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On the critical exponent “instantaneous blow-up”
versus “local solubility” in the Cauchy problem

for a model equation of Sobolev type

M. O. Korpusov, A. A. Panin, and A. E. Shishkov

Abstract. We consider the Cauchy problem for a model partial differential
equation of order three with a non-linearity of the form |∇u|q. We prove
that when q ∈ (1, 3/2] the Cauchy problem in R3 has no local-in-time weak
solution for a large class of initial functions, while when q > 3/2 there is
a local weak solution.

Keywords: finite-time blow-up, non-linear waves, instantaneous blow-up.

§ 1. Introduction

The phenomenon of complete blow-up was first discovered for the equation

−∆u = |x|−2u2, u ⩾ 0, x ∈ Ω \ {0} ⊂ RN , (1.1)

in the paper [1] by Brezis and Cabré. For a linear parabolic equation with a sin-
gular potential, instantaneous blow-up was obtained in [2]. For the non-linear
singular parabolic equation

ut −∆u = |x|−2u2, u ⩾ 0, x ∈ Ω \ {0} ⊂ RN , t > 0, (1.2)

the problem of instantaneous blow-up was considered for the first time in the
paper [3] by Weissler. We note that the comparison method was used in these
three papers, and the proof was technically rather complicated. In the papers of
Pokhozhaev and Mitidieri (see the monograph [4] and the bibliography therein),
results concerning complete and instantaneous blow-up were obtained in a much
simpler and more efficient way, and also for equations of higher order, by the original
method of non-linear capacity.

Later, instantaneous blow-up for non-linear parabolic and hyperbolic equations
was considered in the papers of Galaktionov and Vázquez [5], Goldstein and
Kombe [6], Giga and Umeda [7], Galakhov [8], [9] and others. In some papers,
a method based on the comparison principle (for parabolic equations) was used, and
the others used Pokhozhaev’s method based on the method of non-linear capac-
ity, which made it possible to obtain much more quickly and efficiently sufficient
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conditions for the absence of solutions of both parabolic and hyperbolic equations,
including (non-Sobolev) equations of higher order.

The question of instantaneous blow-up in non-classical Sobolev equations was
first studied in [10]. In particular, the following problem was considered there:

∂

∂t
(uxx + u) = uxx, u(x, 0) = u0(x), u(0, t) = u(l, t), l > 0. (1.3)

As a corollary of Theorem 4.1 in [10], it was established that this problem has no
bounded solution on an arbitrarily small interval of time provided that l ∈ (0, π].
This result can be explained by the presence of the operator ∂2

x + I under the sign
of differentiation with respect to time. Later such results appeared in the study of
linear Sobolev-type equations of the form

∂

∂t
(∆u + λu) + ∆u = 0 for λ > 0, x ∈ Ω ⊂ RN ,

in the case when λ belongs to the spectrum of ∆ in the bounded domain Ω (see
the survey [11]). In particular, this survey describes the method of degenerate
semigroups for studying linear Sobolev-type equations in which the coefficient of
the leading derivative is a singular operator. The instantaneous blow-up effect for
linear and non-linear Sobolev-type equations has not been studied subsequently
since researchers have been interested in sufficient conditions for the existence of
solutions.

Moreover, a new result obtained in the present paper is that the solution may
be absent even when there are no singular coefficients of the form |x|−α or t−β and
the initial functions belong to C∞0 (RN ).

In the problems under consideration, the effect of instantaneous blow-up occurs
when the equation has a singularity (as in (1.2)) or when the initial function is
subject to a non-standard growth condition (as in [7]). The equation

∂

∂t
∆3u + σ1∆2u + σ2uzz = |∇u|q, σ1 > 0, σ2 > 0, q > 1, (1.4)

where

∆3 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, ∆2 =

∂2

∂x2
+

∂2

∂y2
,

has no explicit singularities, nor do we impose any specific growth conditions on
the initial functions. We shall prove that when 1 < q ⩽ 3/2 the Cauchy problem
has no local-in-time weak solutions, but when q > 3/2 local weak solutions do
exist. A possible reason is that the first summand is subordinate to the others
when 1 < q ⩽ 3/2, so that, from the point of view of our analysis, the properties
of the solutions of (1.4) become similar to those of the solutions of the stationary
equation

σ1∆2u + σ2uzz = |∇u|q, σ1 > 0, σ2 > 0, q > 1, (x, y, z) ∈ R3, (1.5)

for which the number qkr = 3/2 is a critical exponent [4] such that the only weak
solution of (1.5) when 1 < q ⩽ qkr is an arbitrary constant, but when q > qkr there
are non-trivial solutions on R3. Note that adding the term

−∂u

∂t
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to the right-hand side of (1.4) drastically changes the situation. Although the term

∂

∂t
∆3u

is again subordinate to the others when 1 < q ⩽ 3/2, the properties of the solution
of the Cauchy problem for (1.4) become similar to those of the solution of the
Cauchy problem for

− ∂u

∂t
+ σ1∆2u + σ2uzz = |∇u|q, σ1 > 0, σ2 > 0, q > 1, (x, y, z) ∈ R3,

(1.6)
and, in all cases, the solution of the Cauchy problem for the equation

∂

∂t
(∆3u− u) + σ1∆2u + σ2uzz = |∇u|q, σ1 > 0, σ2 > 0, q > 1, (1.7)

exists at least locally in time.
This paper continues the series of papers [12]–[14], which studied equations either

isotropic in spatial variables or with a power-like non-linearity of the form

∂

∂t
∆3u + σ1∆2u + σ2uzz = |u|q, σ1 > 0, σ2 > 0, q > 1. (1.8)

In this paper we consider the Cauchy problem for the equation (1.4). We shall prove
that it has no weak solutions for a large class of initial functions when 1 < q ⩽ 3/2,
but when q > 3/2 local weak solutions do exist.

Equations (1.6) and (1.7) belong to the class of non-linear equations of Sobolev
type. We note that linear and non-linear equations of Sobolev type have been stud-
ied in many papers. In particular, initial boundary-value problems for equations of
Sobolev type were considered in general form as well as in the form of examples in
the papers [11], [15], [16] by Sviridyuk, Zagrebina and Zamyshlyaeva.

We also mention a numerical approach to the study of blow-up of solutions.
It was suggested in [17]–[19] and successfully used by us for various equations
in [20]–[25] and elsewhere.

§ 2. Derivation of the equation

We continue the study of non-linear processes in a semiconductor in an external
constant magnetic field. Choose an orthogonal Cartesian coordinate system Oxyz
in such a way that the external magnetic field vector B0 is directed along the
axis Oz. It is known from the classical paper [26] that the electroconductivity
tensor {σαβ} (α, β = x, y, z) is of the form

σαβ =

 σxx σxy 0
−σxy σyy 0

0 0 σzz

 , σxx = σyy > 0, σzz > 0, σxy > 0. (2.1)

Moreover, σxx ̸= σzz when the external magnetic field is non-zero. We consider the
electric part of the system of Maxwell equations in the quasi-stationary approxi-
mation:

div D = 4πen, D = εE, rotE = 0, (2.2)
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where D is the electric displacement field and E is the electric field. In the case
when the first homology group of the domain Ω ⊂ R3 is trivial, there is a potential ϕ
of the electric field:

E = −∇ϕ, ∆3ϕ = −4πe

ε
n. (2.3)

Moreover, the following equations hold:

∂n

∂t
+ div J = 0, Ji =

3∑
j=1

σijEj − γ
∂T

∂xi
, γ > 0, (2.4)

where J is the vector of current density of free charges and n is the density of free
charges. Here we take the heating of the semiconductor into account and T is its
temperature. We use the following equation for the change of temperature in space
and time:

ϵ
∂T

∂t
= ∆3T + Q(|E|), (2.5)

where the function Q(|E|) describes the dependence of the heat pumping on the
modulus of the electric field E, and where ϵ > 0 is a small parameter. Therefore
we replace (2.5) by the equation

∆3T + Q(|E|) = 0. (2.6)

We also adopt the following model dependence:

Q(|E|) = q0|E|q, q0 > 0, q > 1. (2.7)

The system of equations (2.3), (2.4) and (2.6), (2.7) yields the following non-clas-
sical equation for the potential ϕ of the electric field:

∂

∂t
∆3ϕ +

4πeσxx

ε
∆2ϕ +

4πeσzz

ε
ϕzz =

4πeγq0

ε
|∇ϕ|q, (2.8)

where we put

∆3
def=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, ∆2

def=
∂2

∂x2
+

∂2

∂y2
.

One can reduce the equation (2.8) to the form

∂

∂t
∆3u + σ1∆2u + σ2uzz = |∇u|q, σ1 > 0, σ2 > 0, q > 1. (2.9)

Note that σ1 ̸= σ2 when a non-zero external magnetic field is present.

§ 3. Notation

Here we define the weighted spaces of functions C([0, T ]; Wj), j = 1, 2, which
will be used throughout the paper.

Let W1 be the Banach space of all functions in C(1)
b (R3) with finite norm

∥v∥W1 := sup
x∈R3

|v(x)|+
3∑

j=1

sup
x∈R3

(1 + |x|2)1/2

∣∣∣∣∂v(x)
∂xj

∣∣∣∣. (3.1)
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We write C([0, T ]; W1) for the set of functions v(t) ∈ W1 of t ∈ [0, T ] such that

∥v(t1)− v(t0)∥W1 → +0 for any t0, t1 ∈ [0, T ] as t1 → t0. (3.2)

Then C([0, T ]; W1) is a Banach space with respect to the norm

∥v∥T = sup
t∈[0,T ], x∈R3

|v(x, t)|+
3∑

j=1

sup
t∈[0,T ], x∈R3

(1 + |x|2)1/2

∣∣∣∣∂v(x, t)
∂xj

∣∣∣∣.
We similarly define the Banach space

C([0, T ]; W2)

with respect to the norm

∥u∥1,T = sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2|u(x, t)|+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)
∣∣∣∣∂u(x, t)

∂xj

∣∣∣∣,
where W2 ⊂ C(1)

b (R3) is the Banach space of functions with finite norm

∥u∥W2 := sup
x∈R3

(1 + |x|2)1/2|u(x)|+
3∑

j=1

sup
x∈R3

(1 + |x|2)
∣∣∣∣∂u(x)

∂xj

∣∣∣∣.
Let C(1)([0, T ]; Wj), j = 1, 2, be the Banach space of differentiable functions u(t) :
[0, T ] → Wj such that u(t), u′(t) ∈ C([0, T ]; Wj).

