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Blow-up instability in non-linear wave
models with distributed parameters

M. O. Korpusov and E. A. Ovsyannikov

Abstract. We consider two model non-linear equations describing electric
oscillations in systems with distributed parameters on the basis of diodes
with non-linear characteristics. We obtain equivalent integral equations
for classical solutions of the Cauchy problem and the first and second ini-
tial-boundary value problems for the original equations in the half-space
x > 0. Using the contraction mapping principle, we prove the local-in-time
solubility of these problems. For one of these equations, we use the Pokho-
zhaev method of non-linear capacity to deduce a priori bounds giving rise
to finite-time blow-up results and obtain upper bounds for the blow-up
time. For the other, we use a modification of Levine’s method to obtain
sufficient conditions for blow-up in the case of sufficiently large initial data
and give a lower bound for the order of growth of a functional with the
meaning of energy. We also obtain an upper bound for the blow-up time.

Keywords: non-linear equations of Sobolev type, destruction, blow-up,
local solubility, non-linear capacity, bounds for the blow-up time.

§ 1. Introduction

The so-called LC-chain transmission lines on the basis of semiconductor diodes
(stabilitrons, varicaps with non-linear characteristics) are described by a differen-
tial-difference equation which reduces to the following equation [1] in the infinite
transmission line limit:
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where ¢ = ¢(x,t) is the electric field potential, ¢q is the phase velocity of linear
waves, « is the so-called coefficient of non-linearity and 3 is the coefficient of tem-
poral dispersion. Note that analogous equations arise in the study of biological
membranes and nerve fibres, which may be described as non-linear two-wire trans-
mission lines with an active element similar to the (p — n) junction [2]. Moreover,
a similar equation arises in the study of non-linear ion-sound waves in the large
Debye length limit [3]:
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Here (z,y,2) € R3, t > 0, ¢ = ¢(x,9,2,t) is the electric field potential and & =
1/r%, where rp is the Debye length.

Note that equations (1.1) and (1.2) contain the non-coercive non-linear term
0?¢? /0t2. Such a non-linearity often arises in mathematical physics. The following
equation was suggested in [4]:

_ A0 2 0 3
Q1alE =0, Qlai=A T (A(E)| 6t)’ (z,y,2) €R®, t>0.

Moreover, the following (1 4 1)-dimensional equation arises in electrodynamics:
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Sufficient conditions for the occurrence of blow-up regimes in the Cauchy problem
and initial-boundary value problems for (1.3) were obtained in [3].

The following equation was suggested in [5] when considering self-oscillations in
systems with distributed parameters on the basis of tunnel diodes with non-linear
characteristics:

¢ 0%

—47E? + E), (z,y,2) €ER® t>0. (1.3)
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(1.4)
Here ¢ = ¢(x,t) is the electric field potential. Conditions for the occurrence

of blow-up regimes in the first boundary-value problem on an interval were obtained
in [6]. The following equation arises in the study of quasi-stationary processes in
semiconductors (see [7]):

D¢ 207 L0 8¢ AP
oz~ oz Parzasr ” Tl (1.5)
zeRY t>0, ¢>0, >0, v>0.

We use the term ‘distributed parameters’ in the title of the present paper because
the equations originally arising for finite electric chains (or electric chains of nerve
cells in the biological case) are differential-difference equations, and partial differ-
ential equations arise in the infinite chain limit.

In this paper we study the Cauchy problem (z € R, ¢ > 0) and the first and sec-
ond boundary-value problems in a half-space (z > 0, t > 0) for the equations (1.1)
and (1.5). We prove their unique solubility in the classical sense and use the
non-linear capacity method of Pokhozhaev [8] to obtain a priori bounds which give
rise to conditions for the occurrence of blow-up regimes in the Cauchy problem and
the second mixed boundary-value problem for (1.1). In the Cauchy problem for
(1.5), we use the method of Levine [9], [10] (see also [7]) to obtain sufficient condi-
tions for the destruction of solutions with sufficiently large initial data. We consider
the equations (1.1) and (1.5) in a single paper because they have a common linear
part. We use the potential theory for this linear part to obtain equivalent integral
equations. They differ only in the volume potential that depends on the correspond-
ing non-linearities. The solubility of the resulting non-linear integral equations can
be studied using the contraction mapping principle. We first prove their solubility
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(in certain Banach spaces to be defined in the next section) on a small time interval
[0,7]. Nothing more can be said about the equation (1.1) since the order of the
derivative in time of the non-linear term

9%u?
ot?

coincides with the leading order of the derivative in time in the linear part of the
equation. But for (1.5), the order of the derivative of the non-linear term

Olu|%u
ot

is equal to 1 and the leading order in the linear part is equal to 2. Hence we prove
the existence of so-called non-extendable solutions of the corresponding problems.
This means that we prove the existence of a Ty > 0 such that the solution u(z,t)
of the integral equation exists in the class C([0,7});B) and either Ty = +oo or
Ty < 400, and the following limit property holds in the latter case:

lim [u(t)|[s = +oo.

We mention the papers [11]-[23] devoted to investigation of sufficient conditions
for the occurrence of blow-up regimes and local-in-time solubility of non-linear
equations of mathematical physics. They contain analytical and numerical studies
of the occurrence of blow-up regimes in mathematical models of plasma physics
and the physics of semiconductors. Conditions for instantaneous blow-up have been
found for some equations ([3], [12]).

Equations (1.1), (1.4) and (1.5) belong to the class of non-linear equations
of Sobolev type. We note that linear and non-linear equations of Sobolev type
have been studied in many papers. For example, initial-boundary value problems
for equations of Sobolev type have been considered in a general form and as exam-
ples in the papers of Sviridyuk, Zagrebina and Zamyshlyaeva [24]—[26].

§ 2. Notation

Given any a,b,d € R' U {—oc0} U {+oc}, we write |a,b] for an interval of any
of the four types
(a,b), la,b], (a,b], [a,b).

We write |a, d] for the intervals

(a,d], [a,d],
and [d, b] for the two intervals

[d,b), [d,b].

By the function space C™) ([0, d]; C'"™ |a, b]) we mean the set of functions u(z,t)
of (x,t) € |a,b] x[0,d] such that u and all its partial derivatives of order at most m
in the variable ¢ € [0,d] and at most n in the variable z € |a,b] (with the deriva-
tives in = and t being taken in any order) belong to C(|a,b] x [0,d]). Here the
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derivatives at the boundary points of [0,d]| x |a,b] are understood as the corre-
sponding one-sided derivatives. Then all these mixed partial differentiations in
x € |a,b] and t € [0,d] commute. The class of functions C™) ([0, T7; (Cl()n) la,b]) is
defined in a similar way. The subscript b means that the function and all its partial
derivatives of total order less than or equal to m + n belong to C([0,7T]; Cy|a, b]),
that is, they are continuous bounded functions of (z,t) € |a,b] x [0,T].

By the class of functions C(m)([O,T};(C,()n)((l + 22)2/2; [0, 4+00))) for a > 0 we
understand the set of functions u(z,t) € C(m)([O,T];Cén) [0,4+00)) satisfying the
following bound for (x,t) € [0,400) x [0,T7:

Oty (x,t)

2\a/2
(L+ 25" =5 ko

‘ < (T, k1, a) < 400,

where k£ € {0,1,...,n}, 1 € {0,1,...,m}, m,n € Z,. The class of functions
(C(m)([O,T];(Cl()")((l + 22)®/2;RY)) is defined in a similar way. By CU™([0,Tp);
(Cl()")((l +22)%/2;[0,+00))) and C"™ ([0, Tp); (Cl()")((l—l-xQ)a/Q; R')) we mean the sets
of functions u(x,t) such that, for every T € (0,Tp), one has u(z,t) € C"™([0,T];
C§" (1 +22)%/%;[0,+00))) and u(, t) € C™ ([0, T};C{ (1 +2%)*/%; RY)) respec-
tively. Moreover,

OFv(x)

oxk

Cy((1 + 2% RY) = {v(x) e CO(RY): sup (14 22)*/?
R

<+oo},

oFv(x)
ok

Cp((1 +:172)°‘/2; [0,+00)) = {v(w) ec® (Rl): sup (14 :102)”‘/2
z€[0,4+00)

< Jroo}

for k =0,1,2. We write

2

lollr = sup Z

(2,t)eRT x[0,T] 2

v(w,t)
ot

for the norm on the Banach space C?) ([0, T]; Cy(R')) and
2

lollF = sup >

(z,t)€[0,400) x[0,T] =0

dv(z,t)
oti
for the norm on the Banach space C) ([0, T]; Cy[0, +00)). We also write

ot = sup (142 u(z,t)|
(z,t)ER x[0,T]

[[o]

for the norm on the Banach space C([0,T]; Cy((1 + 22)*/%;R')), a > 0, and

Il r = sup (1+2%)*Jv(z, t)]
(1) €[0,+00)x [0.7]

for the norm on the Banach space C([0,T]; Cy((1 + 22)*/2;[0, +00))), a > 0.
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We also use the notation

8jf($—§,t) .
{W}’ ]:1a25

for f(z —&,t) € CPa, &) NCP¢,b], where € € (a,b) for all t > 0 and the deriva-
tives at £ are understood as one-sided derivatives. This function is equal to

ajf(x - Eat)

5 for z#£E t>0,

and is defined in an arbitrary way at * = & Let || - ||, be the standard norm
on the Lebesgue space LP(R'), where p > 1. We write C™) ([0, T]; H*(R')) for
the space of H*(R!)-valued functions f(t): [0,T] — H*(R!) (where H*(R!) is the
familiar Sobolev space) such that the strong derivatives f*)(¢), t € [0,7T], belong
to C([0,T); H*(R')) for all k = 0,...,n. Here the strong derivative f’(¢y) of a func-
tion f(t) at a point ¢¢ € (0,7) is understood in the following sense:

f) — flto)
t— 1o

lim
t—to

1w -

He=(R?)
and the strong derivatives at tg = 0 and tg = T are understood as one-sided limits.

The space C([0, T]; H*(R')) is the set of functions f(t) € H*(R') such that

||f(t1) — f(t2)||HS(]R1) — +0 as |t1 — t2| — 40 for all ty,t5 € [O,T]

§ 3. Definitions of the classical solutions of the problems

In this paper we shall consider the two equations

0? 0?u?
— p— —_— — .1
52 (g — U) + Ugg 52 0, (3.1)
iz(u )+t + Olul9u

Definition 1. A classical solution of the Cauchy problem for (3.1) or (3.2) is
a function

=0, q > 0. (3.2)

u(z,t) € C? ([0, 7];C? (RY))
in the case of (3.1) or a function
u(z,t) € CP([0,7);C2 (1 +2?)*/%RY) with a >0

in the case of (3.2) such that the equations (3.1), (3.2) hold pointwise for all (z,t) €
R! x [0, 7] for some T > 0, and the initial conditions

0
u(@,0) =u(w), F(x.0)=w() wck
hold, where ug(x), ui(x) € Cl(f) (RY) in the case of the equation (3.1) or ug(z), u1 () €

CP((1 + 22)%/2;RY) in the case of (3.2).
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Definition 2. A classical solution of the first boundary-value problem for (3.1)
or (3.2) is a function

u(e,t) € C([0,T);C{V[0, +00))
in the case of (3.1) or a function
u(z,t) € C([0,T);C2 (1 + 22)*/%; [0, +00)))  with >0

in the case of (3.2) such that the equations (3.1), (3.2) hold at every point (z,t) €
[0,400) x [0,T] for some T > 0 and the initial and boundary conditions
ou
u(x,0) = up(z), a(w,(}) = uq(x), x € [0,+00),
u(0,t) = v(t), t€10,7T],

hold, where wug(x),us () E(Cl(f)[O,—Foo) in the case of the equation (3.1) or

uo(x),ur(x) € (Cl()z)((l + 22)2/2; [0, +00)) in the case of (3.2), and v(t) € C?|0,T]
for both.

