (f(@), f () < Kppjy r, (2, 9) if ¢=p,
Pa.(r) (f(@), F(y)) < Wy o(D'\ Fo)Y7p% o (x,9)  if ¢ <p,
for all points x,y € D'\ Fy, where 1/o =1/q —1/p.

PROOF. Take & = (g, Fp) in D’, then from (1.9) it follows that

Pa.s () (@), f(y)) < cap'/!((f(F), f(Fv)); Li(D))
< Uy o(D'\ Fo)'/7 cap'/? (x5, Fo); L(D'; w))

(2.9)

provided that ¢ < p. Passing to the infimum over all curves zy C D’ \ Fy with
endpoints = and y, we arrive at the second inequality in (2.9).

The case ¢ = p is similar.

Proposition is proved.

PROPOSITION 2.5. In the casen —1<qg<p<n form>3and1 <qg<p<2
forn =2, the capacity (w,p)-metric function p} p, (z,y) enjoys the properties

(1) 08 gy (@,y) = py; g, (y, @) for all points x,y € D"\ Fy;

(2) 05 gy (7, 2) < P55 5 (2, 9) + Py g, (Y, 2) for all points x,y,z € D"\ Fy.

PROOF. Property (1) is obvious.

To verify the second property, consider the case x # z, x # y, y # z; otherwise
property (2) obviously holds. Fix £ > 0 and some curves Ty and 7z with endpoints
x, y and y, z, respectively, such that

_ " €
capl/”((xy, Fy); L;(D';w)) < pp g (@) + T (2.10)
_ " £
Capl/p((yz, Fy); L;(D/;w)) < Py Fy (y,2) + T (2.11)

Take two functions u; and uy admissible for the capacities cap((zg, Fo); Ly(D’;w))
and cap((yz, Fo); L, (D';w)) such that

1/p
([ vuPeman) <@ mnsyoio)+5, 212
D/

1/p
([ wurwemar) < (@ aroiw)+ 5 @
.

It is easy to see that u; + us is admissible for the capacity cap'/?((zy U 7z, Fo);
L, (D';w)). Hence, from (2.10)-(2.13), we obtain

1/p
0 (2 2) < cap /P (@ UTZ, Fo)s LY(D's)) < ( [+ wlrwe) dy)

s </D/ [Vur [P (y)w(y) dy> v + </D, VP (5w () dy) 1/p

< Py (T y) + P g, (Y, 2) + &
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Since € > 0 is chosen arbitrarily, the triangle inequality is verified. Proposition is
proved.

Recall that the metric function pf ;, is defined in (2.7) for distinct points z # y
of the open set D'\ Fy. If e =y € D'\ Fy, put

Py iy (1) = cap'/?(({z}, Fp); Ly (D' w)). (2.14)

For the capacity metric function pj . to be a metric, we must ensure that

() = 0 (2.15)
for every point x € D"\ Fp.

PROPOSITION 2.6. Given x € D'\ Fy, condition (2.15) holds if and only if

lim cap((B(x,r),Fo); L;(D’;w)) =0. (2.16)

r—0

PROOF. Since the condenser ({x}, Fy) is a part of the condenser (B(x,r), Fp),
Property 1.2 yields

. Up((RIm Tl
Py 1, (T, 1) < }%cap /p((B(x,rLFo),Lp(D',w)).

Granted (2.16), this implies (2.15).

Suppose now that (2.15) holds: p% r (z,7) = capl/p(({x},Fo);L},(D’;w)) =0.
By the definition of capacity, for every e € (0,1/2), there exists a function u. €
Lipy,.(D’) such that u.(y) € [0,1] for all y € D', while u.|p, =0, u-(x) =1, and

| vty dy < = (217)

Since x is an interior point of {y € D": u.(y) > 1 —¢e}, we have B(z,ry) C {y € D":
u:(y) > 1 — e} for some ball B(z,ry). Consequently, the function

min(u:(y), 1 —¢€)
1—¢

is admissible for the capacity of the condenser (B(x,r), Fy) provided that r € (0, r9).
Therefore,

1

(1—¢e) Jp
1 p € P
<o [ el @)y < g <2

cap((B(z,7), Fo); Ly(D";w)) < |V (min(ue(y), 1 — ) ["w(y) dy

by (2.17). Since € € (0,1/2) is arbitrary, (2.16) is justified.
This completes the proof of Proposition 2.6.
Observe that (2.16) always holds in the case ¢ < p < n and w = 1. In the case

of a nontrivial weight function condition (2.15) need not hold, see Examples 2.7
and 2.8.
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EXAMPLE 2.7 [50, Example 2.22|. Consider the domain D’ = B(0,2) with the
weight w(x) = |x|%, where @ > —n, and p > 1. The capacity of the condenser
& = (B(0,r),B(0,1)) with 0 < r < 1 in the space L,(D’;w), where the weight
function w belongs to the special class of weight functions called admissible in [50], is

cap((B(Om),B(O, 1));L}D(D’;w))
c(n,p, )|l — r@=n=)/=D|1=p for p —n —a #0,

= 1 1—p
an_l(ln) forp—n—a=0,
r

where 0,1 is the measure of the unit (n — 1)-dimensional sphere in R™, while
¢(n,p, @) is a constant depending only on n, p, and «. Since

cap((B(O,r),B(O, 1));L11)(D’;w)) — cap(({O}, B(0, 1));L11)(D';w)) as r — 0,
the definition of the capacity metric function yields Py 5(0,1) (0,0) #0if p—n—a > 0.

In the following example, we construct a weight function for which condi-
tion (2.15) is violated on a countable dense subset of D’.

ExXAMPLE 2.8. Consider an arbitrary bounded domain D’ C R", a continuum
Fy, and a number « satisfying p — n — « > 0. To each point x; of some countable
dense subset of D’ associate the function

w(x —mz;) ifx e B(x;,2)ND,

D'z wi(z) =
20 it € D'\ B(x,2),

where w is the weight function of Example 2.7. As the weight function on the
domain D’ consider
— 1
D'szwo(z)= ; gwl(x)
It is not difficult to check that the function o is integrable on D’. Fix an index
j € N and a function u € Lipy,(D’) N L)(D';0) admissible for the capacity
cap(({z;}, Fo); Ly (D';w)). In view of the inequality
1

— [Vu(z)|Pw;(x) dz </ [Vu(z)|Po(z) de,

22p D/ D/
which is valid for every admissible function u mentioned above, the left-hand side
of the last inequality is separated from zero by some constant independent of w.
Therefore,

P (55 5) = cap'/P ({5}, Fo): Ly(D'5.0)) # 0
for every index j € N.

EXAMPLE 2.9. Consider a bounded domain D’ C R", a point € D’, a contin-
uum Fy C D'\ B(z,e™!), and a weight w: D' — [1,00) with w € BMO(D’). For
0 < r < e~ 2 define the function

0 ifye D'\ B(z,e™ 1),

log(log(1/[y]) . , o
Toglog(lyr)) Y EDNBEHAB@),
1 it y € D' N B, 7).

ur(y) =
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It is not difficult to verify that u, belongs to the class of admissible functions
A(B(z,7) N D', Fy). Then the definition of capacity yields

pi g, (1) = cap(({z}, Fo); L (Dw)) = }13% cap((B(z,r) N D', Fy); L, (D';w))

< lim [Vu,(y)|"w(y) dy = 0.
r—0 D’

The last equality holds thanks to the following estimate for w € BMO(B(z, 1)) [21,
Lemma 5.2[:

. R __wdy
[ vt < s [ e
C

ST A ATy
log(log(1/r))
where the constant C' depends only on n and w, but is independent of r.

Examples 2.7-2.9 show that condition (2.15) depends on the properties of the
weight function w.
Henceforth, denote by d(x, y) the Euclidean distance between two points z, y € R™.

PROPOSITION 2.10. Consider a homeomorphism f: D' — D belonging to the
class Qp q¢(D',w; D), wheren —1 < qg<p<nforn>3andl <q<p<2 for
n=2.

(1) If y € D'\ Fy and p g (2m,y) — 0 as m — oo in the domain D"\ Fy, then

(a) one of conditions (2.15) and (2.16) is met at the point y;
(b) we have the convergence d(zm,y) — 0 as m — oo.

(2) Provided with (2.15) aty € D'\ Fy, the convergence d(zm,y) — 0 as m — oo
implies the convergence py; p (zm,y) — 0 with respect to the capacity (w,p)-metric
function p p, in the domain D'\ Fy.

PrOOF. (1) By Definition 2.3, for each m € N, there exists a continuous curve
Ym: [0,1] = D"\ Fy with endpoints z,, = ¥ (0), ¥ = vm (1) € D'\ Fy such that

cap"/?(Fm, Fo); Ly (D';w)) < 205 g, (2ms 0), (2.18)

where 7, = 7, ([0, 1]) stands for the image of the curve 7,,: [0,1] — D'\ Fy. Using
the inequality

cap'/? (({y}, Fo); Ly(D"sw)) < cap'/?((Zng, Fo); Ly (D5 w)),

valid for all m € N, from (2.18) and the condition p}; r (2m,y) — 0 as m — oo in
the domain D"\ Fy, we infer that

cap'/?(({y}, Fo); L1(D';w)) = 0.