We write Cb((1+|x|2)α/2; R3) for the set of all functions u(x) ∈ Cb(R3) satisfying
the inequality

|u(x)| ⩽ A

(1 + |x|2)α/2
, α > 0,

for some constant A > 0 which depends on u(x).
We also put

O(x, R) := {y ∈ R3 : |y − x| < R}.

§ 4. Instantaneous blow-up of weak solutions of the Cauchy problem

Here is the definition of a weak solution of the Cauchy problem classically posed
in the following form:

Mx,t[u](x, t) def= ∆3
∂u

∂t
+ σ1∆2u + σ2ux3x3 = |∇u|q, q > 1, σ1, σ2 > 0,

(4.1)

u(x, 0) = u0(x). (4.2)

Definition 1. A function u(x, t) ∈ Lq(0, T ; W 1,q
loc (R3)) satisfying the equality∫ T

0

∫
R3

[
(∇u(x, t),∇ϕ′(x, t))− σ1ux1(x, t)ϕx1(x, t)

− σ1ux2(x, t)ϕx2(x, t)− σ2ux3(x, t)ϕx3(x, t)
]
dx dt

+
∫

R3
(∇u0(x),∇ϕ(x, 0)) dx =

∫ T

0

∫
R3
|∇u(x, t)|qϕ(x, t) dx dt (4.3)
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for all functions ϕ(x, t) ∈ C∞,1
x,t (R3 × [0, T ]), is called a local weak solution of the

Cauchy problem (4.1) and (4.2), where

ϕ(x, T ) = 0 for all x ∈ R3, suppx ϕ(x, t) ⊂ O(0, R) for all t ∈ [0, T ],

R = R(ϕ) > 0, u0(x) ∈ W 1,q
loc (R3).

We define the class U of initial functions u0(x) for which we shall prove instan-
taneous blow-up of local weak solutions of the Cauchy problem in the sense of
Definition 1.

Definition 2. We say that u0(x) ∈ U if u0(x) ∈ W 1,q(R3) and there are x0 ∈ R3

and R0 > 0 such that u0(x) ∈ H2(O(x0, R0)) and

µ{x ∈ O(x0, R0) : ∆3u0(x) ̸= 0} > 0,

where µ is the standard Lebesgue measure in R3.

Theorem 1. If u0(x) ∈ U and q ∈ (1, 3/2], then there is no local weak solution
of the Cauchy problem for any T > 0, that is, instantaneous blow-up of local weak
solutions of the Cauchy problem occurs.

Proof. The proof uses the method of non-linear capacity of Pokhozhaev and Miti-
dieri [4] and a special choice of the test function ϕ(x, t) in the equation (4.3) of
Definition 1. Namely, we take

ϕ(x, t) = ϕT (t)ϕR(x), ϕT (t) =
(

1− t

T

)λ

, λ > q′,

ϕR(x) = ϕ0

(
|x|2

R2

)
, ϕ0(s) =

{
1 if s ∈ [0, 1/2],
0 if s ⩾ 1,

ϕ0(s) ∈ C∞0 [0, +∞),

where ϕ0(s) is a monotone decreasing function. We have the following estimates
based on using Hölder’s inequality with appropriate exponents:

∣∣∣∣∫ T

0

∫
R3

(∇u(x, t),∇ϕ′(x, t)) dx dt

∣∣∣∣
⩽

λ

T

∫ T

0

∫
R3

(
1− t

T

)λ−1

|∇u(x, t)||∇ϕR(x)| dx dt

=
λ

T

∫ T

0

∫
R3

(
1− t

T

)λ/q

|∇u(x, t)|ϕ1/q
R (x)

(
1− t

T

)λ/q′−1 |∇ϕR(x)|
ϕ

1/q
R (x)

dx dt

⩽
λ

T
c1(R, T )I1/q

R , (4.4)
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where

IR :=
∫ T

0

∫
R3

ϕT (t)ϕR(x)|∇u|q dx dt, (4.5)

c1(R, T ) :=
(∫ T

0

∫
R3

(
1− t

T

)λ−q′
|∇ϕR(x)|q′

ϕ
q′/q
R (x)

dx dt

)1/q′

=
(

T

λ− q′ + 1

)1/q′

c2R
(3−q′)/q′

, c3 > 0, (4.6)∣∣∣∣∫ T

0

∫
R3

uxj
(x, t)ϕxj

(x, t) dx dt

∣∣∣∣ ⩽
∫ T

0

∫
R3
|∇u(x, t)||∇ϕ(x, t)| dx dt ⩽ I

1/q
R c3(R, T ),

(4.7)

with

c3(R, T ) :=
(∫ T

0

∫
R3

(
1− t

T

)λ |∇ϕR(x)|q′

ϕ
q′/q
R (x)

dx dt

)1/q′

=
(

T

λ + 1

)1/q′

c2R
(3−q′)/q′

,

(4.8)∣∣∣∣∫
R3

(∇u0(x),∇ϕ(x, 0)) dx

∣∣∣∣ ⩽
∫

R3
|∇u0(x)| |∇ϕR(x)| dx

⩽ ∥|∇u0|∥Lq(R3)

(∫
R3
|∇ϕR(x)|q

′
dx

)1/q′

= ∥|∇u0|∥Lq(R3)c4R
(3−q′)/q′

. (4.9)

We now apply the bounds (4.4)–(4.9) to (4.3) and obtain the inequality

λ

T
c1(R, T )I1/q

R + (2σ1 + σ2)c3(R, T )I1/q
R + ∥|∇u0|∥Lq(R3)c4R

(3−q′)/q′
⩾ IR. (4.10)

Using Hölder’s inequality with parameter ε = 1/4,

ab ⩽
1
4
a2 + b2,

we deduce from (4.10) that

2
λ2

T 2
c2
1(R, T ) + 2(2σ1 + σ2)2c2

3(R, T ) + 2∥|∇u0|∥Lq(R3)c4R
(3−q′)/q′

⩾ IR. (4.11)

Put R = N ∈ N and consider the sequence of functions

HN (x, t) := |∇u(x, t)|qϕN (x)ϕT (t), HN+1(x, t) ⩾ HN (x, t), (4.12)

for almost all (x, t) ∈ R3 × [0, T ]. We require that the following inequality should
hold:

3− q′ ⩽ 0 =⇒ 1 < q ⩽
3
2
. (4.13)

Then it follows from (4.6)–(4.9) that the right-hand side of (4.11) is bounded by
a constant K > 0 and, therefore,∫ T

0

∫
R3

HN (x, t) dx dt ⩽ K < +∞. (4.14)
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Hence we conclude from the monotone convergence theorem that

lim
N→+∞

∫ T

0

∫
R3

HN (x, t) dx dt =
∫ T

0

∫
R3
|∇u(x, t)|q dx dt ⩽ K < +∞. (4.15)

Consider the cases 1 < q < 3/2 and q = 3/2 separately. When 1 < q < 3/2, we
use (4.11) and the bounds (4.6)–(4.9) to conclude that

IN :=
∫ T

0

∫
R3

ϕT (t)ϕN (x)|∇u|q dx dt → +0 as N → +∞. (4.16)

The case q = 3/2 is critical. It can be considered in the same way as all the critical
cases in [4].

Thus, when q ∈ (1, 3/2] we arrive at the equality∫ T

0

∫
R3
|∇u(x, t)|q

(
1− t

T

)λ

dx dt = 0

=⇒ u(x, t) = F (t) for almost all (x, t) ∈ R3 × [0, T ].

Substituting the resulting equality u(x, t) = F (t) into (4.3), we have∫
R3

(∇u0(x),∇ϕ(x, 0)) dx = 0

for all functions ϕ(x, t) satisfying the conditions of Definition 1. Therefore, for
an arbitrary function ϕ(x, t) of the form

ϕ(x, t) = ϕ1(x)
(

1− t

T

)
, ϕ1(x) ∈ C∞0 (R3), supp ϕ1(x) ⊂ O(x0, R0),

and for u0(x) ∈ U , integration by parts yields that∫
O(x0,R0)

∆u0(x)ϕ1(x) dx = 0 for all ϕ1(x) ∈ C∞0 (O(x0, R0)).

By the fundamental lemma of the calculus of variations, we can conclude that

∆u0(x) = 0 for almost all x ∈ O(x0, R0),

contrary to the definition of the class U ∋ u0(x). □

§ 5. The existence of an inextensible solution
of the auxiliary integral equation for q > 3/2

In this section we consider the auxiliary integral equation

u(x, t) =
∫

R3
E (x− y, t)∆3u0(y) dy +

∫ t

0

∫
R3

E (x− y, t− τ)|∇u|q dy dτ, (5.1)

where the function

E (x, t) = − θ(t)
4π|x|

exp
(
−σ1 + β(x)

2
t

)
I0

(
σ1 − β(x)

2
t

)
(5.2)
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is a fundamental solution of the operator

Mx,t[w](x, t) := ∆3x
∂w

∂t
+ σ1∆2xw(x, t) + σ2wx3x3 (5.3)

with

β(x) =
σ2(x2

1 + x2
2) + σ1x

2
3

x2
1 + x2

2 + x2
3

, σj ⩾ 0, j = 1, 2.

Some properties of the fundamental solution E (x, t) are collected in the following
lemma.

Lemma 1. 1) For x ̸= 0,

E (x, 0) = − 1
4π|x|

. (5.4)

2) E (x, t) ∈ C∞((R3 \ {0})× [0, +∞)).
3) If x ∈ R3 \ {0} and t ∈ [0, T ], then∣∣∣∣∂kE (x, t)

∂tk

∣∣∣∣ ⩽
A1(T )
|x|

,

∣∣∣∣∂k+1E (x, t)
∂tk ∂xj

∣∣∣∣ ⩽
A2(T )
|x|2

, j = 1, 2, 3, (5.5)∣∣∣∣∂k+2E (x, t)
∂tk ∂xj ∂xl

∣∣∣∣ ⩽
A3(T )
|x|3

, j, l = 1, 2, 3, k ∈ N, (5.6)

with constants 0 < An(T ) < +∞ for n = 1, 2, 3.