Definition 3. A classical solution of the second boundary-value problem for (3.1)
or (3.2) is a function

u(z,t) € C? ([0, T); [0, +00))
in the case of (3.1) or a function
u(z,t) € C([0,7);C2 (1 + 22)*/%;[0,+00)))  with >0

in the case of (3.2) such that the equations (3.1), (3.2) hold at every point (z,t) €
[0, +00) x [0,T] for some T' > 0 and the initial and boundary conditions
ou
w(z,0) = up(z), a(x,O) = uy(z), z € [0,+00),
uz(0,1) = p(t), t € 0,77,

hold, where wug(z),u1(x) € (Cz(;?) [0,400) in the case of the equation (3.1) or
uo(x),u1(z) € Cl(,Q)((l + 22)*/2;]0, +00)) in the case of (3.2), and pu(t) € CP)|0,T]
for both.

§ 4. Potential theory

To study the questions of local-in-time solubility of the problems posed above,
we use the potential theory developed in [27]. We note that potential theory for
non-classical equations of Sobolev type was first considered by Kapitonov [28].
It was then studied by Gabov and Sveshnikov [29], [30] and their students (for
example, Pletner [31]).

Consider the operator
0% (0%u 0%u
:: — —_— = . 4.1
M, u(z, ) 2 (8:}32 ) 52 u = u(z,t) (4.1)
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The potential theory for this operator was developed in [27]. Its fundamental
solution is of the form

9<t) /+oo ei/m: ] ( /Jt )
E(x,t) = ———= sin dy. 4.2
(2,1) or | a T NrESY RS (4.2)

It follows directly from the formula (4.2) that &(z,t) is an even function of z.
Therefore one can write

&(x,t) = _6) /+<><> e sin( i ) d
2 Joso p/p2+1 0 \Vp2 41

Using the analytic extension

) etz . ( 2t )
= sin ,
222 +1 V22 +1
where /z is the principal branch. of the integrand in (4.2) to the upper half-plane

Imz > 0 for x > 0 and to the lower half-plane Imz < 0 for x < 0 except the
singular points z = 44, one can obtain the representations

F(z

0(t) / etze ( 2t )
E(x,t) = ———= dz, 4.3
(3;‘ ) 21 ct ) W22+ 1 i V22 +1 y ( )
0(t) / etze ( 2t )
E(x,t) = ———= dz, 4.4
(-T ) 27 cF(—i) Z\/2’2 +1 S \/22 +1 ‘ ( )

where C.(£i) :={z € C: |z Fi| = ¢} with e € (0,1).
The integral representations (4.2)—(4.4) of the fundamental solution &(x,t) give
rise to the properties collected in the following lemma.

Lemma 1. 1) For all m,n € Z; we have
&(x,t) € cm ([O, +00); (C(")(—oo,O]) ncm ([O, +00); cm [0, +oo)).

2) The function
0?&(x,t)
belongs to C™ ([0, +00); C2 (RY)) for everyn € Zy .
3) The fundamental solution &(x,t) satisfies the following equalities for t > 0,
r € RL:

1/t o0& 1
&(x,0) =0, £(0,1) 5 /o Jo(s) ds, 5 (2,0) 26 ,
92& o0& T
_— = = — = — _‘Tl
BT (z,0) =0, N, &(0,8) =0, Nyt 5 (z,0) 46 , (4.5)

where Jo(s) is the Bessel function of order zero and the operator M, , acts on
a function u(x,t) by the rule

Ny u(z,t) = 8%5 (812(;’” + u(x,t)). (4.6)
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4) For all x # 0, t > 0 and k,l € Z, we have the following bounds for the
fundamental solution:

‘ OFHLE (x,t)

Y ‘ < aple, k1) exp(—&\x| + al(s)t) (4.7)

for every € € (0,1), where ag(e, k,1) > 0 and a1(g) > 0 are constants.
Proof. See [27]. O

Definition 4. Given any € € (0,1) and T' > 0, we write M. (T) for the set of func-
tions u(x,t) € C([0,T]; C?)(RY)) satisfying the inequalities

19, cu(z, t)] < e1(T) exp (g]x]),

lu(@,t)] < co(T)exp (ela]),  |ua(w,t)] < c3(T) exp (elz]),
[Uza(2,0) — u(z,0)] < ca(T)exp (elz]),  [|wtwa(@,0) — ue(z,0)] < c5(T) exp (elz])
for all ¢ € [0,T], where the ¢;(T) are certain constants, j = 1,...,5.

The following assertion holds (see [27]).

Lemma 2. For every function u(x,t) € M. (T) we have

t
u(z,t) = /o /R1 E(x—E&t—1)Me ;u(§,7)dEdr

+ [ (66 - 600 - o]+ 2 e — woten) de, (49

where
du(z,0)
ot

Proof. The proof is based on an analogue of Green’s second identity for the operator
M, ¢; see (4.1). Using the explicit formulae (4.2)—(4.4) for the fundamental solution
&(x,t) and the properties collected in Lemma 1, we deduce from it an analogue
of Green’s third identity on the interval [a, b] of the variable z. Letting a — —oo
and b — 400 in the result for functions u(x,t) € M.(T), we obtain (4.8). O

uo(@) = u(r,0),  uia) =

To obtain an analogue of (4.8) for problems on the half-line [0,+00) of the
variable x, we first define the corresponding class of functions.

Definition 5. Given any ¢ € (0,1) and T' > 0, we write M (T) for the set of func-
tions u(x,t) € C?([0,T]; C?)[0, +00)) satisfying the inequalities

1My 1u(z, )| < er(T) exp (ex),
lu(z,1)] < co(T)exp (ex),  |ua(z,t)] < cs(T) exp (ex),
[tz (x,0) — u(z, 0)] < ca(T) exp (ex), [ttza(2,0) — ue(z,0)| < c5(T) exp (ex)

for all ¢t € [0,T], where the ¢;(T) are certain constants, j =1,...,5.
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Lemma 3. For every function u(z,t) € M2 (T) we have

t “+oo
u(z,t) = /0 /0 Ei(z, &t — 7)Me ;u(§, 7)dEdr

+o0 T
+ [ (Ao 0le© - @]+ 25 () - wo)]) as
+2 /t u(0, )N+ & (x,t — 7) dT +u(0,t)e” ", (4.9)
0

t “+o00
u(z,t) = /0 Er(x, &t — T)Me ~u(€, 7)dE dr

0
—+0o0 T
[ (B 0lec© - @]+ “HEE D) - wo)])

t 2 _
+ 2/ Uz (0, 7) [M%;T) + &(x,t —7)| dr — uy(0,t)e™", (4.10)
0
where
é}l(l’,f,t) = g(;ﬂ - £7t) - 5(1’ + £7t)7 (0@2(1',5,75) = éa(x - gvt) + éa(x + gvt)7
the operator M, is defined in (4.1) and the operator Ny ¢ is defined in (4.6).

Proof. See [27]. O

It follows from (4.8)—(4.10) that one should study the properties of the potentials
occurring in the right-hand sides of (4.8)—(4.10).

§ 5. Properties of the potentials related to the Cauchy problem

We study the properties of the potentials in the right-hand side of (4.8). First
consider a potential of the form

Vie.t) = Vg, t) = | &z =8 tnol€)de.
We put
+oo k
Vk('r7t> = B éok(x - f,t),uo(f) d£7 gk:(xvt) = %ﬁ:ﬂf)v ke Z+'

Lemma 4. Suppose that pg(x) € Co(RY). Then
V(z,t) € C*([0, +00); CP (RY))
for every n € N and we have

M, V(e,t) =0 forall xR, >0,

oV e~le—¢l 0*V
V(]},O) = Ov E(l‘vo) = _/Rl 2 /”'0(5) dg? ﬁ(ﬂ?,O) =0

for x € RL.
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Proof. Step 1. Tt follows from the explicit formula (4.2) for the fundamental solution
&(x,t) that the potential V[u](z,t) is infinitely differentiable with respect to t €
[0, +00) and one can differentiate with respect to time under the integral sign.
Fix an arbitrary point (z,t) € R! x R;. Choose a sufficiently large R > 0 such
that € (—R, R). Then the expression for Vi (z,t) can be rewritten in the form

(1) U /+Oo]é”kx—§tuo d§+[/ /}é”kx—étuo(§)§

By part 1) of Lemma 1 we have

8kat U /+°°]agkx—gt) o(E) dé

T 60— 0,)10(2) — £4(0 + 0, ) [/ ”M”‘“) po(€) de.

(5.1)
It follows from the explicit formula (4.2) for the fundamental solution that
E(0—=0,8) =&(0+0,8), keZy.
Therefore (5.1) implies that
t) _ [ {PRE S0 oge) ae (2
We now differentiate (5.2) with respect to 2 and obtain
0*Vi,(z,1) 06,(0 —0,t)  9&,(0+0,1)
T o2z M (z) [ ox B ox }
w [ {EE g ae (5.3
R1 x

It follows from the integral representations (4.3) and (4.4) for the fundamental
solution that the right-hand sides of (5.2) and (5.3) are infinitely differentiable
functions of ¢ € [0, +00). Moreover,

ﬁ@Vk(x,t) 87m82vk(x7t)
otm  9x T otm 9z
for all k,m € Z,..
Step 2. Given any ¢t > 0 and 2 € R!, we apply the operator

o 9?

to the fundamental solution & (z, t) defined in (4.2), where [ is the identity operator.
It follows from (4.2) that one can differentiate it arbitrarily many times with respect
to t under the improper integral sign. We easily see that

P Nt [T LG N (55)
vy A = —— e 111 . .
ot ’ 2 oo p(p? +1)32 Jizri) ™

€ Cy(R* x [0, +00))
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Note that the right-hand side of (5.5) is twice differentiable in 2 and one can
differentiate under the integral sign. The following formula holds:

9% [ 02 I : pt
W(at?“t‘I)g(ﬂ%t):Qﬂ_/oo et (M2+1)3/2 sul(\//m) dj. (5-6)

Moreover, we have

0? 1 [t I ut
_ 9 - ine ~
8t2£(x’t) 27 /,oo ¢ (u? +1)3/2 o ( u? + 1) - (5.7)

Using (5.6) and (5.7), we arrive at the following equality in view of the defini-
tion (5.4) of the operator D, ;:

D,.8(x,t) =0 for zeR', t>0. (5.8)
Step 3. By the results of Steps 1 and 2 we have a chain of equalities
Wy V(a,t) = DaaV (o) = [ Dorflo = € t)ao(€) dE =0
R

for all z € R! and ¢ > 0.
Step 4. It follows from Lemma 1 that

v e lz=¢l 92V

V(2,0) =0, E(x,()):—/ﬂ{l sm@d,  So@0=0 O

For completeness, we give a proof of the following known result.

Lemma 5. Suppose that po(z) € Cp(RY). Then the potential

e_‘x_gl

Vao(a) = Vaolpuol () = — / io(E) e

2
belongs to Vig(x) € (Cl(f) (RY) and satisfies the following equation for every x € R':

V) Vig@) = pola).

Proof. The potential Vig(x) can be written in the form

Ep—— o0 ,—(¢—a)
Viola) = = [ i) de— [ e de

It follows from the explicit formula for the potential that the function Vig(x) is
differentiable and its derivative is equal to

dVlo(x) 1

T o—(z=¢)
) — Sl + ol + [ o) de

+00 o~ (6-2)
- [ o d e e (59
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In its turn, the explicit formula (5.9) for the first derivative of Vio(z) implies that
this derivative is also differentiable and we have

PVip(z) 1 1 L[ e
THoe) _ Lole) + gmo(o) 5 [ e Oote)ae

1 [t
3] T I = (@) + Viala) € CHRY).

We obtain from this equality that

d*Vio(x)

i Vio(z) = po(z) forall z € R'. O

The following classical result holds.

Lemma 6. For every function ug(z) € (Cl(f)(Rl) and all € R! we have

o-lo—¢]
—/ 5 [uoge (§) — uo(§)] d€ = uo(x). (5.10)
Rl

Proof. We have a chain of equalities

e~le=¢l I 1o[tee
de = = —(z—¢) de+ = —(§—x) d
/]Rl uoge (&) dS / e uoge(§) d§ + 2/1 e uoge (§) d€

2 2 )
! 1 L [" 6o L
= Su0a(®) — guon(e) 5 [ e Oune(@de+ 3 [ e uog(€)de

T +oo
= —Juo@) ~ guo@) + 5 [ @ty [ (e

= —up(x) + %/Rl e_‘”:_gluo(f) dg.

