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Integrable topological billiards
and equivalent dynamical systems

V. V. Vedyushkina (Fokicheva) and A. T. Fomenko

Abstract. We consider several topological integrable billiards and prove
that they are Liouville equivalent to many systems of rigid body dynamics.
The proof uses the Fomenko–Zieschang theory of invariants of integrable
systems. We study billiards bounded by arcs of confocal quadrics and their
generalizations, generalized billiards, where the motion occurs on a locally
planar surface obtained by gluing several planar domains isometrically
along their boundaries, which are arcs of confocal quadrics. We describe
two new classes of integrable billiards bounded by arcs of confocal quadrics,
namely, non-compact billiards and generalized billiards obtained by gluing
planar billiards along non-convex parts of their boundaries. We completely
classify non-compact billiards bounded by arcs of confocal quadrics and
study their topology using the Fomenko invariants that describe the bifur-
cations of singular leaves of the additional integral. We study the topology
of isoenergy surfaces for some non-convex generalized billiards. It turns
out that they possess exotic Liouville foliations: the integral trajectories of
the billiard that lie on some singular leaves admit no continuous extension.
Such billiards appear to be leafwise equivalent to billiards bounded by arcs
of confocal quadrics in the Minkowski metric.

Keywords: integrable system, billiard, Liouville equivalence, Fomenko–
Zieschang molecule.

There are many papers devoted to the theory of mathematical billiards, that
is, to the problem of the motion of a point mass in a planar domain bounded by
a piecewise-smooth curve with absolutely elastic reflection at the boundary. We
mention, for example, the book [1] by Kozlov and Treshchev, and Tabachnikov’s
book [2] containing a survey of classical and modern studies. There is a classi-
cal problem on the existence of periodic trajectories and on the integrability of
billiards with prescribed boundaries. For example, every acute triangular billiard
has a periodic trajectory of three edges, namely, the triangle of smallest perimeter
whose vertices are the base points of the altitudes of the original triangle (Fagnano’s
theorem). A rather popular class of integrable billiards is that of planar billiards
bounded by arcs of confocal quadrics.

The integrability of the billiard in the domain bounded by an ellipse was observed
by Birkhoff [3]. The integrability of the geodesic flow on an ellipsoid follows from
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the Jacobi–Chasles theorem. When the smallest semi-axis of the ellipsoid tends to
zero, the geodesic motion tends to the motion along polygonal arcs lying completely
in the image of the ellipsoid, that is, in a planar domain bounded by an ellipse.

The integrability of a billiard persists when we pass to planar domains bounded
by arcs of ellipses and hyperbolas of a fixed confocal family provided that the bound-
ary of the domain has no corner points with angles 3π/2. Then all the angles at
the corner points are equal to π/2 since confocal quadrics always intersect at right
angles. Kozlov and Treshchev pointed out in [1] that these dynamical systems are
completely integrable in the sense of Liouville (that is, they have an additional inde-
pendent integral Λ). More precisely, their integrability is equivalent to Poncelet’s
little theorem.

For planar billiards in ellipses, coordinates have been constructed in such a way
that the motion is presented as a periodic motion along tori. Such systems, up
to Liouville equivalence, were studied in detail by Dragović and Radnović [4], [5]
and Fokicheva [6], [7]. In [8], Dragović and Radnović studied the Liouville foliation
for the planar billiard in an ellipse as well as the geodesic flows on an ellipsoid in
the Minkowski metric. Their answer was given in terms of the Fomenko–Zieschang
invariants.

Fokicheva classified all locally planar billiards bounded by arcs of confocal ellipses
and hyperbolas (these billiards need not be isometrically embeddable in the plane)
as well as those in domains (not necessarily planar) obtained by gluing elementary
domains along convex segments of their boundaries. Furthermore, she studied the
topology of Liouville foliations on isoenergy surfaces for such billiards and calculated
the marked Fomenko–Zieschang molecules (the invariants of Liouville equivalence).

Note that billiards in domains bounded by arcs of confocal parabolas are also
integrable. The confocal parabolas may be regarded as a family of confocal ellipses
and hyperbolas with one focus at infinity. The topology of Liouville foliations in
a domain bounded by arcs of confocal parabolas was studied by Fokicheva [9].

There are many papers dedicated to the study of symmetries and the topology
of integrable systems (see, for example, [10]–[12]).

Two smooth integrable systems are said to be Liouville equivalent if there is a dif-
feomorphism sending the Liouville foliation of one system to that of the other. If the
smooth Liouville tori are the closures of non-resonance trajectories on a dense set
(this holds in the majority of non-degenerate classical cases of integrability), then
the Liouville equivalence of systems means that they have ‘the same’ closures of the
solutions (that is, of the integral trajectories) on the three-dimensional levels of con-
stant energy. In the billiard case, the Liouville tori along with the Liouville foliation
and the integral trajectories are piecewise smooth and, therefore, we have not yet
studied in detail whether almost all Liouville tori are non-resonant. Nevertheless,
the Liouville foliation and Liouville equivalence are well defined here.