Proof. This follows from the properties of the Infeld function I0(x) and the explicit
formula (5.2) for the function E (x, t). □

It is convenient to pass from the function u(x, t) in the integral equation (5.1)
to a new function

v(x, t) = (1 + |x|2)1/2u(x, t). (5.7)

In view of the equality

|∇u|q =
∣∣∣∣∇ v(x, t)

(1 + |x|2)1/2

∣∣∣∣q =
∣∣∣∣ 1
(1 + |x|2)1/2

∇v − x

(1 + |x|2)3/2
v(x, t)

∣∣∣∣q
=

1
(1 + |x|2)q

∣∣∣∣(1 + |x|2)1/2∇v − x

(1 + |x|2)1/2
v

∣∣∣∣q (5.8)

in the class of differentiable functions, this yields the integral equation

v(x, t) =
∫

R3
Gα(x, y, t)(1 + |y|2)α∆3u0(y) dy

+
∫ t

0

∫
R3

Gq(x, y, t− τ)
∣∣∣∣(1 + |y|2)1/2∇v(y, τ)− y

(1 + |y|2)1/2
v

∣∣∣∣q dy dτ, (5.9)

where

Gγ(x, y, t) :=
(1 + |x|2)1/2

(1 + |y|2)γ
E (x− y, t), γ > 0. (5.10)
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The theorem on inextensible solutions of (5.9) will be proved in the Banach space
C([0, T ]; W1), which was defined in § 3, with respect to the norm ∥ · ∥T :

∥v∥T := sup
t∈[0,T ], x∈R3

|v(x, t)|+
3∑

j=1

sup
t∈[0,T ], x∈R3

(1 + |x|2)1/2

∣∣∣∣∂v(x, t)
∂xj

∣∣∣∣. (5.11)

Theorem 2. Suppose that q > 3/2. Then for every function u0(x) ∈ C2(R3)
satisfying the condition

|∆3u0(x)| ⩽ A4

(1 + |x|2)α
, α >

3
2
, (5.12)

one can find a T0 = T0(u0) > 0 such that for every T ∈ (0, T0) there is a unique
solution

v(x, t) ∈ C([0, T ]; W1) (5.13)

of the integral equation (5.9). Moreover, either T0 = +∞, or T0 < +∞, and in the
latter case the following limit property holds:

lim
T↑T0

∥v∥T = +∞. (5.14)

Proof. We begin with the following lemma on the properties of the function Gγ(x,
y, t) defined in (5.10).

Lemma 2. Suppose that γ > 3/2. Then for t ∈ [0, T ] one has

sup
(x,t)∈R3×(0,+∞)

∫
R3

∣∣∣∣∂kGγ(x, y, t)
∂tk

∣∣∣∣ dy

⩽ A1(T ) sup
(x,t)∈R3×(0,+∞)

∫
R3

(1 + |x|2)1/2

(1 + |y|2)γ |x− y|
dy ⩽ B1(T ) < +∞, (5.15)

sup
(x,t)∈R3×(0,+∞)

(1 + |x|2)1/2

∫
R3

∣∣∣∣∂k+1Gγ(x, y, t)
∂xj ∂tk

∣∣∣∣ dy

⩽ A1(T ) sup
(x,t)∈R3×(0,+∞)

∫
R3

(1 + |x|2)1/2

(1 + |y|2)γ |x− y|
dy

+ A2(T ) sup
(x,t)∈R3×(0,+∞)

∫
R3

1 + |x|2

(1 + |y|2)γ |x− y|2
dy ⩽ B2(T ) < +∞, j = 1, 2, 3,

(5.16)

for k = 0, 1, 2.

Proof. Note that if x ̸= y and t ⩾ 0, then

∂k+1Gγ(x, y, t)
∂xj∂tk

=
xj

(1 + |x|2)1/2

1
(1 + |y|2)γ

∂kE (x− y, t)
∂tk

+
(1 + |x|2)1/2

(1 + |y|2)γ

∂k+1E (x− y, t)
∂xj ∂tk

, j = 1, 2, 3.

We shall use the bounds (5.5) for the fundamental solution E (x, t).
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Step 1. Estimation of the integral (5.15). Passing to the spherical coordinate
system, we obtain the following expression:

I :=
∫

R3
dy

1
|y|(1 + |x− y|2)γ

= 2π

∫ +∞

0

dr

∫ π

0

dθ
r sin θ

(1 + |x|2 + r2 − 2|x|r cos θ)γ
.

Integrating with respect to θ ∈ (0, π), we obtain

I =
2π

γ − 1
1
|x|

∫ +∞

0

dr

[
1

(1 + (r − |x|)2)γ−1
− 1

(1 + (r + |x|)2)γ−1

]
=:

1
|x|

(I1 + I2).

Suppose that |x| > 1. Then when γ > 3/2 we have

I1 =
2π

γ − 1

∫ +∞

0

dr
1

(1 + (r − |x|)2)γ−1
=

2π

γ − 1

∫ +∞

−|x|
dz

1
(1 + z2)γ−1

< +∞,

I2 =
2π

γ − 1

∫ +∞

0

dr
1

(1 + (r + |x|)2)γ−1
⩽

2π

γ − 1

∫ +∞

0

dr
1

(1 + r2)γ−1
< +∞.

Suppose that |x| ⩽ 1. Then the expression for I can be reduced by changes of
variables to the form

I =
2π

γ − 1
1
|x|

∫ |x|

−|x|
dz

1
(1 + z2)γ−1

⩽
2π

γ − 1
1
|x|

2|x| ⩽ 4π

γ − 1
.

Step 2. Estimation of the integral (5.16). In fact, we need only estimate the
integral

I =
∫

R3

1
|x− y|2

1
(1 + |y|2)γ

dy for γ >
3
2
.

We first consider the case when |x| > 1. Pass to a spherical coordinate system
whose axis Oz coincides with Ox. Then we have

I = 2π

∫ +∞

0

dr

∫ π

0

dθ
r2 sin θ

(1 + r2)γ

1
|x|2 + r2 − 2|x|r cos θ

. (5.17)

Put
a = |x|2 + r2, b = 2|x|r.

We separately calculate∫ π

0

dθ
sin θ

a− b cos θ
= −1

b
ln

(
a− b

a + b

)
= − 1

2|x|r
ln

(
|x| − r

|x|+ r

)2

.

Therefore,

I = − π

|x|

∫ +∞

0

r

(1 + r2)γ
ln

(
|x| − r

|x|+ r

)2

dr.

Suppose that ε ∈ (0, 1). Then

I = I1 + I2 + I3, (5.18)
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where

I1 = − π

|x|

∫ ε|x|

0

r

(1 + r2)γ
ln

(
|x| − r

|x|+ r

)2

dr, (5.19)

I2 = − π

|x|

∫ |x|/ε

ε|x|

r

(1 + r2)γ
ln

(
|x| − r

|x|+ r

)2

dr, (5.20)

I3 = − π

|x|

∫ +∞

|x|/ε

r

(1 + r2)γ
ln

(
|x| − r

|x|+ r

)2

dr. (5.21)

Consider the integral I1. By Lagrange’s formula,

ln(1− t) = − 1
1− t1ε

t, ln(1 + t) =
1

1 + t2ε
t, t, t1ε, t2ε ∈ (0, ε).

Hence the following estimate holds:∣∣∣∣ln(
1− r

|x|

)
− ln

(
1 +

r

|x|

)∣∣∣∣ ⩽ c1(ε)
r

|x|
, r ∈ [0, ε|x|]. (5.22)

Therefore we have a chain of relations

|I1| ⩽
2π

|x|

∫ ε|x|

0

r

(1 + r2)γ

∣∣∣∣ln(
1− r

|x|

)
− ln

(
1 +

r

|x|

)∣∣∣∣ dr

⩽
2πc1(ε)
|x|2

∫ +∞

0

r2

(1 + r2)γ
dr ⩽

A5(ε)
|x|2

for γ >
3
2
. (5.23)

Consider the integral I2:

|I2| ⩽
π

|x|

∫ |x|/ε

ε|x|

r

(1 + r2)γ

∣∣∣∣ln(
|x| − r

|x|+ r

)2∣∣∣∣ dr

r=t|x|
=

π

|x|
|x|2

∫ 1/ε

ε

t

(1 + t2|x|2)γ

∣∣∣∣ln(
1− t

1 + t

)2∣∣∣∣ dt

⩽
π

|x|2γ−1

∫ 1/ε

ε

1
t2γ−1

∣∣∣∣ln(
1− t

1 + t

)2∣∣∣∣ dt ⩽
A6(ε)
|x|2γ−1

, γ >
3
2
. (5.24)

Finally, consider the integral I3. By Lagrange’s formula, we have a chain of relations

|I3| ⩽
2π

|x|

∫ +∞

|x|/ε

r

(1 + r2)γ

∣∣∣∣ln(
1− |x|

r

)
− ln

(
1 +

|x|
r

)∣∣∣∣ dr

⩽ c1(ε)2π

∫ +∞

|x|/ε

1
(1 + r2)γ

dr ⩽ c1(ε)2π

∫ +∞

|x|/ε

1
r2γ

dr

= c1(ε)2π
1

2γ − 1

(
ε

|x|

)2γ−1

=
A7(ε)
|x|2γ−1

, γ >
3
2
. (5.25)

Thus we conclude that there is a constant A > 0 such that the following bound
holds for |x| > 1:

|I| ⩽ A8

|x|2
for γ >

3
2
. (5.26)
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We now consider the case when |x| ⩽ 1. For convenience we rewrite the original
integral in the form

I =
∫

R3

1
|y|2

1
(1 + |x− y|2)γ

dy. (5.27)

Again passing to the spherical coordinate system and using the bounds | sin θ|⩽ 1
and cos θ ⩽ 1, we obtain the inequalities

I = 2π

∫ +∞

0

dr

∫ π

0

dθ
sin θ

(1 + |x|2 + r2 − 2|x|r cos θ)γ

⩽ 2π2

∫ +∞

0

dr
1

(1 + |x|2 + r2 − 2|x|r)γ
= 2π2

∫ +∞

0

dr
1

(1 + (|x| − r)2)γ

= 2π2

∫ +∞

−|x|

dt

(1 + t2)γ
⩽ 2π2

∫ +∞

−∞

dt

(1 + t2)γ
:= A9 < +∞. (5.28)

Then we arrive at the estimate

|I| ⩽ A10

1 + |x|2
for all x ∈ R3. □ (5.29)

We introduce the potentials

U0(x, t) := U0[ρ0](x) :=
∫

R3
Gγ(x, y, t)ρ0(y) dy, (5.30)

U1(x, t) := U1[ρ](x, t) :=
∫ t

0

∫
R3

Gγ(x, y, t− τ)ρ(y, τ) dy dτ. (5.31)

Their properties are collected in the following lemma.