This chain of equalities yields (5.10). O
Finally, the following assertion holds.

Lemma 7. Suppose that p(z,t) € C([0,T]; Cp(RY)). Then the volume potential
¢
Wie,) = Wipl(e.0)i= [ [ 60— gt= ol ndear
o Jr!

belongs to € C? ([0, T7; (C,()Q)(Rl)) and for all (z,t) € R x [0,T] we have

ow
mm,tw(xvt) = p(z,t), W(z,0) = W(JZ,O) =0.
Proof. Step 1. Just as at Step 1 of Lemma 4, one can prove that W(x,t) €

cO([o,T);CP (RY)).
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Step 2. Note that the following equalities hold:

8W (z,t) 08 (x f 08(x—Et—1)
d¢ d :
//Rl p(§,7)d¢dr, (5.11)
W (x,t) e~ le=¢l PE(x—&t—1)
T——/Rl g P(ﬁ,t)d£+/0 /R — p(&m)décif. |
5.12

It follows from (5.11) and (5.12) that

2 2 2
My W (2,t) = Do W (1) = % [”gf;”’t) + WW)] - ‘”g*f?’“
52 e —|z—£|
<8x21>/R oE,1) d§+/ /R D18 (w — &1 — T)plE, 7) dE dr

= p(:L’,t),

where we have used the results of Lemmas 4 and 5.
Step 3. The equalities

ow

(£,0)=0 for zecR!
follow from part 3) of Lemma 1. OJ

§ 6. Properties of the potentials related
to the first boundary-value problem

In this section we study the properties of the potentials in the right-hand side
of (4.9). First of all, we study the properties of the potential

S(z,t) = S[v|(z,t) := 2/0 v(T)Ny 18 (z,t — 7)dT + v(t)e™", (6.1)

where )
oo
Ny f(x,t) = 32 [atQ—l—I}f(;mt).
Lemma 8. Suppose that v(t) € (C 2)[ ,T) and v(0) = v/(0) = 0. Then the potential
S(z,t) belongs to € C?([0,T];C ( 1)) and we have

My S(x,t) =0 for 220, t>0,
oS

5(0,1) =v(t), S(x,0)= -

(2,00=0 for t>0, x>=0.

Proof. First of all, by part 1) of Lemma 1, the fundamental solution &(x,t) belongs
to C™ ([0, T7; CZSS)(REF)) for every n € Z, and, therefore,

S(z,t) € C™ ([0, T]; CP (RL)).
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In view of part 3) of Lemma 1 (see (4.5)), one can easily deduce from the explicit
representation (6.1) of the potential S(x,t) that

S(0,t) = v(t).
Moreover, since v(0) = /(0) = 0, we have
oS
S(z,0) =v(0)e " =0, E(x, 0) = 2v(0)MN, ¢[&](x,0) + /' (0)e™* = 0.
The following chain of equalities holds:
9? o0&
M, ¢ [S](x,t) = 2v(t) {8332 - I] Nyt E(x, 0)

t
+ 2/ v(T) Ny My 1 & (x,t — 7) dT +v(t)e™
0

= Il(l‘,t) + Ig(x,t) + Ig(l‘,t).

Note that
My & (x,t) =Dy E(x,t) =0 for x>0, t=0,

where the operator D, is defined in (5.8). Therefore,
t
Iy(z,t) = 2/ V(T)Ny 1Dy 1 E(x,t — 7)dr =0, (6.2)
0
where J(z,t) = 0. By part 3) of Lemma 1 we have a chain of equalities
0? o0&
Il(.’L‘,t) = 2V(t) |:8g:2 — :|mz’tat(
Thus, we conclude from (6.2) and (6.3) that
Il(x,t)+12($,t)+13(1'7t) =0. ]

2,0) = 2u(t) {83; - 1} ge—w = —u(t)e . (6.3)

Lemma 9. Suppose that po(z) € Cp[0,+00). Then the potential
~ ~ +oo
Va(o,t) = Taluol(a. ) = [ 6l Dmo(e) e

0

belongs to an) ([O, +00); (C,(f) [0, —|—oo)) for every n € Z , where
gl(xagvt) = g(x - Evt) - 5(1’ + gvt)a
and we have

M, Vi(z,t) =0 for (x,t) € [0,+00) x [0,+00),

V1(0, ) = % =0 for t>0,
~ . 8‘71 . +00 ef‘wfsl €7|$+£‘
w0 =0, e = [ (5 - S @ de
9%V;

——(2,0) =0 for x>0.
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Proof. Repeat the proof of Lemma 4 using Lemma 1. [J
We give the following classical result together with its proof.

Lemma 10. Suppose that uo(x) € Cpl0,+00). Then the potential
- too /o€l g-lotel
o) = [ (5 - T s
0

belongs to (Cl()Q) [0, +00) and for every x > 0 we have

% —Vio(z) = po(z), Vio(0) = 0. (6.4)

Proof. First of all, note that the expression for ‘710(55) can be rewritten in the form

+oo e_‘m_ﬂ 6_5

—+oo
po(§) dé +e™* /0 7#0(5) dg.

Faoa) = In(o) + o) == [

Clearly, In2(x) € C°[0,+00) and we have

dQIOQ(fL')

g2 Ip2(x) =0 forall z>0. (6.5)
x

Consider the function Ip;(x). Clearly, Ip1(z) € Cpl0,+00). For convenience, we
write the expression for Ip;(x) in the form

T —(2—) +00 ,—(¢—a)
(@) == [ —m@de~ [ St de

2

We calculate the first derivative:

dl T ,—(z—§) +oo —(¢—x)
oife) | o) | pnka) | @ [ @ as

Clearly, .
dlI 01T
dx

We calculate the second derivative:

d? z ,—(z—8) oo —(¢—1)
g ) ) s - [ (e de

= Mo(l‘) + I()l(.%') S Cb[07 +OO) (66)

€ Cy[0, +00).

The expressions (6.5) and (6.6) yield (6.4) for every x > 0. We also note that
the equality V19(0) = 0 is obvious and follows directly from the formula for the
potential Vig(x). O

For completeness, we give a proof of the following classical result.
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Lemma 11. For every function vg(x) € (CZ(JQ) [0, 4+00) with vo(0) =0 one has

+oo /g-la—b]  p-lotel
_/0 ( — - )[0055(5)—00(5)]0!5:110(38) forall z>0. (6.7)

Proof. The following chain of equations holds:

o0 o (a+8) e e o0 em (=0
| el de = 0~ w0+ [ (e de
0 0

ot [Hoo g (atE)
=m0+ [ e

It follows that

+00 o=l e
| S tonee©) — (@) de = —v0a (05 68)
0

Moreover, we have a chain of equalities

+00 |z v —(z—¢) 00 o= (z=§)
/ 5 voge (€) d§ = / 5 Voge d§ + / 5 Voge €
0 0 x

=00

ef(zfg) EZI ef(gfm)
= vo¢(§) ‘

+ voe(§)
2 £=0 2 .

x e—(a:—f) +oo e_(f_w)
— d d
| Se@ae+ [ S

x

It follows from this chain that

e—x

o0 o lo—¢]
| oe© — i@l de = (o) w00 (69)

The equalities (6.8) and (6.9) yield the desired formula (6.7). O
Lemma 12. Suppose that p(z,t) € C([0,T]; Cy[0,400)). Then the potential
t +oo

Wi(e,t) = Wilpl(a, ) = / [ Sl ) dear

belongs to C2) ([0, T; (Cl(f) [0,4+00)) and we have

M, Wi (2, t) = p(z,t)  forall (z,t) €[0,+00) x [0,T],

Wl(O,t):W1(x,0):8—wt/1(x7O):O for w20, telo,T]
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Proof. On the whole, the proof of this lemma repeats that of Lemma 7. We only
mention that

82W1({E7t)_ Foo e_‘x_ﬂ e—(iv"rf)
o) = [ (S - S e

+o0 azéa f t—
/ / 1 :”atg 7) p(€,7) d€ dr.

This yields the relations

82W1 (Z‘, t)

02 [0°W(x,t
M, Wi(w,t) =D, Wiz, t) = [1(9”) =

2| or Wl(x’t)] -

92 oo s —|z—¢| —(z+€)
~ (1) [ (- e

t —+o00
+ /O /O Do, €t — T)p(€,7) dE d = p(a, 1),

where we have used the results of Lemmas 9 and 10.
Finally, using the explicit form of the potential and Step 3 of Lemma 9, we arrive
at the equalities

oWy

W1(07t) = Wl(m70) 8t

(,00=0 for >0, te[0,T]. O

§ 7. Properties of the potentials related
to the second boundary-value problem

We study the properties of the potentials in the right-hand side of (4.10). First
consider the potential

¢ 2

& _

P(z,t) = Plu)(z,t) := 2/ w(T) {3(257) +E(x,t—71)|dr —e u(t). (7.1)
0

Lemma 13. Suppose that u(t) € C21[0,T] and u(0) = p'(0) = 0. Then the poten-

tial P(x,t) belongs to C?) ([0, T7; Cl()z) [0,400)) and we have

My Pz, t) =0 for x>0, tel0,T],
OP OP
= -— = > .
e —(0,t) = u(t), P(x,0) pr (,0)=0 for >0, te€0,T]

Proof. On the whole, the proof repeats that of Lemma 8. We only mention some
key points. We have

0? 32 86”

o2
= Pi(x,t) + Pa(z,t) + Ps(x,t). (7.2)

+2 /Ot () [62 + 1] My 18yt — 7) dr — p(t)e ™
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To calculate the integral Py(x,t), consider the chain of equalities

0? 0& 1 [t e x _, 1 _,
<8t?+1>8t(x’0)27r/00 ey e e

Pi(z,t) = 2u(t) [82 - I} [82 + I} 98 (2,0)

We now calculate the integral Py(z,t):

Pyl 1) = 2 /0 C ) {g; + 1] D18z, t — 1) dr = 0. (7.3)

Thus, it follows from (7.2) and (7.3) that
Pi(z,t) + Po(x,t) + Ps(z,t) =0 for x>0, te][0,T].

Moreover, we have

t
OP(,1) = 2/ w(T)Ny 1 E(x,t — 7) dr + e~ T u(t), (7.4)
ox 0
where 91 o
‘ﬂm,t = % |:8t2 +I:| .

By the result (4.5) of Lemma 1 we have
N1 E(0,t—7)=0 forall 0<7<t<T.
Hence it follows from (7.4) that

%(OJ) — u(t) for tel0,T),

The equality P(x,0) = 0 is obvious and follows directly from the formula (7.1) for
the potential P(xz,t). The equality

oP

can be proved in the same way as the equality in Lemma 8. [J
Lemma 14. Suppose that po(x) € Cy[0,4+00). Then the potential
~ ~ +oo

VQ(x’t) = V2[,u0](xv t) = 0 52(x7£’t)/110(§) dg,

belongs to C2) ([0, T7; (CIEZ) [0, +00)), where

éoQ(‘ragvt) = éa(x - §7t) + éa(x + §7t)a
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and we have

M, Va(z,t) =0 for =0, t>=0, (7.5)
s & Ve, - B ?Vy
o0 =2 20,0 =0,  Va(2,0)=0, 3 (x,0)=0,

OVa(z,0 +oo fo—lz—El  o—(a+€)
%:_/ (6 . + ¢ g ),uo(ﬁ)df for x>0, t>0.
0

Proof. Step 1. First of all, by the integral representation (4.2) we have

2
|:8 + I:| 8252(1’75’”

o
) [32 ] [
= +1I (xg,t)‘ + — { Jrf} (x+&,1)
" Oz |0 v Oz |0

=0

=0
+oo

_ » 1 ut
_ ip€ Zs . d
e e e ()

=0 (7.6)

/+<>° cos (1) ! si < pt ) d
in
) R (12 + 1)3/2 /7H2+1 K

forallt > 0 and £ € Ri_ since the integrand is an odd function of p. Moreover,

0é:
EH@.60)=E@ -0+ E@+E0)=0 = ZZ(0,60)=0  (7.7)
and for £ > x we have
0é: o0& o0&
S (@60 = S (x=£0) + - (z+,0)
e |x7£| e (:L’+§) 67(5711:) ef(m“"g)
S R e R (7.8)
Thus, in view of (7.8), we have
9 852 I e 1
By (7.6), (7.7) and (7.9), the function
&
v() = 220,61
satisfies the Cauchy conditions
d?Y (t) dy
“Wivim=0, v=0, =0, >0
In the classical sense, it follows that Y'(¢) = 0 for all ¢t > 0. Therefore,
06 Z2200,6,6)=0 forall £€>0, ¢>0. (7.10)

Oz
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Moreover, it follows that

0?&

5 at(Oft)—O forall £€>0, t>0. (7.11)

Step 2. Write %(x,t) and ‘72t(:c, t) in the form

“+oo

%mwaf&u@mma%+/ Sy(, €, ypo(€) de,

xT

8Vz(af t) /x a&(w,&t)u © d§+/+°° 063(x, €, 1)
0

ot at 10 . g Ho(&)ds.