Furthermore, from (2.9) and the condition p;; r (2m,y) — 0 as m — oo we find that
Pa.f(Fo)(f(2m), f(y)) — 0 as m — oo. By Lemma 2.1, the latter is possible if and
only if f(zm) — f(y) as m — oco. Hence, z,, — y as m — 0.
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(2) Assume that condition (2.15) holds at y € D'\ Fy and d(z,,y) — 0 as m — oo
for some sequence z,, € D'\ Fy. On assuming condition (2.15), Proposition 2.6
implies that

lim cap'/? ((B(y,r), Fo); LL(D';w)) = 0. (2.19)
r—0

For z,, € B(y,r), from the properties of capacity, we infer that

0% gy (Zmsy) < cap™?((B(y, ), Fo); Li(D';w)),

and hence p% & (2m,y) — 0 as m — oo.
Proposition is proved.

Given a set B C R, define the distance dist(y, B) from a point y € R™ to B as
inf,ep d(y, z), where d(-,-) is the Euclidean distance. The following proposition
generalizes Proposition 2.10.

PROPOSITION 2.11. Consider a homeomorphism f: D' — D belonging to the
class Qpq4(D',w; D), wheren —1 < qg<p<nforn>3andl <q<p<2 for
n=2. If{yy € D'\ Fo}, forl € N, is a fundamental sequence with respect to
the metric function pf p, , while y is one of its partial limits in the topology of the
extended space R™, then the following claims hold:

(1) ify € D'\ Fy, then d(y;,y) — 0 as | — oo;

(2) if y € Fy, then d(y;,y) — 0 as | — oo;

(3) if y € 0D’ and the sequence {y; € D'} is bounded, we have dist(y;, 0D") — 0
as | — oo;

(4) if {y} = R\ R", either y; — y as | — oo in the topology of R™,
or lim, . d(y;,0) < oo and limy_,o dist(y;,,0D’) = 0 for every subsequence
{yi,, € D'} bounded in R™.

PROOF. Let us prove the claims of Proposition 2.11 one by one.

(1) Take a fundamental sequence {y; € D'\ Fy}, for [ € N, with respect to
the metric function p . and its subsequence {y;, € D'\ Fy}, for k € N, con-
verging in the topology of the Euclidean space R™ to some point y € D'\ Fy as
k — oo. By (2.9), the sequence {f(v;) € D\ f(Fov)}, | € N, is also fundamental
with respect to pg r(r,)- In addition, since f is continuous at y € D'\ Fy, we have
the convergence f(y;,) — f(y) as k — oo. Lemma 2.1 implies the convergence

Pa.f(Fo)(f (W), f(y)) — 0 as k — oo. Since the sequence {f(y;) € D\ f(Fo)},
for I € N, is fundamental with respect to the metric function p, r(g,), we see that

pa () (F0)s £(9)) = 0 as L — oo, Moreover, f(y) — f(y) as L — oo, again by
Lemma 2.1. Since f~! is continuous at f(y), we infer that y; — y as | — oc.

(2) Take a fundamental sequence {y; € D"\ Fy}, [ € N, with respect to the
metric function pi r and its subsequence {y;,, € D"\ Fo}, k € N, converging in
the topology of the Euclidean space R™ to some point y € Fy as k — oo. The
second claim will be justified once we verify that the stated properties contradict
the existence of a subsequence {y;, }, 7 € N, such that d(y;,,y) > 1/ for all j € N,
where 3 > 1 is some number. Indeed, if such a subsequence exists, then

1

a(f(yi,), f(y)) = 7 (2.20)
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for all j € N, where 8’ > 1 is some number, whose existence is ensured by the locally
uniform continuity of the homeomorphism f. On the other hand, the sequence
{f(y) € D\ f(Fy)}, for I € N, is fundamental with respect to the metric function
Pq.f(Fy)- Applying the subordination principle, see Property 1.2, we infer that this
sequence is also fundamental with respect to the metric function p, x for an arbi-
trary compact set K C int f(Fp) with nonempty interior. By Lemma 2.1, the
sequence f(y;) converges to f(y) ¢ K as [ — oo. The latter contradicts (2.20).

(3) Take a partial limit y = lim; ;. y;; € D’ and assume on the contrary that
there exists a subsequence {y;, }, for & € N, such that dist(y;, ,0D’) > Sy > 0 for all
k € N, where fj is some number. By the latter property, since {y;} is bounded, we
may assume that the subsequence {y;, } converges to some z € D’. Consequently,
the hypotheses of the first claim are fulfilled, and so y; — z as [ — oo, which
contradicts the property lim; . v, =yE€ oD'.

(4) If under the condition {y} = R™ \ R" we have lim, , d(y;,0) = oo, then
y1 — y as | — oo in the topology of R,

Assume that if lim, , _ d(y;,0) < oo, then limy_, o dist(y;,,dD’) > 0 for some
bounded subsequence {y;, }, for & € N. Then some subsequence Y, = 2 € D’
as j — oo. The first claim yields y; — z € D’ as | — oo, which contradicts the
hypotheses of claim (4). Proposition is proved.

REMARK 2.12. Below we consider the fundamental sequences with respect to
the metric function p¥ r which satisfy just one of claims (1), (3), and (4) of Propo-
sition 2.11.

2.2. Capacity metric and completion of the domain.

DEFINITION 2.13. Denote by D),  the collection of points {y € D'\ Fo} with
the capacity metric function p; .

DEFINITION 2.14. Two fundamental sequences {y; € D), ,} and {z € Dj },
Il € N, with respect to the capacity metric function Py F, are called equivalent
whenever p% & (y1,21) — 0 as | — oo.

Define a new metric space (D}, ,, 0,5, ):
(1) its elements are the classes of equivalent fundamental sequences, and
(2) the distance between two elements X,Y € D, , equals

Py (X Y) = im g o (0, 30), (2.21)

where {z;} and {y;} are fundamental sequences in X and Y, respectively.

Assume henceforth that the metric space (D), ,, o5, ) is nonempty.

By analogy with the Hausdorff completion theorem, see [57, Ch. 2, §6] and [58,
§21.3], for instance, we can prove the following statement.

PROPOSITION 2.15. The following claims hold:

(1) the metric function (2.21) is independent of the choice of fundamental
sequences {x;} in the class X and {y;} in the class Y N

(2) the metric function (2.21) in Definition 2.14 satisfies on D), , the azioms of
a metric space;
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(3) the space (ﬁ;}’p,ﬁ]‘;%) includes a subset isometric to the metric space

{y e D'\ Fo | oy g, (v,9) = O}
with the metric pf -

PROOF. Recall how we identify the points of {y € D'\ Iy | py p, (y,y) = 0} with

the metric pi z and those of some subset in (D}, ,, 05 )-

Associate to a point y € D;,p the equivalence class i(y) € 5;4, containing the
constant sequence {y,y,...,¥,... +. It is obvious that

Py (1(2),1(y)) = Py, (2,),

so that the embedding
. ~/
it Dyp = Dy
is an isometry. Proposition is proved.

DEFINITION 2.16. Refer to the metric space (D), ,,p% ) to the subset {y €
D'\ Fo | p g, (y,y) = 0} with the metric p¥ ..

PROPOSITION 2.17. Consider a homeomorphism f: D' — D that belongs to
Qpq(D' w; D), wheren—1<g<p<nforn=>3andl <qg<p<2forn=2.
Fiz an equivalence class h € 5;)4, and take an arbitrary fundamental sequence {y;}
in this class. Then the following behavior of {y;} is possible:

(1) (@) yy >y € D'\ Fy as | — oo in the Euclidean metric and the limit y is
unique, meaning that it is independent of the choice of sequence in h;

(b) yi = y € Fy as |l — oo in the Euclidean metric and the limit y is unique;

(2) otherwise, depending on the choice of fundamental sequence in h., the following
cases are possible:

(a) lim;_s o0 d(y;,0) < 0o and then dist(y;, 0D') — 0 as | — oo;
(b) limy—e0 d(y1,0) = 00 and lim,_, _ d(y) < oo, and then

lim dist(y;,,0D") =0
=00

for every bounded subsequence {y;, € D'} of R™;
(¢) limy_,o0 d(y1,0) = c0.

PRrROOF. The fundamental sequence {y;} of class h € ﬁ;w bounded in R™ satisfies
the hypotheses of Proposition 2.11, and so its claims (1)—(4) can hold for it. It
remains to verify that the same claims hold for every bounded sequence {z;} of
class h € 5;47.

Indeed, the sequence y1, 21, Y2, 22, - -+, Yn, 2n, - - - is fundamental with respect to
the metric function Py Fy bounded in R™, and has accumulation point y, which lies
either in D’ or in 0D’.