Lemma 3. For any ρ0(x) ∈ Cb(R3) and ρ(x, t) ∈ C([0, T ]; Cb(R3)) one has U0(x, t),
U1(x, t) ∈ C([0, T ]; W1) when γ > 3/2.

Proof. Step 1. We claim that

U0(x, t), U1(x, t) ∈ C([0, T ]; Cb(R3)). (5.32)

Indeed, note that U0(x, t), U1(x, t) ∈ C(R1) for every t ∈ [0, T ]. Below, we shall
prove the stronger inclusion U0(x, t), U1(x, t) ∈ C(1)(R1) for every t ∈ [0, T ].

By (5.15),

|U0(x, t2)− U0(x, t1)| ⩽
∫

R3
|ρ0(y)||Gγ(x, y, t2)−Gγ(x, y, t1)| dy

=
∫

R3
|ρ0(y)|

∣∣∣∣∫ t1

t2

∂

∂s
Gγ(x, y, s) ds

∣∣∣∣ dy

⩽ sup
y∈R3

|ρ0(y)||t2 − t1| sup
x∈R3, s∈[t1,t2]

∫
R3

∣∣∣∣∂Gγ(x, y, s)
∂s

∣∣∣∣ dy

⩽ B1(T ) sup
y∈R3

|ρ0(y)||t2 − t1|. (5.33)
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Thus, for all t1, t2 ∈ [0, T ] one has

sup
x∈R3

|U0(x, t2)− U0(x, t1)| ⩽ B1(T ) sup
y∈R3

|ρ0(y)||t2 − t1|. (5.34)

Moreover, the following expression holds in view of (5.15):

sup
x∈R3, t∈[0,T ]

|U0(x, t)| ⩽ B1(T ) sup
y∈R3

|ρ0(y)|. (5.35)

Hence U0(x, t) ∈ C([0, T ]; Cb(R3)).
We now claim that U1(x, t) ∈ C([0, T ]; Cb(R3)). Indeed, for all t1, t2 ∈ [0, T ] we

have a chain of inequalities

|U1(x, t2)− U1(x, t1)|

⩽

∣∣∣∣∫ t2

0

∫
R3

Gγ(x, y, t2 − τ)ρ(y, τ) dy dτ −
∫ t1

0

∫
R3

Gγ(x, y, t1 − τ)ρ(y, τ) dy dτ

∣∣∣∣
⩽

∫ t2

t1

∫
R3
|Gγ(x, y, t2 − τ)||ρ(y, τ)| dy dτ

+
∫ t1

0

∫
R3
|Gγ(x, y, t2 − τ)−Gγ(x, y, t1 − τ)||ρ(y, τ)| dy dτ

=: I11(x, t2, t1) + I12(x, t2, t1). (5.36)

In view of (5.15), the integral I12 satisfies the following bound similar to (5.33):

I12 ⩽
∫ t1

0

∫
R3

∫ t2−τ

t1−τ

∣∣∣∣∂Gγ(x, y, s)
∂s

∣∣∣∣ ds |ρ(y, τ)| dy dτ

⩽ B1(T )T |t2 − t1| sup
τ∈[0,T ], y∈R3

|ρ(y, τ)| (5.37)

and I11 satisfies the inequality

I11 ⩽ B1(T )|t2 − t1| sup
τ∈[0,T ], y∈R3

|ρ(y, τ)|. (5.38)

Moreover, we have

|U1(x, t)| ⩽ TB1(T ) sup
τ∈[0,T ], y∈R3

|ρ(y, τ)|. (5.39)

It follows from (5.36)–(5.39) that U1(x, t) ∈ C([0, T ]; Cb(R3)).

Step 2. We claim that U0(x, t), U1(x, t) ∈ C([0, T ]; W1). Indeed, consider the poten-
tial U0(x, t):

U0(x, t) = U01(x, t) + U02(x, t), (5.40)
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where U01 and U02 are of the form

U01(x, t) =
∫

O(x00,R)

Gγ(x, y, t)ρ0(y) dy

= (1 + |x|2)1/2

∫
O(x00,R)

E (x− y, t)
ρ0(y)

(1 + |y|2)γ
dy, (5.41)

U02(x, t) =
∫

R3\O(x00,R)

Gγ(x, y, t)ρ0(y) dy

= (1 + |x|2)1/2

∫
R3\O(x00,R)

E (x− y, t)
ρ0(y)

(1 + |y|2)γ
dy. (5.42)

By (5.5), when x ̸= y and t ∈ [0, T ] one has

|E (x− y, t)| ⩽ A1(T )
|x− y|

,

∣∣∣∣∂E (x− y, t)
∂xj

∣∣∣∣ ⩽
A2(T )
|x− y|2

. (5.43)

Note that the result of Lemma 4.1 in [27] was obtained from bounds of the form
(5.43) for the fundamental solution of the Laplace operator and not from an explicit
formula for this solution. Arguing in a similar way, we establish that U01(x, t) ∈
C(1)(R3) for every t ∈ [0, T ] and, moreover,

∂U01(x, t)
∂xj

=
∫

O(x00,R)

∂Gγ(x, y, t)
∂xj

ρ0(y) dy. (5.44)

Since the integrand in U02(x, t) has no singularities and q > 3/2, we also conclude
that U02(x, t) ∈ C(1)(R3) for every t ∈ [0, T ] and, moreover,

∂U02(x, t)
∂xj

=
∫

R3\O(x00,R)

∂Gγ(x, y, t)
∂xj

ρ0(y) dy. (5.45)

Thus, it follows from (5.44) and (5.45) that U0(x, t) ∈ C(1)(R3) for every t ∈ [0, T ]
and one has

∂U0(x, t)
∂xj

=
∫

R3

∂Gγ(x, y, t)
∂xj

ρ0(y) dy. (5.46)

In view of (5.16), we have a chain of inequalities

(1 + |x|2)1/2

∣∣∣∣∂U0(x, t2)
∂xj

− ∂U0(x, t1)
∂xj

∣∣∣∣
⩽ (1 + |x|2)1/2

∫
R3

∣∣∣∣∂Gγ(x, y, t2)
∂xj

− ∂Gγ(x, y, t1)
∂xj

∣∣∣∣|ρ0(y)| dy

⩽ (1 + |x|2)1/2

∫
R3

∫ t2

t1

∣∣∣∣∂2Gγ(x, y, s)
∂s ∂xj

∣∣∣∣ ds |ρ0(y)| dy

⩽ |t2 − t1| sup
y∈R3

|ρ0(y)| sup
s∈[0,T ], x∈R3

(1 + |x|2)1/2

∫
R3

∣∣∣∣∂2Gγ(x, y, s)
∂s ∂xj

∣∣∣∣ dy

⩽ B2(T )|t2 − t1| sup
y∈R3

|ρ0(y)|. (5.47)
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Moreover,

(1 + |x|2)1/2

∣∣∣∣∂U0(x, t)
∂xj

∣∣∣∣ ⩽ B2(T ) sup
y∈R3

|ρ0(y)|. (5.48)

In view of (5.34) and (5.35), we find from (5.47) and (5.48) that

U0(x, t) ∈ C([0, T ]; W1). (5.49)

Our next aim is to prove that U1(x, t) ∈ C([0, T ]; W1). In the same way, we conclude
from (5.43) that U1(x, t) ∈ C(1)(R3) for every t ∈ [0, T ] and, moreover, the following
equality holds (compare with (5.46)):

∂U1(x, t)
∂xj

=
∫ t

0

∫
R3

∂Gγ(x, y, t− τ)
∂xj

ρ(y, τ) dy dτ. (5.50)

In view of (5.16), the following bounds hold for all t1, t2 ∈ [0, T ]:

(1 + |x|2)1/2

∣∣∣∣∂U1(x, t2)
∂xj

− ∂U1(x, t1)
∂xj

∣∣∣∣
⩽ (1 + |x|2)1/2

∫ t1

0

∫
R3

∣∣∣∣∂Gγ(x, y, t2 − τ)
∂xj

− ∂Gγ(x, y, t1 − τ)
∂xj

∣∣∣∣|ρ(y, τ)| dy dτ

+ (1 + |x|2)1/2

∫ t2

t1

∫
R3

∣∣∣∣∂Gγ(x, y, t2 − τ)
∂xj

∣∣∣∣|ρ(y, τ)| dy dτ

⩽ (1 + |x|2)1/2

∫ t1

0

∫
R3

∫ t2−τ

t1−τ

∣∣∣∣∂2Gγ(x, y, s)
∂xj ∂s

∣∣∣∣ ds dy dτ

+ (1 + |x|2)1/2

∫ t2

t1

∫
R3

∣∣∣∣∂Gγ(x, y, t2 − τ)
∂xj

∣∣∣∣|ρ(y, τ)| dy dτ

⩽ T sup
y∈R3, τ∈[0,T ]

|ρ(y, τ)||t2 − t1| sup
x∈R3, s∈[0,T ]

(1 + |x|2)1/2

∫
R3

∣∣∣∣∂2Gγ(x, y, s)
∂xj ∂s

∣∣∣∣ dy

+ sup
y∈R3, τ∈[0,T ]

|ρ(y, τ)||t2 − t1| sup
x∈R3, τ∈[0,T ]

(1 + |x|2)1/2

∫
R3

∣∣∣∣∂Gγ(x, y, τ)
∂xj

∣∣∣∣ dy

⩽ [TB2(T ) + B2(T )] sup
y∈R3, τ∈[0,T ]

|ρ(y, τ)||t2 − t1|. (5.51)

Moreover,

(1 + |x|2)1/2

∣∣∣∣∂U1(x, t)
∂xj

∣∣∣∣
⩽ T sup

y∈R3, τ∈[0,T ]

|ρ(y, τ)| sup
x∈R3, τ∈[0,T ]

(1 + |x|2)1/2

∫
R3

∣∣∣∣∂Gγ(x, y, τ)
∂xj

∣∣∣∣ dy

⩽ TB2(T ) sup
y∈R3, τ∈[0,T ]

|ρ(y, τ)|. (5.52)

Thus, in view of (5.36)–(5.39) and the bounds (5.51), (5.52), we conclude that
U1(x, t) ∈ C([0, T ]; W1). □
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Our task is to study the integral equation (5.9) in the weighted Banach space
C([0, T ]; W1), which was defined in § 3, with respect to the norm (5.11).