These equalities yield the following expressions for the derivatives:

+00{a£2(x’€7t)

OVa(z,t) o }Am(f)df

Do) — (@)t t) - Sa(o )] +

0
- [T g a

PVo(x,t)  [T°[ & (x,&,1)
‘Eﬁﬁ*—ﬂ {émm}M@”5

In view of (7.10) and (7.11), we arrive at the conclusion that

s 0*Vs
=0 f >0, =0 f > 0.
5 —=(0,t) =0 for t>0 p 8t(0 t)y=0 for t>0
Step 3. The equalities
‘72(%, 0) =0,
81/2 +oo €7|17§| 67(x+§) 82%
d =
o= [ (e @ de SR w0 o0

for z > 0 and t > 0 follow immediately from the results of Lemma 1.
Step 4. The equality (7.5) can be proved in exactly the same way as the corre-
sponding equality in Lemma 9. O

Lemma 15. Suppose that po(z) € Cpl0, +00). Then the potential

~ ~ +oo eflwfﬂ 67‘14'5'
Van(e) = Valpol(0) = = [ (S + S ol
0
belongs to Cl()z) [0,4+00) and for every x > 0 we have

2~x " ;
TV (o) = ol D2(0) =

Proof. A direct verification yields all these equalities as in the proof of Lemma 10. (]
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Lemma 16. For every function vo(x) € (Cl()z) [0, 4+00) with vo,(0) = 0 we have

- /0+00 (e—:—il N e—l;r&\ > [oee (€) — v (€)] d€ = vo(x)

forallxz > 0.

Proof. Just repeat the proof of Lemma 11. [J
Lemma 17. Suppose that p(x,t) € C([0,T]; Cy[0,+00)). Then the potential

t +oo
Wa(x,t) = Walp](z,t) := /o /o E(x, &t —1)p(€,7)dEdT

belongs to C2) ([0, T7; Cl()Q) [0, +00)) and we have

M, Wa(x,t) = p(z,t)  for all (x,t) €[0,+00) x [0,T],
3W2 aWQ
ot ox

Proof. This can be proved in the same way as Lemma 12. (0

WQ(JE, O) =

(z,0) =

(0,£) =0 for x>0, tel0,T].

§ 8. Solubility of the Cauchy problems for the equations (3.1) and (3.2)

Theorem 1. The classical solutions of the Cauchy problems for the equations (3.1)
and (3.2) in the sense of Definition 1 in the class

u(z,t) € CA([0,T);CPRY),  ug(e),ur(z) € CP(RY)
are equivalent to the following integral equations respectively:

t
u(z,t) :/0 - g(x—f,t—r)%dﬁch

+/’(<x§wwmaauuo1 28 D ge(€) - wol©)]) d, (5.0

/ Sa gt n) QWD) 4o,
Rl

+A;Qﬂx—&ﬂwmd®—uﬂ0%+a(%;&wada—udQDdé (52

Proof. We prove the theorem for the integral equation (8.1) since the proof for (8.2)
is exactly the same.

By Lemma 2, every classical solution of the Cauchy problem for (3.1) in the
sense of Definition 1 satisfies the integral equation (8.1). Consider the function

Ula,t) == /0/]R (z—&t—7 )wdgd

* Qﬂx—&wwmd@—umay+&ﬂ§;&w[

R1

uoge (§) — Uo(f)]) deg.
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Suppose that u(z,t) € C? ([0, T]; Cy(R")). Then, by Lemmas 4-7, the function
U(z,t) belongs to C ([0, T); (C[()Z) (R')) and we have

M, Uz, t) = %, (z,t) € R x 0,7,
U0 = [ 2SO0 e (6) —uole) e
Rl
o]
= [ leel©) — €] ¢ = uof),
R]
P = [ 2 () - wi(e) g

o—lo—¢|
—— [ @~ w(@lde (), ae R
R]

Hence every solution u(x,t) of the integral equation (8.1) in this class is a classical
solution of (3.1) in the sense of Definition 1. [J

Our next task is to prove the local-in-time solubility of the integral equation (8.1)
in the Banach space C®) ([0, T]; Cp(R")) with the norm

2

v(x,t
lolr = sup Z()\.

(z,t)ERI x[0,T] =0 ot

Theorem 2. For every T > 0 one can find sufficiently small numbers Ry > 0 and
R3 > 0 such that under the conditions

ug(x) € Cy(RY),  luollcz@ry < Re,
_ (8.3)

ui(w) € GE(RY),  Jlullezm) < Rs

the solution of (8.1) in the class C2)([0,T];Cy(RY)) N By for sufficiently small
R > 0 exists and is unique, where

Br = {ve CP([0,T]; Co(RY)): |v||lr < R}. (8.4)

Proof. Rewrite the integral equation (8.1) in the form

u(z,t) = A(u)(z,t), (8.5)
where
2u2 T
Aw)(et) = f@ )+ W0, pEr) =T8T s
0= [ (860 €0l = ]+ 205 () - uo(e]) e,
(8.7)

W(p) (. t) = / [ -t dean
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The function f(z,t) belongs to C?)([0,T]; Cy(R')) by Lemma 4. For the volume
potential, we have Lemma 7 and the equalities (5.11) and (5.12). They are of the
form

o) //Rlag 00 —ST) e 7y dear,

2w lz—¢] 0*E(x —
7952’ - /Rle “d“//w xatft ") p(e. ) de dr.

The following bounds hold in view of the estimate (4.7) with ¢ € (0, 1) in Lemma 1:
(W (p1)(z, 1) = W(p

< er(e)em @7 / / exp(—cla — o1 (6,7) — pal€,7)| dEdT,  (8.8)
‘aw<p1><x ) _ Wi t)\

ot

< eae al(f)T//exp —elz = &Nlp1(€,7) — p2(&, 7)[ dE dr,
W (p1)(a,t) W (ps )(x,t)'

ot? ot?
< L t t)|d
<5 [ ep(cle—€Dlnr(&.t) - pa(E. 0l de

+ez(e)e T //exp —elz —&])|p1(§,7) — p2(§, 7)| dE dT.

Suppose that u1 (€, 7), ug(€,7) € CP ([0, T); Cp(R')) and

*ui(€,7) *u3 (€, 7)
Pl(fﬂ')ZT, P2(§77')=T-
We have a chain of inequalities
8u1 2 8u2 2 82’U1 (’92u2
_ < ekl == Z Z e
|p1(§?7—) p2(€’7-)| X 2 ( 87' ) ( 87_ ) + 2 U1 87_2 u2 87'2
6’(1,1 8uQ Bul aUQ
<4 — -2
max{ ar || or } ar  or
62U1 (9211,1 3211,2
2|z |l el ¥ 2l 5~
< 8max {[Jur |7, |uzllr} lur — uallr. (8.9)

Note that

/ exp(—elyl) dy =
]Rl

Thus, it follows from (8.8) and (8.9) that

W (p1)(,t) = W (p2) (2, t)||7 < (T K7 (2)e™ @+ 8) max{||us || 7, |lua 7 }Hlu1 — |7,
(8.10)
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where
K, = 1601(5) + 0225) + 03(5).

Putting u; = u and us = 0 in (8.10), we obtain the following bound for p =
0?u?/or?:
W (p)llr < 8+ TKie™T)||ul|7 (8.11)

Consider the closed ball
Br = {u(z,t) € (C(2)([O,T];<Cb(R1)): |ullr < R}.
Put
Ry = ||f(z, )|,
where the function f(x,t) is defined in (8.7). It follows from the definition (8.6)
of the operator A and the bound (8.11) that
AWz < I1fllr + (TEre™" + 8)||ull7. (8.12)

We claim that for every T" > 0 the operator A acts from Bg to Bg provided that
0 < Ry < R and R > 0 is sufficiently small. Indeed, it follows from (8.12) for
u € Bp that

[A(u)|lr < Ry + (TKie™" +8)R%.

The inequality
Ry + (TKie™T +8)R*< R if R, <R

clearly holds for every fixed T' > 0 when R > 0 is sufficiently small. Suppose that
uo(x),ui(x) € (Cl(f) (R!) and the following inequalities hold:

||u0||(:§)2)(R1) < R2a HU1||C§72‘>(R1) < R3' (813)

Then we deduce the following chain of inequalities from the explicit formula (8.7)

for f(z,t):

1l < Ka(e)en©T / =17l ugee (£) — uo (€)] de

R1

4 Ky (e)em @7 / 1 g (€) — ua (€)] de

R1
. (41(;(5) Ryt 4Kz(€) R3> e OT _ R

Therefore, for small Ry > 0 and R3 > 0, the number R; > 0 can be made arbitrarily
small. This proves the following assertion.

Lemma 18. For every T > 0 one can find small numbers Ry > 0 and R3 > 0
such that, for all up(z), u1(z) € (Cl(f)(Rl) in the balls (8.13), the operator A defined
in (8.6) acts from the ball B to the ball Br for some small R > 0.
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We now study whether A is a contraction on Br. Indeed, by (8.10) we have the
following bound for all uy,us € Bg:

[A(ur)(2,t) = A(ug)|lr < (TK1()e® &7 + 8) max{|jus || 7, ||ual|7 }Hur — ua|z
< (TKl(E)eal(a)T + 8)R||u1 — ug||7.
For every T' > 0 and any sufficiently small R > 0 with

(TK:(e)e™©T +8)R < %

the operator A is clearly a contraction on Bgr. O

We now study the question of the solubility of the integral equation (8.2) in the
Banach space C([0, T]; Cy((1 + 22)2/2;R1)).