In the first case by claim (1) of Proposition 2.11 some subsequence of the sequence

Y1y 215 Y25 225 -y Yny Zny - - (2.22)

converges to y € D’. Hence, both sequences (2.22) and {z;} converge to y as | — cc.
In the second case no subsequence {z;, } of the sequence {z;} can converge to any
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point z € D’, because similar arguments would yield the impossible coincidence
y = z. Then if the sequence {z;} is bounded, then claim (3) of Proposition 2.11
shows that dist(z;,0D’) — 0 as | — oco.

If some sequence {y;} of class h € Dj, , is not bounded, then we should apply
claim (4) of Proposition 2.11 to justify claims (2)(b) and (2)(c) of Proposition 2.17.

Now take another fundamental sequence {z;}, [ € N, in the same class h € ZND’M,.
Applying Proposition 2.11 to it, we conclude that z; cannot converge to any point
z € D', as otherwise y; would also converge to z € D’ as | — oo. Thus, for
the sequence z;, only claims (3) or (4) of Proposition 2.11 can hold, which proves
Proposition 2.17.

The following example shows that each of the possibilities (a), (b), and (c) of
part 2 of Proposition 2.17 can be realized in various sequences of the same class.

EXAMPLE 2.18 (ridge domain). In [18], [26], and [45] there is an example of
a simply-connected domain with nontrivial boundary elements, although the domain
is locally connected at all boundary points of the Euclidean boundary. For ¢ =p =
n =3 and w = 1 consider the ridge domain

D' ={z = (z1,22,23): |12 <2}, a>2,0< 21 <1,0< z3 < 00}

1 1 1 1
1: 1 3: -
Y <l72la7 )7 Y l721a7l )

and define the sequence {y?} by alternating {y}} and {y}}:

1 1 1 1
Y3 = (lme) and Y3, = (l’QZO"Z)'

Then {y}}, {y?}, and {y}} satisfy conditions (2)(a), (2)(b), and (2)(c) of Pro-
position 2.17, respectively, since y},y3, — (0,0,1) and limy_d(y3,,,0) =
limy 00 d(y7,0) = oco. In addition, the chosen sequences lie in the same equiva-

Take the sequences

lence class h € .5;)’3. Here the metric p g is defined with respect to the Sobolev
space Li(D’) and Fy C D' is an arbitrary continuum with nonempty interior.

With the new notation and concepts, we can interpret Proposition 2.4 as follows.

THEOREM 2.19 (extension of Q, ,-homeomorphisms). Consider a homeomor-
phism f: D" — D of class Qp4(D',w; D), where n —1 < ¢ < p < n forn >3
and 1 < q<p<2forn=2. Then

(1) the mapping f: D' — D induces the Lipschitz mapping

f (D;Lp’ﬁz:jFo) = (Dp.qs Pa,f(Fo))

of metric spaces, with the estimate for metric distances
Po,r(r) (F(2), F(y) < Kppp, (2, 9) if g =p,
Pa.s (o) (f(@), F(y)) < Wpo(D'\ Fo)Y7pp (,y) if ¢ <p,

for all points x,y € Dy, ,, where 1/o =1/q —1/p;

(2.23)
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(2) the mapping f: D' — D induces the Lipschitz mapping

f: (Eg,p’ﬁﬁFo) - (f)p,qvﬁq,f(Fo))

of the “completed” metric spaces: to each element X € (D), ,,p¥r ) associate the

element f(X) € (Dyq, Pq,f(Fy)) containing the fundamental sequence { f(x;)}, where
{z;} € X, with the estimate for metric distances

{ﬁp,f(m (), J(Y)) < Ky, (X,Y) if g =p, (2.24)

ﬁq»f(Fo)(f(X)’ f(Y)) Sy (D" FO)l/Uﬁ;Fg(X’ Y) ifq<p,

forz,y e Dy, .

ProOOF. Claim (1) and (2.23) follow directly from Proposition 2.4, while (2.24)
follows from Definition (2.21) of the metric distance between the elements of “com-
pleted” spaces. Indeed, if a sequence {x;} belongs to X € ﬁgyp, then by (2.23) the
sequence {f(z;)} is fundamental with respect to the metric function pg s(m,). We
call the class of equivalent sequences containing {f(z;)} the image of the class X,

and denote the resulting mapping by f. Deducing that

P (F(X), F(Y)) = Jm gy, p(ry) (f(x1), f(w))

and using Definition (2.21), as well as (2.23), we obtain the claim.
Therefore, Proposition 2.19 determines the extended mapping f

DEFINITION 2.20. Consider a homeomorphism f: D'— D of class Q,, ,(D’,w; D),
whegen~—1<q<p§nforn>3and1Sqépé?fornzl Denote

by f: (D}, .05 5,) = (Dp.g» Py, f(Fo)) the extension of f to the “completed” metric

spaces: to each X € (D], ,,p2r ) we associate f(X) € (Dyq,pq,f(r,)) containing
the fundamental sequence {f(x;)}.

2.3. Capacity boundary. Boundary correspondence of mappings. By
Proposition 2.17, in the topology of the extended space R™ the limit points of the
fundamental sequence {y;}, I € N, of some class h € E;’p can be

(1a) the points y € D'\ Fy: in this case y; — y € D'\ Fy as | — oo in the
Euclidean metric;

(1b) the points y € Fp: in this case y; — y € Fy as | — oo in the Euclidean
metric.

Otherwise, depending on the choice of fundamental sequence {y;}, | € N, of
class h, the possible variants are

(2a) the points y € 9D’;

(2b) the point y = oco.

Clearly, in case (1a) we can identify the class h € l~)’p’p with some point y € D'\ Fy,
while in case (1b), with some point y € Fp.

With this observation at hand, define the concept of the capacity boundary.
By claim (3) of Proposition 2.15, the points of the metric space (Dj, ,, p; ) are

identified with those in some subset of (5,/0,1)’ Py r,) so that the embedding

-/ ~/
v DP:P - me
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is an isometry. Henceforth we identify D/, , with the image i(Dj, ) in Bgﬂp.

DEFINITION 2.21. The complement
H;J,p(D/) :D;),p\DI (HPJI(D) :Dpvq\D)

is called the capacity boundary of D' (respectively, D). The metric on the boundary
is induced from the ambient space. The capacity boundary elements of the domain
D" or D are the points of the capacity boundary Hj',(D") or H, (D).

THEOREM 2.22 (boundary correspondence of Q,, ,-homeomorphisms). Consider
a homeomorphism f: D' — D of class Q, 4(D’,w; D), wheren —1 < ¢ < p < n for
n>=3and1 < q<p<2 forn=2. Then the restriction f |H[L;17P(D/) 18 a Lipschitz
mapping

f |H?f,p(D’): (H;),p(D/)vﬁ;Fo) - (qu(D)vﬁq,f(Fo)) (2.25)
of capacity boundaries.

PrOOF. Take the mapping f: (5;,;77/7;,1?0) — (5p)q,ﬁq’f(F0)) of Theorem 2.19.
Then the restriction f | HE (D) is the Lipschitz mapping

f|Hﬁ,p(D'): (Hf(:p(Dl)’ﬁ;jFo) - (qu»ﬁq,f(Fo))' (2.26)

To prove the claim, it remains to verify that the image of this mapping lies in

(Hpq(D), ﬁq7.f(Fo))'
Assume on the contrary that there exists a boundary element he (Hy (D), p )

such that f(h) =y € (D, pg,¢(r,))- Then there exists a sequence {x;} € h, where
h € (lN)’p’p,ﬁ;FO), such that f(x;) — y in the metric space (D, q,pq,r(7,)). By
Proposition 2.10, the sequence f(x;) converges to y € D in the Euclidean metric as
well. Therefore, f~1(f(z;)) = x; converges to ¢(y) € D' in R™. Proposition 2.17
shows that every sequence {2} € h converges to ¢(y) € D’ in the Euclidean metric,
and so in the metric space (D), ,,, p,’r, ) as well, see Proposition 2.10, which obviously
contradicts the initial assumption. Theorem is proved.

2.4. Support of a boundary element. In this section, we fix an arbitrary
number p satisfyingn —1 <p<nforn>3and 1 <p<2forn=2.

DEFINITION 2.23. Given a domain D’ in R™, the support S, of a boundary
element h € Hy (D') is the set of all accumulation points in the topology of the
extended space R” of all fundamental sequences with respect to the capacity metric
lying in the equivalence class defining h.