To prove the existence of a solution of (5.9), we choose a closed bounded convex
subset DR,T in C([0, T ]; W1) of the form

DR,T := {v(x, t) ∈ C([0, T ]; W1) : ∥v∥T ⩽ R}. (5.53)

Rewrite (5.9) in the form
v(x, t) = H(v)(x, t), (5.54)

where

H(v)(x, t) = hα(x, t) + H1(v)(x, t), (5.55)

hα(x, t) =
∫

R3
Gα(x, y, t)(1 + |y|2)α∆3u0(y) dy, (5.56)

H1(v)(x, t) =
∫ t

0

∫
R3

Gq(x, y, t− τ)

×
∣∣∣∣(1 + |y|2)1/2∇v(y, τ)− y

(1 + |y|2)1/2
v(y, τ)

∣∣∣∣q dy dτ. (5.57)

Lemma 4. Suppose that u0(x) ∈ C(2)(R3) and the bound (5.12) holds. Then the
operator H( · ) defined in (5.55) for q > 3/2 acts as

H( · ) : C([0, T ]; W1) → C([0, T ]; W1). (5.58)

Proof. Step 1. We claim that the function hα(x, t) given by the explicit for-
mula (5.56) belongs to

C([0, T ]; W1) for every T > 0.

Indeed, note that under the condition (5.12) on u0(x) ∈ C(2)(R3) one has

ρ0(y) = (1 + |y|2)α∆3u0(y) ∈ Cb(R3),

whence, by Lemma 3,
U0[ρ0](x, t) ∈ C([0, T ]; W1).

Step 2. Consider the function

ρ(x, t) =
∣∣∣∣(1 + |x|2)1/2∇v(x, t)− x

(1 + |x|2)1/2
v(x, t)

∣∣∣∣q, (5.59)

where v(x, t) ∈ C([0, T ]; W1). Note that ρ(x, t) ∈ C(R3) for t ∈ [0, T ].
On the one hand,

sup
x∈R3, t∈[0,T ]

|ρ(x, t)| ⩽ c(q)
(

sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2|∇v(x, t)|
)q

+ c(q)
(

sup
x∈R3, t∈[0,T ]

|v(x, t)|
)q

< +∞, (5.60)
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where c(q) is a positive constant. On the other hand, we have the inequality

|ρ(x, t2)− ρ(x, t1)|
⩽ q max{Jq−1

1 , Jq−1
2 }

[
(1 + |x|2)1/2|∇v(x, t2)−∇v(x, t1)|+ |v(x, t2)− v(x, t1)|

]
,

(5.61)

where

Jk :=
∣∣∣∣(1 + |x|2)1/2∇v(x, tk)− x

(1 + |x|2)1/2
v(x, tk)

∣∣∣∣, k = 1, 2.

By (5.60),
sup

x∈R3, tk∈[0,T ]

Jk = A < +∞ for k = 1, 2. (5.62)

Since v(x, t) ∈ C([0, T ]; W1), it follows from (5.61) and (5.62) that

sup
x∈R3

|ρ(x, t2)− ρ(x, t1)| ⩽ qAq−1
[
sup
x∈R3

(1 + |x|2)1/2|∇v(x, t2)−∇v(x, t1)|

+ sup
x∈R3

|v(x, t2)− v(x, t1)|
]
→ +0 (5.63)

as |t2 − t1| → +0 for any t1, t2 ∈ [0, T ]. Hence it follows from (5.60) and (5.63)
that ρ(x, t) ∈ C([0, T ]; Cb(R3)). Using the result of Lemma 3 about the potential
U1(x, t), we conclude that U1(x, t) ∈ C([0, T ]; W1).

Hence it follows from (5.55) that

H(v)(x, t) = U0[ρ0](x, t) + U1[ρ](x, t) ∈ C([0, T ]; W1)

for all u0(x) ∈ C(2)(R3) possessing the property (5.12) and for an arbitrary function

v(x, t) ∈ C([0, T ]; W1). □

Fix any function u0(x) ∈ C2(R3) satisfying the condition (5.12). Choose a large
R > 0 such that the concluding inequality in the following chain holds:

∥hα∥T ⩽ sup
x∈R3

∫
R3
|Gα(x, y, t)|(1 + |y|2)α|∆3u0(y)| dy

+
3∑

j=1

sup
x∈R3

(1 + |x|2)1/2

∫
R3

∣∣∣∣∂Gα(x, y, t)
∂xj

∣∣∣∣(1 + |y|2)α|∆3u0(y)| dy

⩽ A4B1(T ) + 3B2(T )A ⩽
R

2
. (5.64)

The corresponding inequalities hold in view of (5.12), (5.15) and (5.16).

Lemma 5. For an arbitrary R > 0 and q > 3/2 there is a small T > 0 such that

H1(v) : DR,T → DR/2,T . (5.65)
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Proof. Let R > 0 be arbitrary. It was proved in the proof of Lemma 4 that

H1( · ) : C([0, T ]; W1) → C([0, T ]; W1)

for every T > 0. We put

ρ(y, τ) :=
∣∣∣∣(1 + |y|2)1/2∇v(y, τ)− y

(1 + |y|2)1/2
v(y, τ)

∣∣∣∣q. (5.66)

Then the function

H1(x, t) := H1(v)(x, t) =
∫ t

0

∫
R3

Gq(x, y, t− τ)ρ(y, τ) dy dτ (5.67)

satisfies the following chain of inequalities:

∥H1(x, t)∥T ⩽ sup
x∈R3, t∈[0,T ]

∫ t

0

∫
R3
|Gq(x, y, t− τ)||ρ(y, τ)| dy dτ

+
3∑

j=1

sup
x∈R3, t∈[0,T ]

∫ t

0

∫
R3

(1 + |x|2)1/2

∣∣∣∣∂Gq(x, y, t− τ)
∂xj

∣∣∣∣|ρ(y, τ)| dy dτ

⩽ T [B1(T ) + 3B2(T )] sup
y∈R3, τ∈[0,T ]

|ρ(y, τ)|. (5.68)

Note that

sup
y∈R3, τ∈[0,T ]

|ρ(y, τ)| ⩽ sup
y∈R3, τ∈[0,T ]

[(1 + |y|2)1/2|∇v(y, τ)|+ |v(y, τ)|]q

⩽ sup
y∈R3, τ∈[0,T ]

[ 3∑
j=1

(1 + |y|2)1/2

∣∣∣∣∂v(y, τ)
∂yj

∣∣∣∣ + |v(y, τ)|
]q

⩽ Rq

(5.69)

if v(x, t) ∈ DR,T . It follows from (5.68) and (5.69) that

∥H1(x, t)∥T ⩽ T [B1(T ) + 3B2(T )]Rq, q >
3
2
. (5.70)

Choose a small T > 0 such that

T [B1(T ) + 3B2(T )]Rq−1 ⩽
1
2
. (5.71)

Then we deduce from (5.70) that

∥H1(x, t)∥T ⩽
R

2
, (5.72)

as required. □

Choosing a large R > 0 such that the resulting inequality (5.64) holds, we can
deduce the following assertion from Lemma 5.
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Lemma 6. Suppose that q > 3/2. Then for every u0(x) ∈ C(2)(R3) satisfy-
ing (5.12), one can find a sufficiently large R > 0 and a sufficiently small T > 0
such that

H( · ) : DR,T → DR,T , (5.73)

where DR,T ⊂ C([0, T ]; W1) is the closed ball defined in (5.53).

We proceed to prove that H(v)(x, t) is a contraction on the closed ball DR,T for
sufficiently small T > 0.

Lemma 7. If

qT (B1 + 3B2)Rq−1 ⩽
1
2
, (5.74)

then H(v)(x, t) is a contraction on DR,T .

Proof. Suppose that v1(x, t), v2(x, t) ∈ DR,T . We have∣∣∣∣∣∣∣∣(1 + |x|2)1/2∇v1 −
x

(1 + |x|2)1/2
v1

∣∣∣∣q − ∣∣∣∣(1 + |x|2)1/2∇v2 −
x

(1 + |x|2)1/2
v2

∣∣∣∣q∣∣∣∣
⩽ q max

{∣∣∣∣(1 + |x|2)1/2∇v1 −
x

(1 + |x|2)1/2
v1

∣∣∣∣q−1

,∣∣∣∣(1 + |x|2)1/2∇v2 −
x

(1 + |x|2)1/2
v2

∣∣∣∣q−1}[
(1 + |x|2)1/2|∇v1 −∇v2|+ |v1 − v2|

]
⩽ q max

{
|(1 + |x|2)1/2|∇v1|+ |v1||q−1, |(1 + |x|2)1/2|∇v2|+ |v2||q−1

}
×

[
(1 + |x|2)1/2|∇v1 −∇v2|+ |v1 − v2|

]
⩽ q max

{∣∣∣∣(1 + |x|2)1/2
3∑

j=1

∣∣∣∣∂v1

∂xj

∣∣∣∣ + |v1|
∣∣∣∣q−1

,

∣∣∣∣(1 + |x|2)1/2
3∑

j=1

∣∣∣∣∂v1

∂xj

∣∣∣∣ + |v1|
∣∣∣∣q−1}

×
[
(1 + |x|2)1/2

3∑
j=1

∣∣∣∣∂v1

∂xj
− ∂v2

∂xj

∣∣∣∣ + |v1 − v2|
]

⩽ qRq−1∥v1 − v2∥T . (5.75)

Put

ρj(y, τ) =
∣∣∣∣(1 + |x|2)1/2∇vj −

x

(1 + |x|2)1/2
vj

∣∣∣∣q, j = 1, 2. (5.76)

By (5.75), we arrive at the bound

∥ρ1 − ρ2∥T ⩽ qRq−1∥v1 − v2∥T . (5.77)

We have

∥H(v1)−H(v2)∥T ⩽ sup
x∈R3, t∈[0,T ]

∫ t

0

∫
R3
|Gq(x, y, t− τ)||ρ1(y, τ)− ρ2(y, τ)| dy dτ

+
3∑

j=1

sup
x∈R3, t∈[0,T ]