Theorem 3. For all ug(x),ui(x) € (Cl()z)((l + 22)7/2; RY) with

7214—045 042*, q>0
q

one can find a Ty = Ty(ug, u1) > 0 such that for every T € (0,Ty) there is a unique
solution u(z,t) € CO([0,T];Cy((1 + 22)*/%;RY)) of the integral equation (8.2).
Moreover, either Ty = +o00 or Ty < 400, and the following limit property holds in
this latter case:

im fullar =400, [ular:= s (1+22)ula, ).
T1To (x,t) R x[0,T]

Proof. Integration by parts yields the equality

[ [ ot 0CD sear = [ s g oppumie e
]Rl

- [ -cntuie - [ [ PEEED qyenacar
L _ 35——5”5—) w9 (€. 7) de d
= [ sa-cntuloe - [ [ (Jufu)(e, ) de d

or

for all u(z,t) € CM([0,T); Cy(R')), where we have used the equality &(x,0) = 0
(see part 3 of Lemma 1). Rewrite the integral equation (8.2) in the form

u(z,t) = B(u)(z,1), (8.14)
where
B(u)(x,t) = fi(z,t) + Wi(p)(@, 1), p(§,7) := (Jul"u)(§, 7). (8.15)

Here the volume potential W (p)(z,t) is deifned by the equality

(1) //Rl‘%@ 96@ =6t =T) e aear,
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and the function fi(z,t) by the equality

A= [ (860 €0Mue® - 1© - (uolun)©)
n 08 (x —&,1)

250 () - )] e

The function f;(z,t) belongs to C) ([0, T];Cy(R')) by Lemma 4. We claim that
actually

fila,t) € CH([0,T]; Cy((1 + %)% RY)).
Indeed, if uy (€, 7), uz(&,7) € C([0,T); Cy((1+22)7/2;RY)) with v > a+1, then the

following chain of estimates holds by Lemma 1 and Lemma 21 (see § 14):

0" f(=,1)
otk

< (1+$2)a/2/ﬂ§1(‘(3t &1)

O tle(r — t
i S ) - )] ) a

< ag(e)e™ O [Jurge (2) —ua (@) = (Juo|*uo) (2))ll,7

(1+=z )O‘/2
e / (L gz op(elr — €D de

(1 +x2)‘”‘/2

|luree(€) — ur(€) — (Juo|uo)(€)]

+

2\a/2
+ a0(£)e™ O ||ugga (z) — uo ()4, xsgﬂg /]R1 m exp(—¢|z — &) d€
< ele, v, a, Ty k) ([urea (2) — ur (x) = (luol o) (@) ||y, 1 + [uoze(x) — uo(2)|l.7)

for all (z,t) € R! x [0, T] with & = 0, 1,2 provided that v > a+ 1 and € € (0, 1).
Put

p1(&,7) = (Ju| )& 7). p2(&7) = (Jua|Tu2)(E, 7).

Since ¢ > 0, we have

lp1 — p2| < (g + 1) max{|uq|?, [ug|?}ur — uzl.

The following chain of estimates holds by the bound (4.7) with ¢ € (0,1) in
Lemmal:

(Wi(p1)(, 1) — Walpa)(x, 1)
< eole al(s)T//eXP —ele = &Dlpi(§,7) — pa(&s7)[dEdr

<@ (a4 ) [ [ oxplele — € max{lu 7). sl )
X |ui (&, 7) —ua (€, )| dE dr.
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It follows that

(1 +2%)*2[Wi(p1) (1) — Wa(p2) (. )]
< Jica(e)e™ T (g + DT max{uallf 7, [u2llf 7} lw — wzllar  (8.16)

for all functions uj(x,t) and ug(z,t) such that

where (el — €]
. 2a/2 exp(—¢l|x —
= sup(1+a7) /1 (1t &2)(arDajz %
By Lemma 21 we have 0 < J; < +oo provided that a > 1/q.
Thus, if a > 1/g, then it follows from (8.16) that

Wi (p1) = Wip2)llar < Ka(e,q,0)Te™ T max{|lug |4 1, [luz)|d 7 }Hlur — uala.r-
(8.17)
We now put w3 = u and uz = 0 in (8.17) and obtain

IWi(p)llar < Kale,q, ) Te* a7, p = Jul®u. (8.18)

Suppose that
uo(x), ui(x) € (C,(f)((l + $2)7/2;R1).

In particular, it follows that (|ug|%uo)(z) € Cu((1 + x2)?/2;R'). Suppose that
R > 2||f|la,r- Consider the ball

Bri= {[lulla,r < B: u(@,t) € C([0, T); Cp (1 +2%)*%RY)) J.
The following inequality holds for all u(x,t) € Bg in view of (8.18):
1Bl < | fillar + Kale, q,0)Te T |27

R
< 5t Ky(e,q,a)Te T Ra+L,

For every R > 2| f||a. one can clearly find a small number 7' > 0 such that

Ku(e,q,)TeOTRITL g
Thus, for every R > 0 there is a small 7' > 0 such that the operator B defined
in (8.15) acts from Bg to Bgr. We claim that it is a contraction on Bg.

Indeed, the bound (8.17) yields that

IB(u1) — B(uz)llax < Ku(e, q,0)Te™ O maxf{|ug |2 7, ual| 7 Hua — uallar,

whence it follows that for every R > 2| f||o,r one can find a small 7' > 0 such that

—_

Ky(e,q, oz)Te‘“(E)TRq <=

[\
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and, therefore, B(u) is a contraction on Bg. This proves that for all initial data
uo(x), uy () E(Cl(,z)((l—l—ﬁ)'V/Q;Rl), yza+l a2z 5,

one can find a small 7' > 0 such that the integral equation (8.14) has a unique
solution u(w,t) € C([0,T); Cp((1 + 22)*/2;RY)).

Note that the right-hand side of (8.14) belongs to C") ([0, T]; Cy((1+22)*/2;RY)).
Hence the function wu(z,t) in the left-hand side also belongs to this class. Indeed,
on the one hand, f;(z,t) € C ([0, T]; Cy((1 + x2)*/2;R')). On the other hand, by
Lemma 1 we have

%@Z_%/ exp(—|z — £))p(€, 1) dé

PE(x—Et—1)
- [ e D e acar

where p(§,7) = (Ju|?u)(&, 7). The following inequality holds for all ¢t € [0,7] in
view of (4.7):

(1 +x2)a/2

x L 2 a/2
AN < Szt [ eraryers espl-la - e

ot (T4 €8)arnars
(14 22)o/?
) (1 +€2)(q+1)o¢/2

+ ag(e)e OTTfu 2} / exp(—clz — &) de

< C(e,T,q,0)|lullZty,

where we have used the result of Lemma 21. It follows from this bound and the
integral equation (8.14) that u(x,t) € CM([0,T]; Cy((1 + x2)*/2;RY)).

Using the standard algorithm of extension in time for solutions of integral equa-
tions with Volterra operators (as described, for example, in [20]), we arrive at the
conclusion of the theorem. [J

Theorem 4. For every T' > 0 one can find sufficiently small numbers Ry > 0 and
Rs > 0 such that if the conditions (8.3) hold, then there is a classical solution
of the Cauchy problem for (3.1) in the sense of Definition 1 lying in the ball Bg
defined in (8.4).

Proof. Since ug(x),u1(z) € (Cl(;z)(Rl)7 we conclude from Lemma 4 that the func-
tion f(z,t) defined in (8.7) belongs to (C(z)([O,T];(Cf) (R')). Moreover, we have
u(z,t) € CA([0,T];Cy(R)) by Theorem 2. Thus p(z,t) = 0%u?(x,t)/0t> €
C®([0, T]; Cy(RY)). Then, by Lemma 7, we have

W (p)(x,t) € ([0, T}; TP (RY)).

Thus the right-hand side of the equation (8.5) belongs to (C(Z)([O,T];(CZSQ)(Rl))
and, therefore, so does the left-hand side. [

Theorem 5. For any ug(x),ui(x) € (Cf)((l + 22)7/2: RY) with

vz a+l, oz -, q>0,

Q| =
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one can find a Ty = Ty(ug,u1) > 0 such that for every T € (0,Ty) there is a unique
solution

u(z,t) € CP([0,T);C (1 4 22)*/%;RY)
of the Cauchy problem for (3.2) in the sense of Definition 1. Moreover, either
To = +00 or Ty < +00, and the following limit property holds in the latter case:

lm ||u,r = 400,
T1T,

lullaz =~ sup  (142%)*Ju(z,1).

(z,t)ERI X [0,T]
Proof. First of all, as in the proof of Theorem 4, one can prove that the solution
u(x,t) of the integral equation (8.14) belongs to (C(Q)([O,T];(Cl(f)(Rl)) for every
T € (0,Tp). We claim that it actually belongs to C) ([0, T7; (Cl(f)((l + 22)2/2; RY))
with o > 1/q for every T € (0, Tp).
Indeed, note that the equation (8.14) for functions u(z,t) € C ([0, T]; Cy(R"))
can be rewritten in the form

u(z,t) = Uz, t), (8.19)
where
Ula,t) = W(p)(x,t) + f(,1),
W (z,t):=W(p)(x,t) :/0 . E@—=&t—7)p(§ 1)dldr,  p(& ) :=—W7
(8.20)
)= [ (8- €0tue© ~ ]+ 220 fuoe(9) - wo(e)]) de
(8.21)
We have the following representations for the derivatives of W (x,t):
8W(x,t):/ /Rl{ag(x_€7t_7-)}ﬂ(§77')d§d7'7 (8.22)
FWiz,1) / /Rl{a 8x2 T)}P(ﬁ,T) dédr
+ / (?’)f (0-0,t—7)— g—f(o +0,t— T))p(mn’) dr, (8.23)

ant //}Rlaé" gt )(g,T)dng,

896 815
OPW (1)
S Ox20t

1{8%0 z—§ t—
//]R 83éaxaf§tt
//]Rl{ Ox2 ot

") }p@, r)de dr.

) }p@, r)de dr

92& 02&
—l—/o (axat(O—O,t—T)—axat(O—i—O,t—T))p(a:,T)dT,
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0’ LS (r—€t—
PO = [ eocle-dhptena [ [ FEEEED e 5y dgar

W (a,1) _ 1/ {de)‘p(;j‘f)}p(f,t)ds

//Rl{asg kL )}P(&T)dédﬂ
W (z,1)

o =) =5 [ exnl—la = €ho(e. 0 ds

& (x —
//Rl{ 8t285x12t )}P(&T)dédf

P& P&
—I—/ <8t28x(0 0,t—7)— % om (0+0,t— ))p(m,T)dT.

ot29r 2

By the results of Lemma 1 for the integral

ang _ _
Wkl £E t / Al{ ai‘kai; )}p(gv’r) dEdT,

e 7) = 216D

(8.24)

we have the bound
(1+ xz)a/Q\WkJ(m, t)] < (¢+ 1)ao(e, k:)e‘“(s)T

t 22)*2 exp(—elx — &) |u(€, 7)|9
x/o/Rl(lJr )72 exp(—ela — &])ul€, 7)|

du
ot ||, 1

Iu(s,7)
T d&dT

< (g + Dao(e, k) O Ju? 1

(14 22)2/?
" el / T 2 yarmars OP(elr = £y de
ou

< C’(E,q,k,a,T)Hqu Y
ot r

(8.25)

where we used Lemma 21.
Consider the integral

LrOFF1&(0 -0t —7) OFH1E0+0,t —7)
Ug(x,t) .—/0 ( 52 O - 52 9 )p(x,T) dr. (8.26)

Note that, by the results of Lemma 1, we have

&0 -0t —7) OFEO+0,t—7)
ot2 Ox ’ ot2 Oz

€ C[0, +00).
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This yields the following bound for the integral Uy (z,t):

1 ou
1 2 (1/2 g T q _
(1+27)° 2|0 ) < OO D) bl
ou
<SCEDNular| 5| -
T ot ||, r
Finally, we have the following estimates:
(2| [ exp(cfo — eDote.n) de
ou (14 22)2/?
qa ||% T NP
< (g + Dull + at a,TarSélﬂg)l /Rl (1 + £2)(atDa/2 exp(—|z — &) d§
ou
<C(q7a7T)||qu¢,T a a,T7
1 ou
2\ /2 q _
(U+22) o) < a0+ ) (e Il 7 |
ou
<Cla.a Dl gl | (3.27)
a,T

One can similarly prove that the function f(x,t) defined in (8.21) belongs to
CP([0, T]; C2 (1 + 22)2/2,RY)) if ug (), ur(z) € CP((1 + 22)7/2;RY) with v >
a+l,a>1/q.