REMARK 2.24. Proposition 2.17 and Definition 2.21 show that no accumulation
point of a sequence in h € H},(D') fundamental with respect to the capacity metric
belongs to D’. Therefore,

Sp € OD" U {oo}.
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PROPOSITION 2.25. If D' is a domain in R™, then
(1) the support Sy, of a boundary element h € Hy (D) coincides with the inter-
B,(he)N D'

section (.~

Sn= () By(h,e) N D, (2.27)
e>0

where the closure is taken in the topology of the extended space R™;
(2) if p g, (hi,he) =0 for two boundary elements hi,hy € Hy ,(D'), then
Shy = Sh, -

PROOF. Split the proof into three stages.
(1) Fix a boundary element h € Hy’,(D"). Let us verify the inclusion

Sp C () Bolh.e) N D, (2.28)
e>0

By the definition of a boundary element h € HY (D'), there exists a fundamental
sequence {y;} € h with respect to the (w, p)-metric function with py; . (v, h) — 0
as | — oo. For the sequence {y; € Dj, )} and its subsequences only the behavior
described in Proposition 2.17 is possible:

(a) yy >y € D'\ Fyory —y€ Fyasl— oo in the Euclidean metric and the
limit y is unique, meaning independent of the choice of sequence in h;

(b) limy 00 d(y1,0) < 0o and then dist(y;, D’) — 0 as [ — oo;

() limy—y00 d(y1,0) = 0o and lim, ,__d(y;,0) < oo, and then

lim dist(y;,,0D") =0
l—o00

for every subsequence {y;, € D'} bounded in R™;
(d) if d(y;,0) — oo, then co € Sp,.
Definition 2.21 excludes case (a). In cases (b)—(d) we have

Sp C 8D’ U {0},

In these cases, for every € > 0 the elements of the sequence {y; € D'} starting with
some index [y lie in B,(h,e) N D’ for all [ > . Thus the accumulation points of
{y; € D'} lie in the closure B,(h,) N D’ in the topology of the extended space R™.
Since we choose the fundamental sequence {y;} € h for the boundary element h
arbitrarily, it follows that S, C B,(h,e) N D’. The inclusion (2.28) is established
as € > 0 is arbitrary.

(2) In the case py r; (h1, h2) = 0 the equivalence classes of fundamental sequences
for the boundary elements hy and hs coincide. Hence, we conclude that the supports
of h1 and hy coincide.

(3) To justify (2.27), it remains to verify the reverse inclusion to (2.28):

() Bo(h,e) "D C Sh. (2.29)
e>0

Indeed, if x € (.o By(h,g) N D', then for each [ € N there exists x; € B,(h,1/1)ND’
such that simultaneously p% r (71,h) — 0 as | — oo and (using Proposition 2.17
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and extracting a subsequence if necessary) x; — x in the topology of the extended
space R™. Therefore, the fundamental sequence {z;} with respect to the capacity
metric determines a boundary element, which coincides with h. Thus, =z € Sy
and (2.29) is established. The inclusions (2.28) and (2.29) are equivalent to (2.27).
Proposition is proved.

PROPOSITION 2.26. The support Sy, of each boundary element h € H (D') is
connected in the topology of the space R™.

PROOF. Assume on the contrary that for some boundary element h € Hy ,(D")
there are two disjoint open sets V,W C R™ with S, € V. UW, while S, NV # @&
and S, NW # @. Take two points z € S, NV and y € S, N W and fundamental
sequences {z,,},{ym} € h with respect to the capacity metric such that x,, — z
and y,, — y as m — oo. There is a curve v, C D’ with endpoints x,, and y,,
such that cap((Ym, Fo); Ly (D’;w)) — 0 as m — oo. For all big enough m, starting
with some there exists a point z,, € 7, satisfying z,, ¢ V U W. We emphasize
that the sequence {z,,}, fundamental with respect to the capacity metric, belongs
to the equivalence class h. Extracting a subsequence, we may assume that z,, — zg,
where 29 € D"\ (V UW); here the closure is taken in the topology of the extended
space R™. Since zy ¢ Sj,, we arrive at a contradiction with the definition of the
support of a boundary element. Proposition is proved.

PROPOSITION 2.27. Consider the support S, of h€ Hy;' (D'). For every sequence
{z;} € h we have the convergence x,, — Sp as m — oo in the topology of the
extended space R™.

PROOF. Proposition 2.25 excludes the possibility that S, N D’ # &.

Suppose that Sj, is bounded in R” and S, C 0D’. Suppose that there exists
a subsequence {x,,, € D'}, for k € N, of some fundamental sequence {x,,} € h
such that d(x,,,Sr) = a > 0 for all k € N, where « is some constant. Then the
sequence {x,,} has an accumulation point at some positive distance from Sj,. This
point must lie in the support of the boundary element h, which contradicts the
connectedness of Sj,.

However, if the support §j, is unbounded and the sequence x,,, does not converge
to S;, in the topology of the extended space R™ then lim,, .. ®, < oo. Conse-
quently, there exists a finite accumulation point at some positive distance from Sj,.
As in the previous case, we arrive at a contradiction with the connectedness of Sy,.
Proposition is proved.

PROPOSITION 2.28 (criterion for singleton support). Given a boundary element
h € Hy ,(D') of the domain D', the support S, amounts to a single point if and
only if for all fundamental sequences {x;,},{ym} € h with respect to the capacity
metric there exist curves TpUm, for m € N, with diam (T, ¥m) — 0 as m — oco.

PROOF. Necessity. Suppose that S, = {xo}. Assume on the contrary that there
exist fundamental sequences {z,,} and {y.,} of class h with respect to the capacity
metric converging to xg, curves v,, = Ty Ym With

cap’? ((Ym, Fo); Ly(Dw)) -0 as m— o0, (2.30)
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and a number a > 0 such that
diam~,, > a > 4d(zm,ym) forall meN

because x,, — zg and ¥, — o as m — oo. Then, for each m € N, there exists
a point z,, € 7v,, such that, on the one hand,

AT, 2m) > o

o
1 A(Ymm, 2m) > 1 (2.31)

and on the other hand, (2.7) and (2.30) yield py; r; (2m,Zm) — 0 as m — oo. Hence,
we infer that the sequence {z,,}, for m € N, is fundamental with respect to the
capacity metric and belongs to the boundary element h. On the other hand, there
exists a subsequence {z,}, for i € N, converging to some point zp; moreover,
(2.31) implies that zp # xo. Since zy € S by the definition of support, we arrive
at a contradiction with its being a singleton.

Sufficiency. By contradiction, suppose that there are two sequences {z,,} and
{ym} € h fundamental with respect to the capacity metric and converging to distinct
points z and y of the support Sy. By the hypotheses, there exist curves v, = T Um
such that diam ~y,,, — 0 as m — oo. In particular, diam v, > d(zpm, ym) = d(x,y) >0
as m — oo, which, evidently, contradicts the property diam~,, — 0 as m — oo
inferred from the assumption.

Proposition is proved.

2.5. Continuous extension of mappings of class Q, ,(D’,w;D) to the
Euclidean boundary. In this section, we fix arbitrary numbers g and p satisfying
n—1l<g<p<nforn>3and1<g<p<2forn=2.

In what follows, we define domains p-connected at boundary points.

DEFINITION 2.29 (connectedness properties [16], [18]). (1) A domain D’ is called
locally connected at € D' if for every neighborhood U of x there is a neighborhood
V C U of this point such that V' N D’ is connected.

(2) An unbounded domain D’ is called locally connected at oo if for every neigh-
borhood U of oo there is a neighborhood V' C U of this point such that V N D’ is
connected.

(3) A domain D’ is called locally p-connected at x € dD’, where p € N, if for
every neighborhood U of z there is a neighborhood V' C U of this point such that
V' N D’ consists of u connected components, each of which is locally connected at x.
Observe that a domain D’ locally 1-connected at x € OD' is precisely the domain D’
locally connected at x € D'.

(4) An unbounded domain D’ is called locally p-connected at oo, where 1 € N,
if for every neighborhood U of oo there is a neighborhood V' C U of this point such
that V' N D’ consists of u connected components, each of which is locally connected
at co. In the case = 1 we obtain the domain D’ locally connected at occ.

(5) A domain D’ is called finitely connected at x € D’ or x = oo whenever it
is p-connected at x for some p € N.

The following example demonstrates the appearance of domains which are mul-
tiply connected at boundary points.
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EXAMPLE 2.30 (slit ball). Let D’ = B(0,1) \ ({0} x [0,1)"71). It is not difficult
to see that D’ is locally 2-connected at each point x € {0} x (0,1)""1. Ifw =1
is the trivial weight and p = n, then condition (2.37) is met for every point x €

{0} x(0,1)"~ !, and z lies in the support of two distinct boundary elements h ,h_ €
H,,(D").

Let us present the methods of [16, Theorem 1.10] for describing connectedness
alternative to Definition 2.29 and useful below.

PROPOSITION 2.31. Given a domain D' € R™ and its boundary point x € D',
the following statements are equivalent:

(1) D’ is locally p-connected at x;

(2) for every neighborhood U of x there exists a neighborhood V- C U of this point
such that VN D' consists of u connected components, the boundary of each of which
contains x;

(3) w is the smallest integer for which the following condition holds: given p+ 1
sequences {x1 p}, ..., {xus1,1} of points in D' converging to x, if V is some neigh-
borhood of x, then there exists a connected component of VN D’ including subse-
quences of two distinct sequences.

To obtain similar properties at oo, we should use the stereographic projection to
map the domain D’ onto the unit sphere in R"*! with the point oo going into the
north pole, on which the property of local p-connectedness at oo can be stated by
analogy with the above.