∫ t

0

∫
R3

(1 + |x|2)1/2

∣∣∣∣∂Gq(x, y, t− τ)
∂xj

∣∣∣∣|ρ1(y, τ)− ρ2(y, τ)| dy dτ

⩽ T [B1(T ) + 3B2(T )]∥ρ1 − ρ2∥T . (5.78)
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Using (5.77) and (5.78), we arrive at the desired inequality

∥H(v1)−H(v2)∥T ⩽ T [B1(T ) + 3B2(T )]qRq−1∥v1 − v2∥T . □ (5.79)

We now use the standard algorithm for extending solutions in time. This algo-
rithm was described in [28] for Volterra integral equations in C([0, T ]; B), where B
is a Banach space. In our case, B = W1. In outline, the scheme of extension in
time is as follows. Having already proved the existence of a small T1 > 0 such that
the integral equation (5.9) has a unique solution v(x, t) ∈ C([0, T1]; W1), we can
rewrite (5.9) in the following form for t ∈ [T1, T ], T > T1:

v(x, t) = v(x, T1)+
∫ t

T1

∫
R3

Gq(x, y, t−τ)
∣∣∣∣(1+|y|2)1/2∇v(y, τ)− y

(1 + |y|2)1/2
v

∣∣∣∣q dy dτ,

(5.80)
where

v(x, T1) =
∫

R3
Gα(x, y, T1)(1 + |y|2)α∆3u0(y) dy

+
∫ T1

0

∫
R3

Gq(x, y, T1 − τ)
∣∣∣∣(1 + |y|2)1/2∇v(y, τ)− y

(1 + |y|2)1/2
v

∣∣∣∣q dy dτ. (5.81)

We have v(x, T1) ∈ W1 by Lemma 4. Choose a large R > 0 in such a way that

∥v(x, T1)∥ := sup
x∈R1

|v(x, T1)|+
3∑

j=1

sup
x∈R1

(1 + |x|2)1/2

∣∣∣∣∂v(x, T1)
∂xj

∣∣∣∣ ⩽
R

2
. (5.82)

Then repeat the proofs of Lemmas 5–7 to show that the integral equation (5.80) has
a solution on the interval t ∈ [T1, T2] for some T2 > T1. Continuing this algorithm,
we conclude that either the solution extends unrestrictedly to the whole time axis,
or there is a moment of time T0 = T0(u0) > 0 such that

lim
T↑T0

∥v∥T = +∞.

Thus we arrive at the conclusion of the theorem. □

We now need to state and prove a result on the solution u(x, t) of the integral
equation (5.1).

Theorem 3. For every u0(x)∈C(2)(R3) satisfying the condition (5.12), there is
a maximum number T0 = T0(u0) > 0 such that for every T ∈ (0, T0) the integral
equation (5.1) has the unique solution

u(x, t) ∈ C([0, T ]; W2).

Moreover, either T0 = +∞, or T0 < +∞, and in the latter case we have

lim
T↑T0

∥u∥1,T = +∞, (5.83)

where

∥u∥1,T := sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2|u(x, t)|+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)
∣∣∣∣∂u(x, t)

∂xj

∣∣∣∣.
(5.84)
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Proof. Note that the solution u(x, t) of the integral equation (5.1) and the solution
v(x, t) of the integral equation (5.9) are related by the equality

v(x, t) = (1 + |x|2)1/2u(x, t). (5.85)

Moreover, u(x, t) is a solution of (5.1) if and only if v(x, t) is a solution of (5.9).

Lemma 8. We have the double inequality

1
2
∥v∥T ⩽ ∥u∥1,T ⩽ 4∥v∥T . (5.86)

Proof. Note that

∂v

∂xj
= (1 + |x|2)1/2 ∂u

∂xj
+

xj

(1 + |x|2)1/2
u. (5.87)

We have v(x, t) ∈ C([0, T ]; W1) for every T ∈ (0, T0). Hence the following chains of
inequalities hold:

∥v∥T = sup
x∈R3, t∈[0,T ]

|v(x, t)|+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2

∣∣∣∣∂v(x, t)
∂xj

∣∣∣∣
= sup

x∈R3, t∈[0,T ]

(1 + |x|2)1/2|u(x, t)|

+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2

∣∣∣∣(1 + |x|2)1/2 ∂u

∂xj
+

xj

(1 + |x|2)1/2
u

∣∣∣∣
⩽ 2 sup

x∈R3, t∈[0,T ]

(1 + |x|2)1/2|u(x, t)|

+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)
∣∣∣∣ ∂u

∂xj

∣∣∣∣ ⩽ 2∥u∥1,T , (5.88)

∥u∥1,T = sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2|u(x, t)|+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)
∣∣∣∣ ∂u

∂xj

∣∣∣∣
⩽ sup

x∈R3, t∈[0,T ]

(1 + |x|2)1/2|u(x, t)|

+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2

∣∣∣∣(1 + |x|2)1/2 ∂u

∂xj
+

xj

(1 + |x|2)1/2
u

∣∣∣∣
+

3∑
j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2

∣∣∣∣ xj

(1 + |x|2)1/2
u

∣∣∣∣
⩽ 4 sup

x∈R3, t∈[0,T ]

|v(x, t)|+
3∑

j=1

sup
x∈R3, t∈[0,T ]

(1 + |x|2)1/2

∣∣∣∣∂v(x, t)
∂xj

∣∣∣∣ ⩽ 4∥v∥T .

(5.89)

This proves Lemma 8. □
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Let t1, t2 ∈ [0, T ] be arbitrary numbers. Then

v(x, t2)− v(x, t1) = (1 + |x|2)1/2[u(x, t2)− u(x, t1)].

In our derivation of (5.89) we actually proved that

sup
x∈R3

(1 + |x|2)1/2|u(x, t2)− u(x, t1)|+
3∑

j=1

sup
x∈R3

(1 + |x|2)
∣∣∣∣∂u(x, t2)

∂xj
− ∂u(x, t1)

∂xj

∣∣∣∣
⩽ 4 sup

x∈R3
|v(x, t2)− v(x, t1)|+ 4

3∑
j=1

sup
x∈R3

(1 + |x|2)1/2

∣∣∣∣∂v(x, t2)
∂xj

− ∂v(x, t1)
∂xj

∣∣∣∣ → +0

(5.90)

as |t2 − t1| → +0 for any t1, t2 ∈ [0, T ]. Combining this with (5.89), we see that
u(x, t) ∈ C([0, T ]; W2) for every T ∈ (0, T0). The double inequality (5.86) implies
that if T0 < +∞, then

lim
T↑T0

∥u∥1,T = +∞. □

§ 6. Solubility of the Cauchy problem
in the weak sense (4.3) for q > 3/2

The following main assertion holds.

Theorem 4. If q > 3/2, then for every function u0(x) ∈ C2(R3) satisfying the
conditions

|u0(x)| ⩽ D1

(1 + |x|2)1/2
, |∇u0(x)| ⩽ D2

1 + |x|2
, (6.1)

|∆3u0(x)| ⩽ D3

(1 + |x|2)α
, α >

3
2
, (6.2)

the Cauchy problem has a local-in-time weak solution in the sense of Definition 1.

Proof. Step 1. Properties of non-classical heat potentials. Our current task is to
study some properties of the following non-classical volume heat potentials:

V0(x, t) := V0[ρ0](x, t) :=
∫

R3
E (x− y, t)ρ0(y) dy, (6.3)

V (x, t) := V [ρ](x, t) :=
∫ t

0

∫
R3

E (x− y, t− τ)ρ(y, τ) dy dτ (6.4)

under certain conditions on the densities ρ0(x) and ρ(x, t). We first state a classical
result which follows directly from [29].

Lemma 9. Suppose that ρ0(x) ∈ Cb((1+|x|2)α; R3) for α > 3/2. Then the classical
Newtonian volume potential

W0(x) := W0[ρ0](x) := −
∫

R3

1
4π|x− y|

ρ0(y) dy
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satisfies the equality
⟨∆xW0(x), ϕ(x)⟩ = ⟨ρ0(x), ϕ(x)⟩

for all ϕ(x) ∈ D(R3), where ⟨ · , · ⟩ is the duality bracket between D(R3) and D ′(R3),
and the operator ∆x is understood in the sense of distributional derivatives.

Proof. Although this result is “classical”, we give a proof of it since a similar tech-
nique will be used in a more complicated case to prove the equality (6.6).

Fix an arbitrary test function ϕ(x) ∈ D(R3). Suppose that

supp ϕ(x) ⊂ O(0, R) for some R > 0.

Then, clearly,

supp ∆xϕ(x) ⊂ O(0, R) ⊂ O(0, nR) for all n ⩾ 2.

The following chain of equalities holds:

⟨∆xW0(x), ϕ(x)⟩ = ⟨W0(x), ∆xϕ(x)⟩

=
∫

R3
W0(x)∆xϕ(x) dx =

∫
O(0,R)

W0(x)∆xϕ(x) dx

= − 1
4π

∫
O(0,R)

∆xϕ(x)
[∫

O(0,2R)

ρ0(y)
|x− y|

dy +
∫

R3\O(0,2R)

ρ0(y)
|x− y|

dy

]
dx

= − 1
4π

∫
O(0,R)

∆xϕ(x)
∫

O(0,2R)

ρ0(y)
|x− y|

dy dx. (6.5)

Note that ∫
O(0,R)

∆xϕ(x)
∫

R3\O(0,2R)

ρ0(y)
|x− y|

dy dx

=
∫

O(x,R)

ϕ(x)∆x

∫
R3\O(0,2R)

ρ0(y)
|x− y|

dy dx = 0

since, in the classical sense,

∆x

∫
R3\O(0,2R)

ρ0(y)
|x− y|

dy =
∫

R3\O(0,2R)

ρ0(y)∆x
1

|x− y|
dy = 0 for x ∈ O(0, R).