Thus we conclude from (8.20)—(8.24), (8.26) in view of the bounds (8.25)—(8.27)
that the right-hand side of the integral equation (8.19) belongs to C®)([0,T;

(CI()Q)((l + 22)2/2;RY)) for every T € (0,Tp) provided that v > a + 1, a > 1/q. O

§9. Solubility of the first boundary-value problems for (3.1) and (3.2)
Theorem 6. Suppose that v(0) = v'(0) = up(0) = u1(0) = 0. Then the classical
solutions of the first boundary-value problem for the equations (3.1) and (3.2) in
the sense of Definition 2 in the class

u(z,t) € C?([0,T]; P[0, +00)),
up(z),ur (z) € C[0, +00),  w(t) € C[0,T]

are equivalent to the following integral equations respectively:

u(z,t) = /Ot +Ooc§1(x,§,t—7')wd£d7

0 87—2

+o0 T
[ (e 0lnee(© — @]+ 20D uoee(©) ~ uo(e)) e

+2 /t v(T)Ny & (z,t — 7)dT +v(t)e™®, (9.1)
0
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//+°° g 2D e,

[ (66 m)[ulg(oul<§>1+a£1<§f’”[uogf<g>uo@)])ds

t
+2 / ()M 18yt — 7) dr + v(t)e ™, 9.2)
0
where

0 [ 02
gl($,§,t) = 5(1‘ - gat) - é{)(l‘ +§7t)’ mz,t = % (at2 + I)

Proof. This follows directly from the equality (4.9) in Lemma 3 and Lemmas 8-12.

Theorem 7. For every T > 0 one can find small numbers R > 0, Ry > 0, R3 > 0,
R4 > 0 such that under the conditions

up(z) € C0,+00),  fuollezio, o) < Re, (9.3)
ur(z) € CP0,+00),  uallezio, o) < R,
v(t) €CP0,T],  |vlczpor) < Ra (9.4)

the equation (9.1) has a unique solution in C? ([0, T]; Cy(RY)) N Bg, where

Br = {v(z,t) € C?([0,T]; Cy[0, +00)) : ||v]lF < R}, (9.5)
2 .
Av(x,t)
ok = sup — .
[vll7 (z,t)e[o,-s-oo)x[O,T]jz::o oty

Proof. We rewrite the integral equation (9.1) in the form
u(z,t) = Ay (u)(z, 1),
where

W) (@.t) = fulad) + folet) W)@ t),  per) = 2 ET)

or2
teo x
A= [ (66060 le© -]+ 22 el ~ wo(e)] ) s

fa(z,t) :=2 /t v(T)Ny (& (z,t — 7)dT + v(t)e™",
0
t +oo
W)@t = [ [ filwgt - nple ) dear

and

0 (0%
& (z,6,t) = 8(x —&t) — E(x + &, 1), Ne e i_a(atz‘f'[)
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We have fi(z,t) € C?)([0,T];Cy[0,+00)) by Lemma 9 and fo(x,t) € C ([0, T);
Cy[0,+00)) by Lemma 8. The function Wy (z,t) := Wi(p)(x,t) satisfies the follow-
ing equalities in view of Lemma 1:

awlxt //*C’Oa&:cét 7)
p(&,7) dE dr,
a?w t

//+Oo a(saxg, =) o6, 7) de dr.

The rest of the proof repeats the proof of Theorem 2 using Lemma 1. [J

We have the following assertion about the integral equation (9.2).

Theorem 8. For any functions ug(z),u;(z) € (Céz)((l + 22)7/2; [0, +00)) with
1
vz a+l, az—, q>0
q

and v(t) € (Cl()l)[O7 +00) one can find a maximal To =Ty (ug, u1,v) >0 such that for
every T € (0,Ty) there is a unique solution u(z,t) € CH([0,T]; Cy((1 + 22)*/2;
[0,400))) of the integral equation (9.2). Moreover, either Ty = +oo or Ty < 400,
and the following limit property holds in the latter case:

711le HuHa T — +OO

where

ol 5= sup (1 + 222 |v(x, t)).
’ (,)€[0,4-00) x [0,

Proof. The integral equation (9.2) for functions u(z,t) € CM([0,T]; Cy[0, 4+00))
can be rewritten in the form

u(m'?t) = Bl(u)(xvt)v Bl(u)($7t) = fl(x7t) + fg(l‘,t) + Wl(p)(x,t),
where
+oo
hie.o = [ (51(9075,15)[’“155(5) s (€) — (o) (©)]

N %[wgg(@ - uo(f)]) ds,

o) = 2/ ()M (st — 7) dr + v(t)e ",
+o0 x _
(@9) / / 2 57 2z et o) p(§,7)dé dr, p(&,7) = (|ulfu) (&, 7),

0 (0
& (z,6,t) = E(x — &) — E(x+ &, 1), Na e i_a(atQ‘f’I)

The rest of the proof repeats the corresponding parts of the proof of Theorem 3.
It is necessary to use the results of Lemmas 1 and 22. [J
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Theorems 6 and 7 yield the following assertion.

Theorem 9. Suppose that v(0) =v'(0) =uo(0) =u1(0)=0. Then for every T > 0
one can find small numbers R > 0, Ry > 0, R3 > 0, Ry > 0 such that under
the conditions (9.3), (9.4) there is a unique classical solution u(x,t)€C®3 ([0, T7;

(Cl()z) [0,400)) of the first boundary-value problem for (3.1) in the sense of Defini-
tion 2. This solution lies in the ball Br defined in (9.5).

Proof. Use the smoothness properties of the potentials in §5. [J
Theorems 6 and 8 yield the following assertion.

Theorem 10. Suppose that v(0) = v/(0) = up(0) = u1(0) = 0. Then for all
uo(z), uy (z) € P (1 + 22)7/2; [0, +00)) with

vz a+l, az -, q>0

Q| =

and v(t) € (Cl(f) [0, 4+00) one can find a mazimal Ty = Ty(ug,u1,v) > 0 such that
for every T € (0,Ty) there is a unique solution u(z,t) € C2 ([0, T); Cy((1 + 22)*/?;
[0,+00))) of the first boundary-value problem for (3.2) in the sense of Definition 2.
Moreover, either Ty = +00 or Ty < 400, and the following limit property holds in
the latter case:

li = .
Hi Wl = oe

Proof. On the whole, the proof repeats that of Theorem 5. Consider the integral
equation (9.2). Put

u(xvt) = Ul(x»t)v Ul(x’t) = Wl(p)(fcvt) + fl(l'vt) + f2(1'7t)»
+oo T
At = [ (61606 lee® - @]+ 215 D uaee(©) ~ wa(e) )
falz,t) = 2/ v(T) Nyt &(z, 6 — 1) dT +v(t)e™ ",
0
t —+o0
Wl(xa t) = Wl(p)(xv t) = / éal (.’IJ, 5) t— T)p<£7 T) df dT7
0 0

(i), 7)

p(&,T) = 5

We have the following formulae for the derivatives of Wi (z,1):

“+o0
8W1 (1) / / {ag T)}p(&r) dé dr,
82W1 (w,t) 926 56—5775—7)
o ‘/o | { o }p“’” dedr

+/<aéi1(o 0,t— )—%(Owt )>p(x,7)dﬂ

OWy(z,t) [P [T 08 (x—&t—T)
Wle.) _ /O /O (e, ) de dr,
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82W1 l‘ t +oo 82601 f t— 7')
9z ot / / { 9z ot }”(5’7) dz dr,
63W1 .T t Foo 83@@1 6 t— T)
92 Ot / / { 922 Ot }p(“) de dr
0%& 0%&
+/ <6$8t(0 0,t—7)— o 8t(0+0t ))p(x,T)dT,

O*Wr (x
% _ _% / (712 — e~le el (e, 1) de

+o0 2éa
o [T IR ST e,
83W1(.'L',t) - d —lw—¢| _ _—|z+€]
W——§/O { (elo¢ +£)}P(§7t)d€
+oo (93(521 l‘—f,t—T)
[ [T{EA S D e dear
5‘4W1(x t)

s =gty =5 [ (e e e e

+oo 84(5) —ft
L

23& P&
+/<8t28x(0 0,t—7)— e om (0+0,t— ))p(m,T)dT.

Then we use the results of Lemmas 1 and 22. Analogous formulae hold for the
functions fi(z,t) and fo(x,t). O

§ 10. Solubility of the second
boundary-value problems for (3.1) and (3.2)

We have the following theorem whose proof repeats that of Theorem 6.

Theorem 11. Suppose that ;1(0) = p’'(0) = 1o, (0) = u1,(0) = 0. Then the classi-
cal solutions of the second boundary-value problem for the equations (3.1) and (3.2)
in the sense of Definition 3 in the class

u(z,t) € CP([0,7];C2 [0, +00)),
uo(w), us(z) € CV[0,+00),  p(t) € @0, 7]

are equivalent to the following integral equations respectively:
+oo
u(z, t) // En(w, &t — ) (5, )dfd
0é:
o[ (évz(x,g,t)[ulsg(@ —ua@)]+ 225D e ()~ wo(e)]) de

¢ 28wt — 7
+2/0 () {M%’t;)—l—g(x,t—ﬂ dr — u(t)e™™, (10.1)
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//+°° g 2D e,

[ (46 m)[ulg(oul<§>1+a£2'<§f’”[uogf<g>uo@)])ds

+ 2/0 w(T) [35(;;—7) +&(z,t — 1) dr — p(t)e™™. (10.2)

Studying the integral equations (10.1) and (10.2), we obtain the following asser-
tions.

Theorem 12. Suppose that 1(0) = ' (0) = uo.(0) = u1,(0) = 0. Then for every
T > 0 one can find small numbers R > 0, Ro > 0, R3 > 0, Ry > 0 such that under
the conditions

UO(.%') € (CéQ) [O, +OO), RQ,

HUOHC(2>[0 +oo) X
(@) € V[0, +00),  Jlwlleepg (o) < Bs,
p(t) €CP0,7],  ullcop,r < Ra

the second boundary-value problem for (3. ) has a unique solution in the sense of

Definition 3 in the class C2) ([0, T; (C(Z)( 1)) N Bg, where
Bp = {v(z,t) € C?([0,T]; C?[0, +00)) : |lv]lF < R},

dv(z,t
T e <2

(2.1)€[0,400) x[0,T] =3 oty

Proof. Just repeat the proof of Theorems 7 and 15. [J

Theorem 13. Suppose that ;1(0) = p/(0) = wo.(0) = u1,(0) = 0. For any func-
tions up(x),u1(x) € (Cl(f)((l + 22)7/2;[0, +00)) with

vz a+l, az -, q>0

Q| =

and u(t) € (Cz(;Q) [0,400) one can find a mazimal Ty = To(ug,u1, 1) > 0 such that
for every T € (0,Tp) there is a unique classical solution

u(z,t) € C([0,T]; Co((1 + 22)*/%; [0, +00)))

of the second boundary-value problem for (3.2) in the sense of Definition 3. More-
over, either Ty = +o0o or Ty < +00, and the following limit property holds in the
latter case:

i =

i fJullg = +oo,

where

ot = sup (14 22)*?|v(z, t)].
(2,£)€[0,4-00) x [0,T]
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§11. A priori estimates for solutions of the Cauchy
problem and the second boundary-value problem for (3.1)

We first obtain a priori estimates for classical solutions of the second boundary-
value problems for the equation (3.1) in the sense of Definition 3. Let u(z,t) €
CP([0,T];C?)][0, +00)) be such a solution. We rewrite (3.1) in the following equiv-
alent form:

92 & 1\ 8 1\ 62 1\*

Take a test function of the form

2
o) = rl0)oalt). )= (1- 1) (112)
1 ifaeo,1],
6r(z) = {O I EYAC S (113)

where the function ¢;(x) belongs to C(?)[0,4+00) and is monotone non-increasing.
Integrating by parts we have the following formulae:

/Om (98722 (u(:v,t) + ;>¢>1(x> do — % (u(x,t) + ;>¢1(a§) B
~ (u(:p,t) + ;>¢M(x) y /O o (u(x,t) + ;>¢m(x) do

x=0

Tr=—400

= —u,(0,t) + /(:OO (u(ar,t) + ;)fbuz(l“) dz, (11.4)

/OTg;(u(l‘,t) + ;>¢2(t) dt
_ ;(u(x,t) + ;)@(t) : _ (u(xﬁ .\ ;) »

. /OT (u(x,t) N ;) D(t)dt = —u'(z,0) — ;(u(x,o) + ;)

4 2 : ( t)+1 dt (11.5)
7 u(z, 5 . .