EXAMPLE 2.32. On the plane R? take the complement
B(0,4) \ {z = (z1,22) € B(0,2) | #1 - 25 = 0}

as the domain D’. Fix two numbers o« > —2 and p € (1,2] with p—2 > «, as well as
a continuum Fy C B(0,4)\ B(0,2) with nonempty interior. As the weight function
o: B(0,4) — (0,00) take

D53 o(z) = {w(m) ifx e ?(O,Z)OD’ and x1 - x2 > 0,
2¢ otherwise,
where w is the weight function of example 2.7.

The domain D’ is obviously 4-connected at 0: each intersection B(0,7) N D',
for r € (0,2), consists of 4 connected components. Denote them by V; and V3 if
x1 - w3 > 0 and by V5 and Vj otherwise.

It is natural to define the weighted capacity of the condenser & = ({0}, Fy) C D’
in the space L;(D’ ;o) with respect to the connected component V; as

cap(({0}, Fo); Ly (Vi, D'sw)) = inf [lu | Ly, (D";w)|", (2.32)

where the infimum is over all functions u € Lipy,.(D') N L}(D’;w) such that
u|(o,rynv; = 1 for some 7 > 0, depending on u, and u|p, = 0.

On account of Example 2.7, the capacity of the point 0 with respect to V7 and V3
is positive, and with respect to V5 and Vj it vanishes.
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This example motivates the following definition.

DEFINITION 2.33. Suppose that a domain D’ is locally u-connected at a bound-
ary point € 9D’ and denote by Vi, Va,...,V, the distinct connected compo-
nents of the intersection B(z,r) N D', where r € (0,79) for sufficiently small
ro > 0, whose boundaries contain z. Define the weighted capacity of the con-
denser € = ({x},Fy) C D’ in the space L}(D’;w) with respect to the connected
component V; as

cap(({z}, Fo); Ly (Vi, D"sw)) = inf [|u | L,(D";w)]”, (2.33)

where the infimum is over all functions u € Lipj.(D’) N Lj(D';w) such that
u|B(z,rnv, = 1 for some r € (0,7¢), depending on u, and u|p, = 0.
If 4 = 1, then instead of notation (2.33) we will simply write

cap(({z}, Fo); L, (D';w)).

In the case z = oo, the lower bound in (2.33) is taken over all functions u €
Lipy,.(D") N L, (D';w) such that u|gm\ p(ery)ny; = 1 for some r > 0, depending
on u, and u|p, = 0, and denoted by

Cap(({oo}, Fy); L;(VZ—, D’; w)) (2.34)

A boundary point z € 9D’ is called a point of zero capacity with respect to the
connected component V; whenever

cap(({z}, Fy); Ly, (V;, D';w)) = 0. (2.35)
If condition (2.35) is independent of the choice of continuum Fy, we simply write
cap(({2}); Ly (V;, D'sw)) = 0. (2.36)

Proposition 2.28 yields the following corollary.

COROLLARY 2.34. The following claims hold.
(1) If the domain D' is locally connected at x¢ and the condition

cap(({zo}, Fo); Ly(D';w)) =0 (2.37)

holds at xg, then the boundary elements hy and hy € H‘p‘jp(D’) of the domain D’
whose supports Sp, and Sy, meet at xg cannot be distinct: hy = ha.

(2) Suppose that the domain D’ is locally p-connected at xq, and that at x
condition (2.35)

cap(({zo}, Fo); Ly(V;, D'sw)) =0

holds for all i = 1,...,u. Then the boundary elements hi,ho,... hy, hyy1 €
Hy (D' of D" whose supports Sp,,Shy, - -, Sh,,Sh,,, share the point xo cannot be
distinct: at least two of them coincide.

pt1
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PROOF. (1) Suppose that the supports S, and Sy, of two boundary elements
hi,hy € H,‘j,p(D’) of D’ meet at xg. Take two arbitrary sequences {xp} € hy
and {yi} € ho fundamental with respect to the metric Py such that z, — g and
yr — xg as k — oo. Since D’ is locally connected at xg, we can connect xj and y
with curves v, = ZTgyg such that diam~, — 0 as k — oo. Since D’ is locally
connected at x, condition (2.37) also yields

Cap((%,Fo);Lzl)(D/;w)) —0 as k— oo.

Hence, we see that the sequence {x} and {yx} are equivalent, which implies hy = hs.

(2) Assume that the supports Sp,,Shy, ..., Sp,,, of some boundary elements
hi,ha, ... k1 € HY(D'), for p € N, of D" meet at xo. Take an arbitrary funda-
mental sequence {x;;} € h; with respect to the metric Py g, such that z;, — o
as k — oo, for i = 1,...,u+ 1. By claim (3) of Proposition 2.31, since D’ is
locally p-connected at xg, there exists a connected component V;,, for 1 < ig < po,
of the intersection B(xo, )N D’ containing subsequences, for instance, x1; and zy,,
for j € N, of two distinct sequences x1; and xo, for k& € N. Since the connected
component V;, is locally connected at z¢ and

cap(({zo}, Fo); Ly(Viy, D';0)) = 0,
the hypotheses of claim 1 hold, which yields hy = hy. Corollary is proved.

DEFINITION 2.35 (associated support and connected components). Consider
some boundary element h € H (D) whose support Sj, contains x € 0D’ such
that the domain D’ is p-connected at x, while {y,,} is a fundamental sequence
with respect to the metric pfj  belonging to the boundary element  and con-
verging to z in the topology of R”. Since D’ is p-connected at x, there exists at
least one connected component V; of the intersection B(z,r) N D', where r > 0 is
a sufficiently small number, which contains some subsequence {ym,, }, for £ € N. In
this case, say that the support Sp of the boundary element h and the connected
component V; are associated with each other at x € Sp,.

PROPOSITION 2.36. The following claims hold.

(1) If D’ is a locally p-connected domain at x, the support Sy, of some boundary
element h € Hy ,(D") contains x € D' and is associated with the connected compo-
nent V; at x, while the weighted capacity of x with respect to the connected component
V; vanishes,

cap(({z}, Fo); L, (V;, D';w)) = 0,
then, for every sequence {x,, € V; N D'} of points, d(xy,,x) — 0 implies that
{zm} € h and N
Pa.t ko) (f(@m), f(R)) =0 as m — oo. (2.38)

(2) If D' is a locally p-connected domain at oo, the support Sy, of some boundary

element h € Hy (D') contains oo and is associated with the connected component V;

at oo, while the weighted capacity of the point oo with respect to some connected
component V; vanishes,

cap(({oo}, Fo); Ly(V;, D';w)) =0,
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then, for every sequence {x,, € V; N D'} of points, d(x,,,0) — oo implies that
{xm} €h and (2.38) holds.

PRrROOF. (1) Choose z € D’ and a sequence {z,,€ V; N D'} such that d(2,,z) — 0
as m — oo. Since V;N D’ is locally connected at z, see claim (2) of Proposition 2.31,
we infer the existence of curves Z,,Z,, 1, with endpoints z,, and x4k, for k > 1,
such that diam T, Tk — 0 as m, k — co. Since cap(({z}, Fo); L, (Vi, D';w)) = 0,
Definition 2.33 yields p& p (Zm, Tm+x) — 0 as m,k — oo. Thus, on the one hand
the sequence {z,,} is fundamental with respect to the metric py r , and on the
other, d(z,,,z) — 0 as m — oc.

Now take an arbitrary sequence {y,, € V; N D'}, for m € N, fundamental with
respect to the metric pf) . , belonging to some boundary element h, and converging =
in the Euclidean metric. Verify that every fundamental sequence {x,,} with respect
to the metric pf) p satisfies

Pp. o (@ms Ym) =0 as m — . (2.39)

As in the previous argument, we conclude that Py (Tm,Ym) — 0 as m — oc.

Thus, property (2.39) and property {z,,} € h together with it are justified.
Applying (2.9), we deduce (2.38): indeed, the sequences {f(z,)} and {f(ym)}

are equivalent with respect to the capacity metric function p, f(g,) in the domain D.

Hence, {f(zn)} € f(h) and pg ¢(py) (f(2m), f(R)) — 0 as m — oc.
(2) The second claim can be justified similarly.

Proposition is proved.

THEOREM 2.37 (boundary behavior of homeomorphisms). Consider a homeo-
morphism f: D" — D of class Qp 4(D’,w; D), wheren —1 < g < p<mn forn>3
and 1 < g < p <2 forn=2,as well as a weight function w € Lq 1oc(D’).

Suppose that the domain D’

(1) is locally p-connected at some boundary point y € 0D,

(2) the support Sy, of some boundary element h € Hy' (D) contains y,

(3) we have cap(({y}, Fo); Ly (Vi, D';w)) = 0, where V; is the connected compo-
nent associated with the support Sp at y.

Then the boundary behavior of the mapping f: D' — D at x € D' is

f(z) = S5

oy 45 2, zeVinD,

in the topology of the extended space R™.