We continue the chain (6.5)

⟨∆xW0(x), ϕ(x)⟩ = −
∫

O(0,R)

∆xϕ(x)
∫

O(0,2R)

ρ0(y)
4π|x− y|

dy dx

= −
∫

O(0,2R)

∆xϕ(x)
∫

O(0,2R)

ρ0(y)
4π|x− y|

dy dx

= −
∫

O(0,2R)

ρ0(y)
∫

O(0,3R)

1
4π|x− y|

∆xϕ(x) dx dy

=
∫

O(0,2R)

ρ0(y)ϕ(y) dy =
∫

R3
ρ0(y)ϕ(y) dy = ⟨ρ0, ϕ⟩,
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where we have used the well-known equality∫
O(0,3R)

1
4π|x− y|

∆xϕ(x) dx dy = −ϕ(y) for y ∈ O(0, 2R),

which holds, in particular, for any function ϕ(x) ∈ C∞0 (O(0, 3R)) with supp ϕ ⊂
O(0, R) (see, for example, [30]). □

We can now study the non-classical volume heat potential V (x, t) = V [ρ](x, t)
defined in (6.4). The following lemma is essentially an analogue of Lemma 9.

Lemma 10. Suppose that ρ(x, t) ∈ C([0, T ]; Cb((1+ |x|2)α; R3)) for α > 3/2. Then

V (x, t) ∈ C(1)([0, T ]; W2),

where W2 is the Banach space defined in § 3. Moreover,

⟨Mx,t[V ](x, t), ϕ(x)⟩ = ⟨ρ(x, t), ϕ(x)⟩ (6.6)

for all ϕ(x) ∈ D(R3) and all t ∈ [0, T ], where ⟨ · , · ⟩ is the duality bracket between
D(R3) and D ′(R3) and

Mx,t[w](x, t) := ∆3
∂w(x, t)

∂t
+ σ1∆2w(x, t) + σ2wx3x3(x, t).

Proof. Part 1. Since

ρ(x, t) ∈ C([0, T ]; Cb((1 + |x|2)α; R3)),

we have
(1 + |x|2)αρ(x, t) ∈ C([0, T ]; Cb(R3)). (6.7)

Therefore, exactly as in the proof of Lemma 3 for α > 3/2, one can prove in view
of (5.15) and (5.16) that

V (x, t) ∈ C([0, T ]; W2). (6.8)

Note that the following pointwise equality holds for all (x, t) ∈ R3 × [0, T ]:

∂V (x, t)
∂t

= −
∫

R3

1
4π|x− y|

ρ(y, t) dy +
∫ t

0

∫
R3

E1(x− y, t− τ)ρ(y, τ) dy dτ

= W0[ρ](x, t) + W1[ρ](x, t), (6.9)

where

E1(x− y, t− τ) :=
∂E (x− y, t− τ)

∂t
, (6.10)

W0(x, t) := W0[ρ](x, t) = −
∫

R3

1
4π|x− y|

ρ(y, t) dy, (6.11)

W1(x, t) := W1[ρ](x, t) :=
∫ t

0

∫
R3

E1(x− y, t− τ)ρ(y, τ) dy dτ. (6.12)
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Since ρ(x, t) ∈ C([0, T ]; Cb((1+|x|2)α; R3)), we can use Lemma 4.1 of [27] in exactly
the same way as in the proof of Lemma 3 to show that

W0(x, t) ∈ C([0, T ]; W2). (6.13)

The function W1(x, t) can be studied in the same way as the function U1(x, t) in
Lemma 3. In view of (5.15) and (5.16), one can prove that

W1(x, t) ∈ C([0, T ]; W2). (6.14)

Hence we conclude from (6.9), (6.13) and (6.14) that

∂V (x, t)
∂t

∈ C([0, T ]; W2).

Thus, V (x, t) ∈ C(1)([0, T ]; W2).

Part 2. By Lemma 9,

⟨∆3xW0(x, t), ϕ(x)⟩ = ⟨ρ(x, t), ϕ(x)⟩ for all t ∈ [0, T ] (6.15)

and for any test function ϕ(x)∈D(R3). We have

⟨∆3xW1(x, t) + σ1∆2xV (x, t) + σ2Vx3x3(x, t), ϕ(x)⟩
= ⟨W1(x, t), ∆3xϕ(x)⟩+ ⟨V (x, t), σ1∆2xϕ(x) + σ2ϕx3x3⟩ =: J1 + J2 (6.16)

for any test function ϕ(x) ∈ D(R3). Hence there is an R = R(ϕ) > 0 such that
supp ϕ(x) ⊂ O(0, R). We consider J1 and J2 separately. The following chain of
equalities holds:

J1 =
∫

O(0,R)

dx ∆3xϕ(x)
∫ t

0

dτ

∫
R3

dy E1(x− y, t− τ)ρ(y, τ)

=
∫ t

0

dτ

∫
O(0,R)

dx ∆3xϕ(x)
[∫

O(0,2R)

E1(x− y, t− τ)ρ(y, τ) dy

+
∫

R3\O(0,2R)

E1(x− y, t− τ)ρ(y, τ) dy

]
=: J11 + J12, (6.17)

where

J11 :=
∫ t

0

dτ

∫
O(0,R)

dx ∆3xϕ(x)
∫

O(0,2R)

E1(x− y, t− τ)ρ(y, τ) dy, (6.18)

J12 :=
∫ t

0

dτ

∫
O(0,R)

dx ∆3xϕ(x)
∫

R3\O(0,2R)

E1(x− y, t− τ)ρ(y, τ) dy. (6.19)

Note that integration by parts yields the equality

J12 =
∫ t

0

dτ

∫
O(0,R)

dx ϕ(x)
∫

R3\O(0,2R)

∆3xE1(x− y, t− τ)ρ(y, τ) dy. (6.20)
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Consider J2. We have

J2 = ⟨V (x, t), σ1∆2xϕ(x) + σ2ϕx3x3⟩

=
∫

O(0,R)

dx [σ1∆2xϕ(x) + σ2ϕx3x3(x)]
∫ t

0

dτ

∫
R3

E (x− y, t− τ)ρ(y, τ) dy

=
∫ t

0

dτ

∫
O(0,R)

dx [σ1∆2xϕ(x) + σ2ϕx3x3(x)]

×
[∫

O(0,2R)

E (x− y, t− τ)ρ(y, τ) dy +
∫

R3\O(0,2R)

E (x− y, t− τ)ρ(y, τ) dy

]
=: J21 + J22, (6.21)

where

J21 :=
∫ t

0

dτ

∫
O(0,R)

dx [σ1∆2xϕ(x) + σ2ϕx3x3(x)]

×
∫

O(0,2R)

E (x− y, t− τ)ρ(y, τ) dy, (6.22)

J22 :=
∫ t

0

dτ

∫
O(0,R)

dx [σ1∆2xϕ(x) + σ2ϕx3x3(x)]

×
∫

R3\O(0,2R)

E (x− y, t− τ)ρ(y, τ) dy. (6.23)

Integration by parts yields that

J22 =
∫ t

0

dτ

∫
O(0,R)

dx ϕ(x)
∫

R3\O(0,2R)

[σ1∆2xE (x− y, t− τ)

+ σ2Ex3x3(x− y, t− τ)]ρ(y, τ) dy. (6.24)

It follows from the expressions (6.20) and (6.24) that

J12 + J22 =
∫ t

0

dτ

∫
O(0,R)

dx ϕ(x)
∫

R3\O(0,2R)

[
∆3x

∂E (x− y, t− τ)
∂t

+ σ1∆2xE (x− y, t− τ) + σ2Ex3x3(x− y, t− τ)
]
ρ(y, τ) dy = 0 (6.25)

by the definition of the fundamental solution E (x, t). In view of (6.18) and (6.22),
we have

J11 + J21 =
∫ t

0

dτ

∫
O(0,R)

dx ∆3xϕ(x)
∫

O(0,2R)

E1(x− y, t− τ)ρ(y, τ) dy

+
∫ t

0

dτ

∫
O(0,R)

dx [σ1∆2xϕ(x) + σ2ϕx3x3(x)]
∫

O(0,2R)

E (x− y, t− τ)ρ(y, τ) dy

=
∫ t

0

dτ

∫
O(0,2R)

dy ρ(y, τ)
∫

O(0,3R)

dx

[
E (x− y, t− τ)

∂t
∆3xϕ(x)

+ σ1E (x− y, t− τ)∆2xϕ(x) + σ2E (x− y, t− τ)ϕx3x3(x)
]
. (6.26)
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We consider the expression

K :=
∫

O(0,3R)

[
E (x− y, t− τ)

∂t
∆3xϕ(x)

+ σ1E (x− y, t− τ)∆2xϕ(x) + σ2E (x− y, t− τ)ϕx3x3(x)
]

dx (6.27)

separately. Note that there is a limit equality

K = lim
ε→+0

Kε, (6.28)

where

Kε :=
∫

O(0,3R)\O(y,ε)

[
E (x− y, t− τ)

∂t
∆3xϕ(x)

+ σ1E (x− y, t− τ)∆2xϕ(x) + σ2E (x− y, t− τ)ϕx3x3(x)
]

dx (6.29)

for any y ∈ O(0, 2R) and ε ∈ (0, R/2). Integrating by parts in the integral (6.29),
we obtain the equality

Kε = Kε
1 + Kε

2 + Kε
3 , (6.30)

where

Kε
1 =

∫
∂O(0,3R)∪∂O(y,ε)

{
∂E (x− y, t− τ)

∂t

∂ϕ(x)
∂nx

+ σ1E (x− y, t− τ)
[
∂ϕ(x)
∂x1

cos(nx, e1) +
∂ϕ(x)
∂x2

cos(nx, e2)
]

+ σ2E (x− y, t− τ)
∂ϕ(x)
∂x3

cos(nx, e3)
}

dSx, (6.31)

Kε
2 = −

∫
∂O(0,3R)∪∂O(y,ε)

[
∂2E (x− y, t− τ)

∂t ∂nx
+ σ1

∂E (x− y, t− τ)
∂x1

cos(nx, e1)

+ σ1
∂E (x− y, t− τ)

∂x2
cos(nx, e2) + σ2

∂E (x− y, t− τ)
∂x3

cos(nx, e3)
]
ϕ(x) dSx,

(6.32)

Kε
3 =

∫
O(0,3R)\O(y,ε)

ϕ(x)Mx,t[E ](x− y, t− τ) dx = 0, (6.33)

since it follows from the definition of the fundamental solution E (x− y, t− τ) that

Mx,t[E ](x− y, t) = 0 for all (x, t) ∈ (O(0, 3R) \O(y, ε))× [0, T ].