Here we have used the equalities

HOV=L  6aO=0  wO=1  HO=-7. 6=
62(T) = G4(T) =,

which follow from the definitions (11.2) and (11.3).
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It follows from (11.4) and (11.5) that

/oT /0+°° 6%22 (”(xv t)+ ;) ¢1 ()2 (t) dz dt
_ /OT p(t) <1 - ;)2 dt + /OT /0+°° <u(x,t) + ;) <1 - ;)2@”(1:) da dt,

(11.6)
/ /+OO aa; a; ( )+ 1)¢1(m)¢2(t) da dt
-], o Healt dt+/ /+OC a;( z,1) ;>¢1m(w)¢2(t)da:dt

0 8t2 8x
T 83 +o0 8

;/O+°°(u(z,0)+;>¢>m dz+7/ /*oo( ,t) ;>¢1m(l~)d$dt
- _/T’“‘ (t )<1 - ;>2dt_/0+ocul(x)¢1m(x)dx

_/+°°( >¢m dx+T2/ /+°°< 1) ;)qslm(x)dxdt,
/ /+OO " ( 1) ¢1(w)P2(t) dx dt

:_2/ w (e )<uo( )+ )¢1( )da:—;/0+m(uo($)+;>2¢1($)d$

T2/ /m( u(z, 1) ) ¢1(x) da dt. (11.7)

Multiplying both sides of (11.1) by the test function ¢;(x)¢2(t) and integrating by
parts in view of (11.6) and (11.7), we obtain the following equality:

% / ' / - ('M(x,t) + l)qu(z) dz dt
/ /+°°( 1) )(1—) D1o0 (@) do dt
_/0 {“1( )-I—;(uo( )+)]‘blm(l’)dﬁ?—/(]T[u”(t)Jru(t)](l_;)26%

+2/+00u1(:z:)<u0() )¢1( dx+/+oo<uo +;>2¢1(x)dx

/ /+OO< z,1) >¢1( ) da dt. (11.8)
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The following estimates hold:

T ptoo
2)\ r Hoo +oo xﬂ?
< ﬁ/o /0 (u(x,t > ¢1(z) da dt + 2T2/\/ / |¢>1 dxdt
2\ T r+oo 1 1 +o0 Prow 2
_ﬁ/o /0 (u(az,t)+> 61(x) dw dt + 2”/ Mda:, (11.9)
+oo

] (u(m,t) ;)(1—) Brs () da dt
2 [T o (e ) s T[Tl (Y

oo 1 2 T3 oo ‘gblwz(m”
/ / ( u(z,t) + 2) dx dt + ), e dx. (11.10)

Using (11.9) and (11.10), we obtain from (11.8) that
1 T3 e ‘¢lzz($)|2
() [
oo 2 T // t 2
+/0 [m(iﬁ) 7 (Uo( )+ )]¢1m /0 <1 - T> dt

+2/+°°u1( )<u0( )+ )(bl( )da:+ +Oo<u0 2) 61 (x) do

1—2)\ / /+<>o< 2.t) ;) () da it (11.11)

We take the test function ¢ (z) to be of the form

if
¢1($)=¢0(;>, Po(s) = {(1) ifzi[QO,l]’

for R > 1, where the function ¢o(s) belongs to (CéQ) [0,+00) and is monotone
non-increasing. Note that there is such a function ¢g(s) with the following proper-
ties:

/+oo |¢1xz(x)|2 de — Co . |¢Oss(5)|
0

61(2) = co = (o) ds < 4o00. (11.12)

We now make an important assumption. Suppose that

1
uo(z) + 5 € L*(0, +00), up(z) € L*(0, +00).
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Then the following inequalities hold:

/0 o [ul(x) + ;<u0(x) + ;)} Gron(x) do
< ([ [+ 2w+ D] @) ([T ) = 2
o = (/(:00 [ul(a:)—l— ;<uo(x)+ )] )1/2(/ |Goss 2 ds)1/2 < foo,

(11.13)

and we also obtain the following limit properties:

/O+OO uy () <uo(m) + ;)%(x) dz — /0+Do uy () (uo(x) + ;) dz,
/0+°° <uo(x) + ;)2@(3:) dr — /O+°° (uo(x) + ;)2 dz (11.14)

as R — +o0o. Put R = N € N. Using the Beppo Levi theorem, we deduce the
following a priori estimate from the inequality (11.11) in view of the bounds and
limiting properties (11.12)—(11.14):

- ) + )] (1- ;) at
+2/+°°ul<>( s a2 [ (s )
1_% / /m( z,t) +;) da dt.

This estimate holds for all A > 0. Letting A — 0 4 0, we arrive at the desired
a priori estimate

- ) + )] (1- ;) at
Y AR\ PRy e BRI
SN L T D

Thus, the following assertion holds.

Theorem 14. Suppose that u(z,t) € C([0,T); C?[0,+00)) is a classical solu-
tion of the second boundary-value problem for (3.1) in the sense of Definition 3
with initial conditions

1
uo(z) + 5 € L*(0, +00), up(z) € L*(0, 4+00).

Then the following assertions hold.
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1) If uo(z) = —1/2 and
2

/T(,u”(t) + u(t)) (1 — ;) dt >0 for small T >0,
0

then the classical solution u(z,t) is absent even locally in time.
2) If ug(x) = —1/2 and we have pu(t) =0 and ui(x) # 0, then then the classical
solution u(x,t) is absent even locally in time.

3) If
/OT(u”(t) + u(t)) (1 - ;>2dt — A as T — +o0

A 2/0%0 () <u0(:17) + ;) da,

then the solution u(x,t) does not exist globally in time: T < 4o00.

and

The following theorem about classical solutions of the Cauchy problem for (3.1)
in the sense of Definition 1 can be proved in a similar way.

Theorem 15. Suppose that u(z,t) € CP([0,T];CP(RY)) is a classical solution
of the Cauchy problem for (3.1) in the sense of Definition 1 with initial conditions

1
uo(x) + 5 € L*(—o00, +00), uy(z) € L*(—o00, +00).

Then we have an a priori estimate

2/+Oou1()< ofx) + )dm+/+oo<uo ) do
TQ/ /+°°< 2,1) +;) de dt,

which yields the following results.

1) If uo(z) = —1/2 and ui(x) # 0, then the classical solution u(x,t) is absent
even locally in time.

2) If up(z)=—-1/2 and uy(x) =0, then the only classical solution is u(z,t)=—1/2.

3) If
/_:o ui (@) (uo(x) + ;) dx < 0,

then the classical solution u(xz,t) does not exist globally in time and we have the
following bound:

fj;;(uo(x) +1/2)%*dx e
I u (@) (uo () + 1/2) d

T< -



490 M. O. Korpusov and E. A. Ovsyannikov

§ 12. Blow up of solutions of the Cauchy problem for (3.2)
Suppose that ug(z),u; (z) € (CIEQ)((l + 22)7/2,R') with

> a+1, a>max{1,;}, q > 0. (12.1)
Then by Theorem 5, one can find a maximal Ty =Ty (ug, u1) > 0 such that for every
T € (0, Tp) there is a unique solution u(zx, t) € C3 ([0, T; (C,(Jz)((lJr:cQ)o‘/Q; RY)) of the
Cauchy problem for (3.2) in the sense of Definition 1. In particular, this means
that u(z,t) € C([0,T]; H*(R')) for every T € (0,Tp). In this section we obtain
sufficient conditions for the inequality Ty < 4o0.

Consider the equation

Utz () — ur(x) = —(luoluo)(x) + f(x), z e R (12.2)

Lemma 19. Suppose that ug(z) € (Cl(f)((l +22)7/2:RY), f(2) € Cyp((1+22)H/2;RY)
with

1
pzy+1, 725, q>0.

Then the solution ui(x) of (12.2) exists, is unique, belongs to (Cl(f)((l + 22)7/2;RY)
and is given by the explicit formula

wo) = [ EPEE=D (uolrun)@) - ) de (123)

Proof. The uniqueness of solution of the linear (in w;(x)) equation (12.2) is clear.
Just as in the proof of Lemma 5, one can prove in these classes that the right-hand
side of (12.3) is a classical solution of class (Cl(f)(Rl) of equation (12.2). We claim
that this solution actually belongs to Cf)((l + 22)7/2,RY).

Indeed, the following equalities hold:

wsle) = [ {2 SPEEZ DR (uopruo)e) - 76 de (12.9)
120(0) = ~(uol*u)e) + )+ [ ZPEEZED (uofrua)€) - 1) e
(12.5)
where, for x # &,
d exsp(-fr—g) _ [~exp(—le—€) ifa>e
dx 2 B {exp(—|$ —£l) ife<¢. (12.6)

It follows from (12.3) that

sup (142°)72Jus (z)| < Ji sup (142%) T2 ug ()[4 Ty sup (1+22)H/%|f ()],
zER? zER? z€R!
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where
B exp(—|z—¢)  (1+2%)/2
e e /]Rl 2 (1 + €2)(at)v/2 s
exp(—|z — &]) (1+a2)/?
Jo = dE€.
v= o [P s

By the results of Lemma 21 we have
1
Ji, Jo < +oo provided that v> -, pu>=2~v+1, ¢>0.
q

In a similar way, we deduce the following bound from (12.4) in view of (12.6):

sup (14 %)% [un, (2)| < Jy sup (14 2%) T2 ug ()| 4 Jy sup (14 22)H/2| ()]
r€R! reR?! reR?!

Finally, it follows from (12.5) that

sup (1 + xQ)V/Q\ulm(xﬂ < (1+Jy) sup(1+ x2)7(‘1+1)/2|u0(x)|q+1
z€RL zE€RL

+ (14 Jo) sup (1+2?)*/2|f ().
zER?

Thus the lemma is proved. [

Integrating the equation (3.2) over time and using the initial conditions and (12.2),
we obtain the equation

%(um —u) + /0 Uge (2, 7) dT + |u|fu = f(z). (12.7)

We now use a method applied in [6]. Consider the quadratic functionals

1 1
(1) i= S lluall + llwlz, T = lugls + I3, (12.8)

ol = ([ oras)

Since u(z,t) € (C(Q)([O,T];(C,()Q)((l + 22)2/2;RY)) for all T € (0,Tp) under the con-
ditions (12.1), we have ®(t) € C)[0,T] and J(t) € CM[0,T] for all T € (0, Tp).
Lemma 20. Let ®(t) and J(t) be the functionals defined in (12.8), where u(z,t) €
CcM([0,Ty); H(RY)). Then

where

WV

1. (12.9)

(®'(1))> <20(t)J(t) for all t€]0,T), 0<T<Tp. (12.10)

Proof. The following equality holds:

d'(t) = /]Rl ug (@, t)ul, (2, t) dz + /Rl w(z, t)u' (x,t)dz for t€0,Tp). (12.11)
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Using Holder’s inequality, we obtain a chain of inequalities

(@' (1))* < (lua ll2llufll2 + lull2|w]l2)*
< ua 3113 + 2llua ll2 1w |2 ull2llell2 + llul3]ulI3
<Muall3llug 13 + lul3llu' 13 + a3 l15 + g 13 1ull3

, 1
= (uall? + lelD) Rz 13 + [0']13) = 5@ I (@), O

Let u(x,t) € <C<2>([0,T0);<C§2)((1 + 22)%/2;R1)) be the classical solution of the
Cauchy problem for (3.2). It exists under the conditions (12.1) by Theorem 5.