PROOF. Take a sequence {y,, € V; N D’} converging to y € 9D’ as m — oc.
Proposition 2.36 shows that p;f(FO)(f(ym),f(h)) — 0 as m — oco. In addition,
by Proposition 2.27 the sequence {f(y,,)} converges to the support ‘Sf(h) in the
topology of the extended space R™. The proof of Theorem 2.37 is complete.

COROLLARY 2.38 (continuous extension to boundary points). Consider a home-
omorphism f: D' — D of class Qp 4(D',w; D), wheren —1<g<p<n forn>3
and 1 < ¢ <p <2 forn=2, as well as a weight function w € L1 1o0(D’).

Suppose also that

(1) the domain D’ is locally p-connected at some boundary point y € 0D’
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(2) the support Sy of a boundary element h € Hy (D') contains y;
(3) we have cap(({y}, Fo); Ly (Vi, D';w)) = 0, where V; is the connected compo-
nent associated with the support Sy at y; B
(4) the support Sty of the boundary element f(h) amounts to a singleton:
SfN(h) = {z} € OD.
Then the mapping f: D' — D extends by continuity to y € 0D’ and
li =2z
z=Y, zlorer%/iﬁD’ f(Z) .
PRrROOF. Take a sequence {y,, € V; N D’} converging to y € 9D’ as m — oc.
Theorem 2.37 shows that

f(z) = S+ as z—y, z€V,nD
f(h)

in the topology of the extended space R™. Since by assumption the support Sf(h,)

of the boundary element f(h) is a singleton, S oy = {z} € 9D, the above implies
that the sequence {f(ym)} converges to z € dD. The proof of Corollary 2.38 is
complete.

Corollary 2.38 yields the next one.

COROLLARY 2.39 (continuous extension to the Euclidean boundary). Consider
a homeomorphism f: D" — D of class Qp q(D’,w; D), wheren —1 < g < p < n for
n=23andl<qg<p<2forn=2,as well as a weight function w € Lq 10c(D’).
The following claims hold:

(1) if D’ is locally connected at y € dD' and cap(({y}, Fo); Ly (D';w)) = 0, then
y lies in the support Sy, of some boundary element h € Hy (D');

(2) of the support Sz, of the boundary element f(h) is a singleton, Sy, =
{z} € 0D, then the mapping f: D' — D extends by continuity to y € Sy of the
boundary element h € Hy (D'), and

lim  f(z)=a for every point y € Sp. (2.40)
z—y, z€D’

ProoOF. All hypotheses of Proposition 2.36 are obviously met, and so y lies in
some boundary element h € H";fp(D’ ). The argument above and the hypotheses of
the corollary ensure the fulfillment of the conditions of Corollary 2.38 for p = 1. It
shows that the mapping f: D’ — D extends by continuity to y € Sj,, and the limit
equals (2.40). Corollary is proved.

EXAMPLE 2.40 (domain with nontrivial boundary elements). Consider D =
(0,1)2\ Upen I C R?, where I}, = [1/2,1) x {1/2"} determine the cuts. It is
not difficult to see that I =[1/2,1) x {0} is the support of a boundary element for
p=2and w=1.

EXAMPLE 2.41. For the domain from Example 2.18, the edge of the ridge
E= {x = (.’E17$275E3)2 Tl = T2 :0, 0 < T3 g OO}

is indeed the support of a boundary element.
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REMARK 2.42. For the weight w and the domain D’ such that the collection
H,‘;’,p(D’ ) of boundary elements is independent of the choice of the continuum Fjp,
the support S of an arbitrary boundary element h € H;fp(D’ ) is independent of
the choice of Fj, and consequently, all statements of this section are absolute.

3. Moduli of curve families and homeomorphisms of class Q, , (D', w
§ P P,q )

Consider a domain D’ in R™, where n > 2, a weight function w: D" — (0, 00) of
class L1 joc, and a family I' of (continuous) curves or paths v: [a,b] — D’.

Recall that, given a curve family I" in D’ and a real number p > 1, the weighted
p-modulus of T' is defined as

mod, (T') = inf [ pP(2)w(x)dz,
P D’

where the infimum is over all nonnegative Borel functions p: D’ — [0, co] with

/pds> 1 (3.1)
.

for all (locally) rectifiable curves v € T'. In the case of trivial weight w = 1 we write
mod, (') instead of mod;, (T"). Recall that the integral in (3.1) for a rectifiable curve

(
v: [a,b] — D' is defined as
UCORS
[oas= [ ooy
vy 0

where I(7) is the length of v: [a,b] — D’, while 7: [0,{(y)] — D’ is its natural
parametrization, that is, the unique continuous mapping with v = v o §,, where
Sy : [a,b] — [0,1(v)] is the length function, defined at ¢ € [a,b] as S,(t) = 1(7][a,g)-
If v is only a locally rectifiable curve, then we put

/pds:sup/ pds
il v

with the least upper bound taken over all rectifiable subcurves v': [a’, '] — D’ of 7,
where [a', '] C (a,b) and 7' = 4 7.

The functions p satisfying (3.1) are called admissible functions, or metrics, for
the family T'.

An equivalent description of the mappings of classes Q,, ,(D’,w; D) is obtained
in [33] in the modular language: to this end, we should replace capacity in the
definition of Q, 4(D’,w; D) by the modulus of the curve family whose endpoints lie
on the plates of the condenser.

REMARK 3.1. It is observed in [32, Section 4.4] that in the case ¢ = p = n
(n—1 < ¢ = p < n) the class of homeomorphisms Q,, ,(D’,w; D) (Qp (D', w; D)) is
included into the class of w-homeomorphisms ((p, w)-homeomorphisms)* [21] ([59]),
defined via a controlled variation of the modulus of the curve family.

4Note that [21] ([59]) used the term Q-homeomorphism ((p,Q)-homeomorphism), where the
letter @ stands for the weight function, while in this article the same letter in the term
“Qyp,q(D’,w; D)-homeomorphism” is the first letter of the word “quasiconformal”.
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We will verify that, actually, the class Q,, ,(D’,w; D) coincides with the family
of w-homeomorphisms of [21, §4.1]. Consider two domains D’ and D in R", where
n > 2, and a function w: D’ — [1,00) of class Ly joc. Recall that a homeomorphism
f: D" — D is called an w-homeomorphism whenever

mod,, (fT) < / w(x) - p™(x)dx (3.2)
for each family T of paths in D’ and every admissible function p for I'. By [33, The-
orem 19|, the homeomorphisms satisfying (3.2) coincide with the homeomorphisms
f: D" — D of class Q, (D', w; D).

Some properties of the homeomorphisms of class 9, ,(D’, w) were studied in [27]
(for n —1 < ¢ < p = n, the value ¥, ,(U) instead of ¥, (U \ F), and w = 1),
[21], [60]-[64] (all for ¢ = p = n and w = @), [65], [66] (for 1 < ¢ = p < n and
w = @), and many others. In all articles mentioned except [27] the distortion of
the geometry of condensers is stated in the language of moduli of curve families,
which in a series of cases is a more restrictive characteristic than capacity as far as
meaningful applications are concerned.

§ 4. Geometry the boundary

In this section, we consider geometric concepts and the main results of other
approaches to the boundary behavior problem.

DEFINITION 4.1. The boundary 9D’ of a domain D’ is called (p,w)-weakly flat
at xg € D', where p > 1, if for every neighborhood U of xy and every number
A > 0, there is a neighborhood V C U of x, such that for all continua® F, and F;
in D', intersecting OU and OV, the capacity of the condenser & = (F}, Fyy) satisfies
cap(&; L,(D',w)) = A. The boundary 9D’ is called (p,w)-weakly flat whenever it is
(p,w)-weakly flat at each of its points.

A point zg € 9D’ is called (p,w)-strongly accessible, where p > 1, if for every
neighborhood U of xg, there exist a neighborhood V' C U of this point, a compact
set Fy C D’, and a number § > 0, such that for all continua F} in D’ intersecting
OU and 9V the capacity of the condenser £ = (F1, Fy) is bounded from below:
cap(&; L,(D',w)) = 6. The boundary 9D’ is called (p,w)-strongly accessible when-
ever each of its points is (p,w)-strongly accessible.

In the unweighted case for p = n the properties of the boundary to be weakly
flat and strongly accessible are introduced in [21, § 3.8] in terms of moduli of curve
families. These conditions generalize properties P1 and P2 of [18, §17] and the
properties of the boundary to be quasiconformally flat and quasiconformally acces-
sible [16]. The case of arbitrary p > n — 1 is considered, for instance, in [67].

PROPOSITION 4.2. Suppose that 1 < p < oo. If a domain D’ C R™, where n > 2,
has (p,w)-weakly flat boundary and w € Ly 10c(D’) then

(1) the boundary D' is (p,w)-strongly accessible;

(2) D' is locally connected at the boundary points.

5In this definition the interior of Fy can be empty.
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PrROOF. The proof follows the scheme of the proof of Proposition 3.1 and
Lemma 3.15 of [21] with obvious adjustments.