Moreover,∫
∂O(0,3R)

{
∂E (x− y, t− τ)

∂t

∂ϕ(x)
∂nx

+ σ1E (x− y, t− τ)
[
∂ϕ(x)
∂x1

cos(nx, e1) +
∂ϕ(x)
∂x2

cos(nx, e2)
]
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+ σ2E (x− y, t− τ)
∂ϕ(x)
∂x3

cos(nx, e3)
}

dSx = 0

since supp ϕ(x) ⊂ O(0, R). We also have∫
∂O(y,ε)

{
∂E (x− y, t− τ)

∂t

∂ϕ(x)
∂nx

+ σ1E (x− y, t− τ)
[
∂ϕ(x)
∂x1

cos(nx, e1) +
∂ϕ(x)
∂x2

cos(nx, e2)
]

+ σ2E (x− y, t− τ)
∂ϕ(x)
∂x3

cos(nx, e3)
}

dSx → 0

as ε → +0 for every fixed y ∈ O(0, 2R) since ϕ(x) ∈ C∞0 (O(0, 3R)) and the fun-
damental solution E (x, t) satisfies the bounds (5.5) while the surface area of the
sphere ∂O(y, ε) is equal to 2πε2. Hence we have

lim
ε→+0

Kε
1 = 0. (6.34)

Finally, since ϕ(x) = 0 on ∂O(0, 3R), the expression for Kε
2 reduces to the integral

Kε
2 = −

∫
∂O(y,ε)

[
∂2E (x− y, t− τ)

∂t ∂nx
+ σ1

∂E (x− y, t− τ)
∂x1

cos(nx, e1)

+ σ1
∂E (x− y, t− τ)

∂x2
cos(nx, e2) + σ2

∂E (x− y, t− τ)
∂x3

cos(nx, e3)
]
ϕ(x) dSx,

which can be rewritten in the form

Kε
2 = −ϕ(y)

∫
∂O(y,ε)

[
∂2E (x− y, t− τ)

∂t ∂nx
+ σ1

∂E (x− y, t− τ)
∂x1

cos(nx, e1)

+ σ1
∂E (x− y, t− τ)

∂x2
cos(nx, e2) + σ2

∂E (x− y, t− τ)
∂x3

cos(nx, e3)
]

dSx

+
∫

∂O(y,ε)

[
∂2E (x− y, t− τ)

∂t ∂nx
+ σ1

∂E (x− y, t− τ)
∂x1

cos(nx, e1)

+ σ1
∂E (x− y, t− τ)

∂x2
cos(nx, e2) + σ2

∂E (x− y, t− τ)
∂x3

cos(nx, e3)
]

× [ϕ(y)− ϕ(x)] dSx

=: Kε
21 + Kε

22.

Note that
|ϕ(x)− ϕ(y)| ⩽ a(y, ε)|x− y| for all x ∈ O(y, ε).

Hence, in view of the bounds (5.5) for the fundamental solution E (x, t), we arrive
at the limit property

lim
ε→+0

Kε
22 = 0.

Notice that∫
∂O(y,ε)

[
∂2E (x− y, t− τ)

∂t ∂nx
+ σ1

∂E (x− y, t− τ)
∂x1

cos(nx, e1)
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+ σ1
∂E (x− y, t− τ)

∂x2
cos(nx, e2) + σ2

∂E (x− y, t− τ)
∂x3

cos(nx, e3)
]

dSx = 0,

which can be verified using the Laplace transform. Therefore,

lim
ε→+0

Kε
2 = 0. (6.35)

Thus, in view of the limit properties (6.33), (6.35) and the equality (6.33), we
conclude from (6.30) that

lim
ε→+0

Kε = 0 (6.36)

and, therefore, K = 0 by (6.28). Hence it follows from (6.26) that

J11 + J21 = 0.

Therefore, by (6.16), we have

⟨∆3xW1(x, t) + σ1∆2xW2(x, t) + σ2W2x3x3(x, t), ϕ(x)⟩ = 0

for all ϕ(x) ∈ D(R3). In view of (6.15), we arrive at (6.6). □

Lemma 11. For any density ρ0(x) ∈ C([0, T ]; C((1+|x|2)α; R3)) with α > 3/2, the
non-classical volume potential V0(x, t) (defined in (6.3)) belongs to C(1)([0, T ]; W2)
for every T > 0. Moreover, we have

⟨Mx,tV0(x, t), ϕ(x)⟩ = 0 for t ∈ [0, +∞) (6.37)

for all ϕ(x) ∈ D(R3).

Proof. Repeat verbatim the corresponding part of the proof of Lemma 10. □

Lemma 12. Suppose that u0(x) ∈ C2(R3) has the following properties:

|u0(x)| ⩽ A1

(1 + |x|2)1/2
, |∇u0(x)| ⩽ A2

1 + |x|2
,

|∆3u0(x)| ⩽ A3

(1 + |x|2)α
, α >

3
2
.

Then
−

∫
R3

1
4π|x− y|

∆3u0(y) dy = u0(x). (6.38)

Proof. This can be proved by applying to u0(x) Green’s third formula for the
Laplace operator in O(0, R) and then letting R → +∞ and using the inequali-
ties in the hypotheses of the lemma. □

We can now prove the following assertion.

Lemma 13. For every function u0(x) satisfying the hypotheses of Lemma 12 and
for every point x ∈ R3 we have

V0[∆3u0(x)](x, 0) = u0(x). (6.39)
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Proof. Note that the following representation holds for every point x ∈ R3:

V0[∆3u0](x, 0) = −
∫

R3

1
4π|x− y|

∆3u0(y) dy.

Now use Lemma 12. □

We finally conclude from Lemmas 10 and 11 that, by the integral equation (5.1),

u(x, t) =V [|∇u|q](x, t) + V0[∆3u0](x, t)∈C(1)([0, T ]; W2) for every T ∈ (0, T0).

Therefore the following assertion holds.

Lemma 14. For any function u0(x) ∈ C(2)(R3) satisfying the inequalities (6.1)
and (6.2), the solution of the integral equation (5.1) belongs to

C(1)([0, T ]; W2) for all T ∈ (0, T0). (6.40)

Step 2. Relation of the constructed solution to local weak solutions of the Cauchy
problem. Note that u(x, t) ∈ C([0, T ]; W2) for every t ∈ (0, T0) by Theorem 3.
Hence,

ρ(x, t) := |∇u|q ∈ C([0, T ]; Cb((1 + |x|2)q; R3)), q >
3
2
. (6.41)

In view of Lemmas 10 and 11 and the explicit form of the integral equation (5.1)
we have

⟨Mx,t[u](x, t), ϕ(x)⟩ = ⟨|∇u(x, t)|q, ϕ(x)⟩ for all ϕ(x) ∈ D(R3),

where ⟨ · , · ⟩ is the duality bracket between D(R3) and D ′(R3). Moreover, note
that the test function ϕ(x) may depend on t ∈ [0, T ] as a parameter. Thus we have
actually proved that

⟨Mx,t[u](x, t), ϕ(x, t)⟩ = ⟨|∇u(x, t)|q, ϕ(x, t)⟩ for t ∈ [0, T ] (6.42)

and for all ϕ(x, t) ∈ C∞,1
x,t (R3×[0, T ]) satisfying the conditions in the definition (4.3)

of a weak solution. Observe that since |∇u(x, t)|q ∈ C([0, T ]; Cb((1 + |x|2)q; R3)),
we have

⟨|∇u(x, t)|q, ϕ(x, t)⟩ =
∫

R3
|∇u(x, t)|qϕ(x, t) dx for all t ∈ [0, T ]. (6.43)

Moreover,

⟨Mx,t[u](x, t), ϕ(x, t)⟩ =
〈

∆3x
∂u(x, t)

∂t
+ σ1∆2xu(x, t) + σ2ux3x3(x, t), ϕ(x, t)

〉
= −

3∑
j=1

〈
∂2u(x, t)
∂xj ∂t

,
∂ϕ(x, t)

∂xj

〉
− σ1

2∑
j=1

〈
∂u(x, t)

∂xj
,
∂ϕ(x, t)

∂xj

〉

− σ2

〈
∂u(x, t)

∂x3
,
∂ϕ(x, t)

∂x3

〉
. (6.44)
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We also have
3∑

j=1

〈
∂2u(x, t)
∂xj ∂t

,
∂ϕ(x, t)

∂xj

〉
=

∫
R3

(
∇ ∂u(x, t)

∂t
,∇ϕ(x, t)

)
dx

=
∫

R3

(
∂∇u(x, t)

∂t
,∇ϕ(x, t)

)
dx

=
∫

R3

∂

∂t
(∇u(x, t),∇ϕ(x, t)) dx−

∫
R3

(∇u(x, t),∇ϕ′t(x, t)) dx, (6.45)

2∑
j=1

〈
∂u(x, t)

∂xj
,
∂ϕ(x, t)

∂xj

〉
=

∫
R3

[ux1(x, t)ϕx1(x, t) + ux2(x, t)ϕx2(x, t)] dx, (6.46)〈
∂u(x, t)

∂x3
,
∂ϕ(x, t)

∂x3

〉
=

∫
R3

ux3(x, t)ϕx3(x, t) dx for t ∈ [0, T ] (6.47)

and for all ϕ(x, t) ∈ C∞,1
x,t (R3×[0, T ]) satisfying the conditions in the definition (4.3)

of a weak solution.
Integrating both sides of (6.45) with respect to t ∈ [0, T ], we find that∫ T

0

3∑
j=1

〈
∂2u(x, t)
∂xj ∂t

,
∂ϕ(x, t)

∂xj

〉
dt

= −
∫

R3
(∇u0(x),∇ϕ(x, 0)) dx−

∫ T

0

∫
R3

(∇u(x, t),∇ϕ′t(x, t)) dx dt (6.48)

for the test functions ϕ(x, t) in the definition (4.3) of a weak solution. In particular,
ϕ(x, T ) = 0.

Integrating both sides of (6.42) with respect to t ∈ [0, T ], we obtain (4.3) in
view of (6.45)–(6.48). Thus, for q > 3/2 and for arbitrary initial functions u0(x)
satisfying the hypotheses of the theorem, the Cauchy problem has at least one local
weak solution in the sense of Definition 1. □

Remark 1. The question of the uniqueness of a local weak solution of the Cauchy
problem for q > 3/2 is still open.
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[1] H. Brezis and X. Cabré, “Some simple nonlinear PDE’s without solutions”, Boll.
Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1:2 (1998), 223–262.

[2] X. Cabre and Y. Martel, “Existence versus explosion instantanée pour des
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