We multiply both sides of (12.7) by u(z,t) and integrate with respect to z € R!.
Integrating by parts and using the notation (12.8) and (12.9), we obtain that

t)+/t/ Uz (2, t)ug(z, 7) do dr + f(x)u(%t)dw:”u”qig. (12.12)
0o Jr! R q

We now multiply both sides of (12.7) by u/(x,t) and integrate with respect to
x € RY. Integrating by parts and using the notation (12.8) and (12.9), we obtain
that

d ¢ 42
10+ [ e ndes [ ] e e = — Tl
(12.13)
Substituting the expression for ||u\|gi§ from (12.12) into (12.13), we have

1 d*®(1) 1 5 q+1
J(t) = © ) dx d
0= g gl = L0 [ [ e sty dear

q+1
q+2

f() "(x,t) d. (12.14)

The following estimates hold:
1 2

—— llual3 <

q+2 q+2
g+1 [ g+1
_q+2/AIUw(x’T)“;(wvt)dxdT /||Uw|| )| ll2(t) dr

12 , gt 1/2
q+1
< ([ matgmar) ([ ||u;||%<t>d7)
/2 2 t
cqt1lap 1/2(4 / ' 1 (fg+1 /
< —|—= 2T | @
q—|—2t JHA(t) ; O(7)dr 5J(t)+45 P ; (1)dr

=0J(t)+ T 216(q+1) /OCI)(T)dT,

g+l q+1, , 1 (qg+1
< — <
2 | S de < Izllfllz\éJ(t)+45<q+2) 13-
(12.16)

2 a1, (12.15)
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Thus it follows from (12.14) in view of (12.15) and (12.16) that

1, 2
(1-28)J() < mcb (t) + m@(t)

1 (g+1\> [ | fq+1
15 (1a) [ oo +45() 173 (217)

for 6 € (0,1/2). The following estimate is obtained from (12.10) and (12.17) for
§€(0,1/2):

g ; 2(1 —26)(®'())* < ()" (t) + 20°(¢) +T2—15 (qq:l; @(t)A ®(7)dr
sl geo. (1215

We rewrite the integro-differential inequality (12.18) in the following general form:

D)D" (t) — a(P'(t)* + BP%(t) + 11 P(t) + VT B(t) /t d(s)ds >0  (12.19)
0
for t € [0,T], where

1 (g+1)?
26 q+2

1 (g+1)?
46 q+2

Q+2

——(1=20), B=2  m= I£13, 2=

We require that the following relation holds:

1 ¢q
1 = ¢ 0, -——
o > €< B +2>

Then we want to use the result of Theorem 17 in §13.
The coefficients of the integro-differential inequality (12.19) contain a parame-
ter &, which should be chosen in an optimal way. We choose it so as to make the

coefficient
27

2a0 —1
minimal. The following equality holds:

2 _ (a+1N\ 1S3 1
20 — 1 q+2) 2 6(1-28)

Note that the minimum value of the function
1
9(x) = x(1 — 2z)

is attained at x = 1/4. We also have

<L for ¢ > 2.

1
42 +2)
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Therefore we choose § > 0 in the following way:

1 if g > 2,
s=¢4
95 it0<q<2
20q+2) 0 NUT
where 61 € (0,q/(2(q + 2))) is arbitrarily small.
Thus,
1 2 2
o) =5 [ [u(z,t) +uy(z,t)] de,
3 1L, 2
1
Bi= 0(0) = 5 [ [udle) + (o) da. (12.20)
]Rl
B = @'(0) :/ fuo ()ur () + s (2)urs (2)] da. (12.21)
]Rl

Multiplying both sides of (12.2) by ug(z) and integrating by parts, we obtain the
equality

By = /R [ (2)uol) + g ()aoa ()] dr = /R ot a) 72 iz~ /R f(@)uoe)dr >0

provided that

/Rl o () da > / F(@)uo(x) da.

We also require that ®; > 0. Putting = 77 and using the notation (12.20)
and (12.21), we can rewrite the equation (13.14) (see Theorem 17) in the form

az® +bx+c=0, (12.22)

V2 2 2m B 2 2 1 2
i) b= o 23 SR —
a—1 70 Gy G et E Ry P s PR

a =

We need to prove that the quadratic equation (12.22) has a positive solution. To
do this, we replace the function ug(x) by Rug(x), where R > 0. For sufficiently
large R > 0 we have

P, ~ RIT2, oy ~ R?.

Therefore,
P2 =b—4ac>0 and b<0

for sufficiently large R > 0. Hence the quadratic equation (12.22) has a positive
solution. Thus all the hypotheses of Theorem 17 hold.
This proves the following theorem.

Theorem 16. Let up(x) € (C}()Q)((l + 22)7/2;RY) and f(z) € (C,()Q)((l + x2)/2;RY),
where

1
w=y+1, Yz a+1, a>max{1,}7 q >0,
q
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and let uq(z) € (Cl(f)((l +22)7/2;RY) be a solution of the equation (12.2). If ug(x)
is so large that, in particular, we have

2= / W2 () + w2, (2)] da > 0,
Rl
D = /]Rl |uo(:1c)|q+2 dx — /]R1 f(@)up(x) dx > 0,

then the solution u(x,t) € C?)([0,Ty); (Cl(f)((l—i—ﬁ)o‘/z; RY)) of the Cauchy problem
for (3.2) in the sense of Definition 1 does not exist globally in time. Hence the time
To = To(ug, f) > 0 in Theorem 5 is finite and, therefore,

lim ||ul|q,r = +o0.
T1To

Moreover, we have the upper bound Ty < Ty, where Ty > 0 is a solution of (13.14).

§ 13. Appendix. Solution of the ordinary
integro-differential inequality (12.19)

In this appendix we obtain a lower bound for the functional ®(t) € C®[0,T]
satisfying the integro-differential inequality (12.19) with a > 1. Suppose that

®'(0) > 0. (13.1)
Then one can find a ¢, € (0,7 such that
®'(t) >0 forall tel[0,t].
The following chain of relations holds:

s=t

/t D(s)ds = sP(s)| _, — /t s®'(s)ds <T®(t) forall tel0,t]. (13.2)
0 0

In view of the inequality (13.2), we can pass from the integro-differential inequal-
ity (12.19) to the differential inequality

D" — () + [B+ 1T P2 + 7@ >0 for te(0,t]. (13.3)
Dividing both sides of (13.3) by ®!7%(t), we obtain the inequality

<I>” (@/)2

$o  Cpia T [B+7T?® " + &> >0 forall tel0,t]. (13.4)

We introduce a new function
Z(t) := ®(1), a> 1. (13.5)
Then (13.4) yields the inequality

Z"(t) < (a =1)(B+7%T?)Z({t) + (a0 — 1)y 22/« D(@#) for te[0,t1]. (13.6)
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Note that
Z't) =1 - )@ *()®'(t) <0 for te|0,t]. (13.7)

Multiplying both sides of (13.6) by Z’(t), we obtain the inequality
Z'(0)2"(t) > (@ = 1) (B+ 7T Z(0)Z' (1) + (a = D)z V(0 2 (t)

for ¢t € [0,t1], which can be rewritten in the form

(Z/)Q > (a =1)(8+7T?) EZQ(t) + (a—=1)°n iZ(2a—1)/(a—1)(t)

1d
2dt 2 dt 20—1 dt

for t € [0,t1]. Integrating this inequality with respect to time, we obtain that

(Z'(1)? > A+ (o = 1)(B+T%) Z%(t) + %Z@“-W-”m (13.8)
for ¢t € [0, t1], where
A= (2'(0))* = (a = 1)(B+72T%)2°(0) - %ZQMU/WU(O). (13.9)

We now need to require that A > 0. In view of (13.5), (13.7) and (13.9), this
requirement is equivalent to the inequality

o BT, 2n
——®~(0 d(0). 13.10
o a—1 ()+2a71 (0) ( )

(2(0))
Suppose that (13.10) holds and, therefore, A > 0. It follows from (13.8) that
(Z'(t)*>A>0 for tel0,t]. (13.11)

Using this inequality and (13.7), we obtain the following chain of relations for
te [O, tl]l

|Z'(t) > AY? =  Z'(t) < —AY% <0

A1/2
= (1-a)d )P (t)<-AY2<0 — ()= 71@“(75).
o —
(13.12)
Suppose that
®(0) > 0. (13.13)

Since ®'(t) > 0 for ¢ € [0, 1], we have
O(t) > ®(0) >0 for te][0,t].
Using this and (13.12), we arrive at the following inequalities:

A1/2

1/2
oo(t) > A go

' (t) > P(0) > 0.

a—1 a—1
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Hence, in particular, ®'(¢t1) > 0. Therefore, repeating the whole argument from the
very beginning, we obtain that

AI/Z
a—1

d'(t) > ®*(0) >0 for tel0,T).

We conclude from this and (13.7) that
Z'(t) <0 for tel0,T].

Therefore, starting with the inequality (13.11), which holds for ¢ € [0,T], we suc-
cessively arrive at the following relations:

Z(t) < Z(0) — AY?¢
1
[®1—2(0) — Al/?t]l/(a—l)’

— P < BITN0) - AV = B(t) >

which are obtained under the conditions (13.1), (13.10) and (13.13). We now require
that

AYV2T = d1(0).
This equality can be rewritten in the form

@O = a0 + T @07 +

21
——P(0).
200 —1 0)
Generally speaking, this equation may have four roots. We are interested only in
the minimal positive root T'=T; > 0. We have thus proved the following theorem.

Theorem 17. Let ®(t) € C2[0,Ty) be a function satisfying the differential inequal-
ity (12.19) with
®(0) >0, ' (0) >0, a>1,

and let the initial conditions ®(0) and ®'(0) be such that there is a minimal positive
root Ty of the equation

(@O0 = g (@0 + T2

- 2 2n
(@—1) (2(0))" + (0).  (13.14)

20 — 1

a—1
Then ®(t) satisfies the inequality

1

(I)(t) 2 [(I)l—a(O) _ 141/2t]1/((1—1)7

for allt € 10, Ty) and Ty < Ty < +o00, where

_ ﬁ;ij?ff (®(0))2 — = a(0)| > 0.

A= (a— 1)2<I)_2a(0) (@/(0»2 2a0 — 1
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§ 14. Estimates of integrals
Consider the following integral for ¢ € (0, 1):

+o0 675\17y|

We have a chain of equalities
s too p—elz—y p T emele—y) J Foo g—e(y—) d
(x)_/m (1+y2)0/2 y_/m (14y2)/2 y+/x (1 +y2 Y

—€ET ‘ esy £x e e—sy
- A te Ty gyn W= 0@+ L@,

(14.1)
Consider the case when x > 1. We have the following bound for I5:
eET +o00o 1 1
I < ———— Ty = - ———. 14.2
2() (1+22)8/2 /$ ¢ YT (14 22)8/2 (142)

Represent [;(x) in the form

ac/2 egy xT egy
__ ,TET —EX -—
hiz)=e /_oo (1+y?)9/2 e /x/Q (1+y?2)8/2 4 = (@) + hia(e).

We have the following bound for I1;(x):

“+o0
—ex 1 —ex
I (z) <e™* /2/ Wdszl(ﬁ)e =/2,

and I5(x) satisfies the bound:

e 1 T 2611 1
Iis(z) < ———dy < —dy= ——— . 14.3
12(7) /m/2(1+y2)ﬂ/2 Y /x/21/’6 Y f—1 af-t ( )
Thus we obtain from (14.1) in view of the bounds (14.2) and (14.3) that
M.
I(z) < % for x> 1. (14.4)
The case x < —1 can be considered in a similar way, and we arrive at the same
bound,
MQ(ﬁa 5)

Finally, the following inequality clearly holds for z € [—1, 1]:
I(z) < M3(B,e) for xze[-1,1]. (14.5)
Hence it follows from (14.4), (14.5) that one can find a constant My = My (0, ¢)

such that
M4 (ﬂ7 8)

1

I(x) <
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We now consider the expression

Ola) = 2\a/2 oo g—elz—yl
x):=(1+2z°) [m E=DEE dy. (14.7)
By (14.6) we have a bound
G(z) < m for zeR. (14.8)
In view of (14.7) and (14.8), this proves the following lemma.
Lemma 21. Suppose that
8>a+1, a > 0. (14.9)

Then the function G(x) defined in (14.7) is bounded. Moreover, (14.8) holds.
Consider the following two integrals for > 0 and for € € (0,1):

+oo e_all_y‘

Gi(z) = (1 +x2)0‘/2/0 Wd% (14.10)

too  —elztyl

Gao(z):=(1+ ﬂc2)"‘/2/0 (ERDEE dy.

The following assertion is easily proved.

Lemma 22. Suppose that the inequalities (14.9) hold. Then the function G1(x)
defined in (14.10) is bounded for x > 0. Moreover, it satisfies a bound of the
form (14.8). The function Gy(x) is bounded for x > 0 for any a« > 0 and 8 > 0.
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