REMARK 4.3. Since in the unweighted case the modulus and capacity coincide
[68]-[70], the properties of the boundary to be weakly flat and strongly accessible
of [21] precisely coincide with the case of trivial weight and p = n in Definition 4.1
of (n,1)-weakly flat and (n, 1)-strongly accessible boundary.

Moreover, a point xg € 9D’ is (n, 1)-strongly accessible whenever it is quasicon-
formally accessible [16, Definition 1.7]: given a neighborhood U of z, there are
a continuum Fy C D" and a number § > 0 such that cap((Fy, Fo); L (D', w)) > &
for all connected sets Fy in D’ satisfying xo € F; and F; N OU # @.

Note the following connection between the singleton support of a boundary ele-
ment and the above conditions on the geometry of the boundary.

PROPOSITION 4.4. Given a weight w and a domain D' satisfying Remark 2.42,
take a boundary element h € H (D') and a point xo € Sy, which is (p,w)-strongly
accessible in the sense of Definition 4.1. Then S, = {zo}.

PROOF. Assume on the contrary that zg is (p,w)-strongly accessible and there
exists a point yo € Sp with d(zg,y9) > a > 0. By the definition of the sup-
port of a boundary element, there exist fundamental sequences {x., € D’p’p} and
{ym € D}, ,} with respect to the metric p% r such that x,,, — xo and y,, — yo in the
topology of the extended Euclidean space. Fix a neighborhood V' C U = B(xo, «/3)
of zg, a compact set Fy C D', and a number § > 0 according to Definition 4.1. Find
a number mg such that z,, € V and y,, € B(yo,a/3) for all m > my. It is
obvious that for m > mg every curve T,,7,, crosses dV and OU, and so, since
the image of the curve is a continuum, the definition of strong accessibility yields
cap((@mgims Fo); Ly(D',w)) > 6.

By the definition of the capacity metric (2.7), among the mentioned continua
with endpoints z,,, € V and y,,, € B(yo, a/3) there is vy, = Ty such that

) 1
B tin) 2 cap(m B Ly(D's)) = > 6(1= 50 ). (@)

On the other hand, xo, yo € Sp implies that the sequences {x,, € D’p’p} and
{ym € D, ,} are equivalent. Therefore, pi* 1. (Zm,ym) — 0, which contradicts (4.1).
Proposition is proved.

COROLLARY 4.5 OF THEOREM 2.19 ([25]; [26, Ch. 5, Theorem 1.3|; [17, The-
orem 10.4]). Consider two domains D and D' in R™, where n > 2. Every quasi-
conformal mapping f: D' — D admits a homeomorphic extension to the capacity
boundary

f'HP,n(D’): (Hp,n(D/)aﬁn,Fo) — (Hp,n(D)aﬁn,f(Fg)>-

PROOF. By Definition 1.4, the quasiconformal mapping belongs to the class
Qnn(D’,1; D). The claim follows directly from Theorem 2.22.

COROLLARY 4.6 OF THEOREM 2.38. Consider two domains D and D’ in R™,
where n > 2, and a homeomorphism f: D' — D satisfying one of the following
conditions:



80 S.K. VODOPYANOV, A.O. MOLCHANOVA

(1) f is quasiconformal, D" is locally connected on the boundary, and OD is
quasiconformally accessible [16, Theorem 2.4].

(2) f € Qun(D',w; D), in particular, f is an w-homeomorphism in the sense of
Remark 3.1, for® w € BMO(D’), D' is locally connected on the boundary, and 0D
is (n, 1)-strongly accessible 21, Lemma 5.3].

Then f admits a continuous extension f: D' — D to the boundary.

PRrROOF. Verify that the hypotheses of Corollary 2.39 hold in both cases, and so
f: D' — D extends by continuity to the closure D’.

In case (1) for every point x € D’ we have cap(({z}, Fp); LL(D')) = 0. Since
every quasiconformal mapping is of class 9, ,(D’,1; D), it remains to verify that

if x € Sy and h € H, ,,(D"), then the support Sf(h) of the boundary element f(h)

is a singleton, where f is the extension of f of Theorem 2.19. The latter follows
from the quasiconformal accessibility of 0D, Proposition 4.4, and Remark 4.3. The
possibility of extending the mapping f by continuity to 9D’ follows from Corol-
lary 2.39.

In case (2) observe first of all that Example 2.9 yields cap(({z}, Fo); L, (D";w)) =0
for every boundary point x € 9D’, and this property is local. Hence, it is inde-
pendent of the continuum Fy. Moreover, by Remark 3.1, the w-homeomorphism f
belongs to Q,, »,(D’,w; D). As above, Proposition 4.4 shows that the support Sf(h)

of the boundary element f(h) is a singleton, and Corollary 2.39 guarantees the
required result.
Corollary is proved.

REMARK 4.7. In the planar case, n = 2, the capacity boundary H, » with respect
to the Sobolev class L3 is homeomorphic to the boundary of prime ends, see [71],
for instance. In the space R", where n > 3, it is known that for the domains qua-
siconformally equivalent to a domain with locally quasiconformal boundary, called
regular domains, the completion in the prime ends topology is equivalent to the
completion in the modular [17] and capacity [26] metrics.

EXAMPLE 4.8. Take the domain D’ = [0,1]*> C R3, the weight w(y) = y} with
£ > —3, and the ridge domain from Example 2.18:

D = {z = (v1,%2,73): |z2| < 2%, 0 < x1,73 < 1} C R, o> 2.
Consider the mapping f whose inverse ¢(z) = f~1(x) is defined as

T
o(x) = (2228 | : D — D',
T3

It is not difficult to verify that
|Dp(2)] ~ max{1l,axez$ "  2¢} ~ 1 and detJ(z, f) =z,
K;”;(x, ©) ~ x;(5+a)/3 € Loo(D) for B+ a<0.

Gﬂat is, w is the restriction to D’ of some function w € BMO(U), where U is an open set with
UDD'.
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Then Theorem 1.6 shows that f is of class Q3 3(D’,w; D) and Theorem 2.19 can be
applied to it: there exists a continuous extension f: (5;73, P5 ) = (lN)p,g, 03,f(Fo))-

As far as the authors are aware, this example cannot be handled in the frame-
work of other articles concerning boundary correspondence. For instance, [13], [22]
require that the boundary of the domain D be (n, 1)-strongly accessible. In the case
of D under consideration, the ridge is neither (n, 1)-weakly flat nor (n, 1)-strongly
accessible for @ > 2. Indeed, [16, Example 5.5] shows that the points on the ridge
are quasiconformally accessible if and only if 1 < o < 2 and are not quasiconfor-
mally flat for any o > 1. In addition, it is not difficult to verify that necessary
conditions for the ridge to be quasiconformally flat and quasiconformally accessible
are also necessary for the ridge to be (n, 1)-weakly flat and (n, 1)-strongly accessible,
see [16, Theorems 5.3, 5.4].

§ 5. Applications

In this section, we apply the results on boundary behavior to the homeomor-
phisms of certain classes Q,, 4(D’,w; D) considered in the examples of this article.

5.1. The homeomorphism of Example 1.13. The following mapping is con-
sidered in [31].

For n — 1 < s < oo, take a homeomorphism f: D’ — D of open domains D’,
D C R", where n > 2, such that

(1) F €Wy oe(D):

(2) the mapping f has finite distortion;

(3) the outer distortion function

|Df(y)] .
D5y KN (g f) = { desDf(pre DI A0
0 if det Df(y) =0

(5.1)

belongs to L, (D), where o0 = (n — 1)p and p = s/(s — (n — 1)).

Then by [28, Theorem 4] the inverse homeomorphism ¢ = f~!: D — D’ has the
following properties:

(4) ¢ € W} 1,o(D), p = 5/(s — (n— 1));

(5) ¢ has finite distortion.

The original homeomorphism f: D’ — D has the following properties:

(6) it is of class Q, ,(D’,w; D) with the constant K, =1 [31, Corollary 26| and
the weight function w € Lq 1o.(D’) defined as

ladj D f(y)[?

w(y) =  |det Df(y)[P~*
1 otherwise,

if ye D'\ 7/,
ity € D7\ (5.2)

see 31, formula (37)], where Z' = {y € D": Df(y) = 0};
(7) if p > n — 1 (which corresponds to s < n+ 1/(n —2)), then the composition
operator
£ L,(D) (\Lipyuo(D) — LL,(D'30)

is bounded, where p’ = p/(p — (n — 1)) and O(y) = w= =D/ (P=(r=1) (),
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PROPOSITION 5.1. The results of this article concerning the boundary behavior
of homeomorphisms, namely, Theorems 2.19 and 2.37, Corollaries 2.38 and 2.39,
are applicable to the mapping f of Subsection 5.1.

Explicitly, forn < s <n+1/(n—2) the homeomorphism [ introduced above has
the following properties:

(1) the mapping f induces a Lipschitz mapping f: (D), ,, 05’ r,) = (Dpps Pp.f(Fo))
of metric spaces: py ;(ry) (f(2), f(Y) < Py p, (T y) for all points x,y € Dpp;

(2) the mapping f induces a Lipschitz mapping f ( pp,pp SR (Dp’p,p%f(po))
of “completed” metric spaces:

to X € (Dpp,pp F,) associate f(X) e (lND 0> Pa,f(Fy))» which contains the funda-
mental sequence {f(x;)}, where {x;} € X:

pp f(Fo) (f(X)7 f(Y)) < ﬁ;FO (X’ Y)

for X)Y € Dp P

(3) the restriction f [gs (pry: (Hp (D), ppg,) = (Hpp(D), Pp,p(ry)) is a Lips-
chitz mapping of capacity boundaries;

(4) if the domain D’ is locally p-connected at a boundary point y € 0D’ the
support Sy, of the boundary element h € Hy',(D') contains y, and

cap(({y}, Fo): Ly (Vi, D'sw)) =0,
where V; is the connected component associated with Sy, at y, then f(z) — Sf(h) as
2z =y with z € V; N D’ in the topology of the extended space R™;

(5) if the domain D’ is locally p-connected at a boundary point y € 0D’ the
support Sy, of the boundary element h € H[‘;fp(D’) contains y and

cap(({y}, Fo); L;(V;, D';w)) =0,
where V; is the connected component associated with Sy, at y and Sf(h) ={z} € 9D,
then the mapping f: D' — D extends by continuity to y € 0D’ and

I =
z—)y,zlglViﬁD’ f(Z) 5

(6) if the domain D' is locally connected at y € OD' and

cap(({y}, Fo); L,(D";w)) =0,
then y lies in the support S, of some boundary element h € Hy (D');
(7) of Sf(h) = {xz} € 9D, then the mapping f: D' — D extends by continuity to
y € S of the boundary element h € Hy (D') and

lim  f(z)==a for every points y € S.
z—y,z€D’

Let us compare the above example with the mapping of [72], which considers
a W} ,,.-homeomorphism f: D' — D with finite distortion, whose outer distortion
function
[Df ()l
Kpn(y, f) = 9 [det Df(y)[t/n
0 if det Df(y) =

if det Df(y) # 0 53)

belongs to L,—1)n,10c(D’).
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Verify that this mapping is a particular case for s = n of the scale mapping
considered above: f € W, (D) with the distortion function (5.1). To this
end, we have to show that the Wl’loc—homeornorphism f: D' — Dis of class [ €

W%_LIOC(D’ ). To verify the last property, observe that f induces the composition
operator
f*: L'}L(D) N Liploc(‘D) - Ln 1 IOC(D,)

in the sense that wo f € L, ,.(D") for every function u € LL(D) N Lipy.(D).

Indeed, consider a compactly embedded domain U € D’. Take u € LL(f(U))N
Lipy,.(f(U)). The composition u o f clearly lies in ACL(U). Let us show that the
derivatives of the composition are integrable. We can find the derivative of the
composition as

O(uo f 8f]
Ay; Z 810] ayz ()

provided that f(y) is a point of differentiability of v and d(u o f)(y)/dy; = 0
otherwise because in this case y € Z’ and Df(y) = 0 a.e. Since the distortion
function (5.3) is of class L,—_1),(U), we have

/ Vo )" dy
U

IDf(y)|"!
det D f(y)(n—1/n

(n—1)/n
< < / Vu(f(y))|" det Df () dy)
U\(Z'Us")

DF "N
. (/U\(Z’UZ/)(ldeth(y)P/n) dy) (5:5)

(n—=1)/n
— KRN )| Lm_l)n(U)n“( / |Vu(x)|”dm) .
F(U)

To go from (5.4) to (5.5), we use Holder’s inequality with the summability exponents
n/(n—1) and n.

Furthermore, observe that f(U) is a bounded open set, so that the coordinate
function u;(z) — z; lies in LL (f(U)). By (5.4), (5.5) the composition (u;o f)(y) =
fi(y) for y € D" is of class f; € LL | 1OC( ), for j = 1,...,n, while the mapping
f: D" — Dis of class W _ (D).

Therefore, the mapping of [72] satisfies all hypotheses of Example 1.13 with
s = n, and thus, the claim of Proposition 5.1 holds for it.

S / IVu(f(y)|" " det Df(y)" =D/
U\(Z'Ux)

5.2. The homeomorphism of Example 1.16. Consider the mapping of
Example 1.16 in the case that it is a homeomorphism. Then we have some home-
omorphism f: D' — D of class OD(D’;s,r;60,1), where n — 1 < s < r < oo, with
outer bounded O-weighted (s, r)-distortion, meaning that

(1) f € Wy_116e(D');

(2) f has ﬁnlte distortion;
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(3) the distortion function

9'/*(a)| Df(x)|
D' sz KO a, f) =< |det Df(x)[M/7
0 otherwise

if det Df(z) # 0,

is of class L,(D’), where p is found from the condition 1/p =1/s —1/r and p = oo
for s =r.

PROPOSITION 5.2. On assuming that w(z) = 0~ "=D/(s=(=1) (4} is locally inte-
grable, the homeomorphism f: D' — D of class OD(D';s,r;0,1), where n < s <
r <n+1/(n+2), belongs to the family Q, (D’ ,w; D), where g =r/(r — (n — 1))
and p = s/(s — (n—1)) withn —1 < ¢ < p < n. Furthermore, the factors in the
right-hand side of (1.8) are equal to K, = K%} (-, f) | Loo(D")||""" for q = p and

——\1/0

Uy (Qa, R)\ Q1) = | KUHC ) | L@, R\ Q )" for q<p,
where 1/o =1/q—1/p=(n—1)/p0.

Therefore, Theorems 2.22 and 2.37 concerning boundary behavior and their
Corollaries 2.38 and 2.39 apply to the mapping f: D’ — D. In particular, applying
Corollary 2.39, we obtain the following proposition.

PROPOSITION 5.3. Under the hypotheses of Proposition 5.2, assume that
(1) the domain D' is locally connected at every point y € 0D’ and

cap(({y},Fo);L}l)(D’;w)) =0,

(2) the support Sipy of the boundary element f(h) is a singleton: Sty = {z} €
0D, where h € Hy(D') is the boundary element containing {y}.

Then we obtain an extension by continuity of the homeomorphism f: D' — D at
the point y of the support Sy, of the boundary element h € Hy,(D") such that

lim  f(z) =z for every point y € Sp.
z—y,z€D’

A similar result is obtained in [67, Theorem 2| under stronger restrictions:
fe Wsljloc(D’), and so n—1 < s, condition (1) holds, but instead of condition (2) it
is assumed that the points © € 9D are g-strongly accessible for ¢ = r/(r — (n —1)).
Recall that under this condition the support Sy of « € h is a singleton, see Propo-
sition 4.4. Therefore, the fulfillment of the hypotheses of Theorem [67, Theorem 2]
ensures that conditions (1) and (2) above hold. Then, there exists a continuous
extension of the mapping f: D’ — D to the Euclidean boundary.

PROPOSITION 5.4. Assume the hypotheses of Proposition 5.2. If the domain D’
is locally connected at the boundary, while the boundary 0D is q-weakly flat for ¢ =
r/(r—(n—1)), then the mapping f~' admits a continuous extension f~': D — R".

PROOF. Assume on the contrary that the mapping f~' has no limit at some
point zg € dD. Then there exist two distinct points y1, y2 € dD’ and two sequences
{z1x € D}, {x2 € D} such that

lm  fNzk) =y #ya = lim  f7N(zg8).

T1,k—T0 T2,k —T0
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Choose two balls B; = B(y;,r;), for i = 1,2, satisfying B; N By = @. Since the
domain D’ is locally connected at the boundary, for the ball B; there is a connected
component of B; N D’ which includes U; = B(y;,7;) N D’ for some 7; € (0,7;), for
1=1,2.

Take a positive number h < dist(B1, Bz). By the subordination principle, Prop-
erty 1.2, the piecewise linear function u defined as

) = 1 forye B(y,r1)ND,
Y700 fory e R\ (B(yi,r + k)N D)

is admissible for the condenser E' = (Fj, F3) for every continuum F] € B; N D’.
Take a number P such that P > C||u | L,(D’,w)||, where C'is the constant in (1.9).

By construction, z¢ € f(U1)N f(Uz). Suppose that V is a neighborhood of zq so
small that

Since 0D is g-weakly flat, for some neighborhood W C V of xg and some continuum
F;C f(U;), fori= 1,2, intersecting 9V and W, we have cap'/((Fy, F»); L,(D)) > P.
Choose F] so that F] = f(F;). Then the relations

P < cap'((Fy, F2); Ly(D)) = cap'/(f~(E); LL(D))

<
< Ceap'/?(E'; LL(D',w)) < P
lead to a contradiction. Proposition is proved.

Some results similar to Propositions 5.2-5.4 were obtained in [67, Theorem 1]
under stronger restrictions: f € W1, (D’) and s >n — 1.

s,loc
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