The topological type of the Liouville foliation is completely determined by the
Fomenko–Zieschang invariant, which is a certain graph with numerical marks (see
the theorem of Fomenko and Zieschang in [13] as well as in the book [10] of Bolsi-
nov and Fomenko). Analyzing the many marked molecules that have so far been
calculated for various billiards and other integrable systems with two degrees of
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freedom, Fomenko conjectured that many rather complicated cases of integrability
(for example, in rigid body dynamics) can be ‘modelled’ by the much more visual
topological billiards. In particular, this gives an effective way of finding the stable
and unstable periodic solutions (trajectories) of integrable systems. This conjecture
was confirmed by Fokicheva and Fomenko [14]. Namely, in many integrable cases of
rigid body dynamics, a calculation of the Fomenko–Zieschang invariant for several
isoenergy surfaces enables one to find a Liouville equivalence between these systems
and topological billiards by comparing the marked molecules (see [14]). Thus, to
say it more expressively, locally planar topological billiards are ‘visual models’ of
many rather complicated integrable cases in rigid body dynamics. These results
are briefly presented and complemented by new results (compared to [14]) in the
second section of the present paper.

This paper continues the study of integrable billiards. We find new equivalences
between billiards and cases of rigid body dynamics. We construct new classes of
integrable billiards bounded by arcs of confocal quadrics, namely, non-compact bil-
liards and generalized billiards obtained by gluing certain planar billiards along
non-convex parts of their boundaries (non-convex generalized billiards). We com-
pletely classify the non-compact billiards bounded by arcs of confocal quadrics and
investigate their topology using the Fomenko invariants that describe the bifurca-
tions of singular leaves of the additional integral. We study the topology of the
isoenergy surfaces of some non-convex generalized billiards. It turns out that they
possess exotic Liouville foliations: the integral trajectories of the billiard that lie on
certain singular leaves admit no continuous extension. We show that such billiards
are leafwise equivalent to the billiard in an ellipse in the Minkowski metric as well
as to the geodesic flows on an ellipsoid in the Minkowski metric (we mention the
papers [15], [16] on billiards and geodesic flows in this metric).

§ 1. Introduction. The Fomenko–Zieschang invariant as a method
for the topological (Liouville) classification of integrable billiards

in domains bounded by arcs of confocal quadrics

1.1. Hamiltonian systems. Liouville equivalence. The Fomenko–Zieschang
invariant.

Definition 1.1. Let (M4
1 , ω1, f1, g1) and (M4

2 , ω2, f2, g2) be Liouville integrable
systems on symplectic manifolds M4

1 and M4
2 , with integrals f1, g1 and f2, g2

respectively. We consider the isoenergy surfaces Q3
1 = {x ∈ M4

1 : f1(x) = c1} and
Q3

2 = {x ∈ M4
2 : f2(x) = c2}. These integrable Hamiltonian systems are said to be

Liouville equivalent if there is a leafwise diffeomorphism Q3
1 → Q3

2 which, moreover,
preserves the orientation of the 3-manifolds Q3

1 and Q3
2 and the orientation of all

critical circles; see [17].

Let (M4, ω, f1, f2) be a Liouville-integrable non-degenerate Hamiltonian system
on a symplectic manifold M4, with integrals f1 and f2. The isoenergy manifold
Q3 = {x ∈ M4 : f1(x) = c1} splits into regular two-dimensional level surfaces of f2,
which are tori, cylinders or planes (by Liouville’s theorem) and singular leaves.
This foliation is called the Liouville foliation. For simplicity we assume for the
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moment that the manifold Q3 is compact. Then it can be regarded as obtained
by gluing certain regular neighbourhoods of singular leaves to one another along
their boundary tori. Consider the base of the resulting Liouville foliation on Q3.
This base is a one-dimensional graph W which is called the Kronrod–Reeb graph of
the function f2

∣∣
Q3 . The structure of the foliation in a small neighbourhood of the

singular leaf corresponding to a vertex of this graph, is described by a combinatorial
object called an atom. The graph all of whose vertices are endowed with the
corresponding atoms is called the Fomenko invariant (a rough molecule). The
‘atoms’ at the vertices of W describe the corresponding bifurcations of Liouville
tori. Every edge of W can be endowed with an arrow that indicates its orientation.
This is usually done in a global way using the direction of growth of the additional
integral (see [10], [17] for details).

We now describe those compact atoms that occur most often in problems of
Hamiltonian mechanics.

Definition 1.2. A two-dimensional atom is a pair (P 2,K), where P 2 is a con-
nected orientable or non-orientable compact surface with boundary and K is
a connected graph on P 2 such that the following conditions hold.

1) Either K consists of a single point, that is, an isolated vertex of degree zero,
or all the vertices of K have degree 4.

2) Every connected component of P 2 \K is homeomorphic to the annulus S1×
(0, 1]. The set of these annuli can be divided into two classes (positive and
negative) in such a way that the following condition holds.

3) Every edge of K is adjacent to exactly one positive and exactly one negative
annulus.

Here we considere atoms up to natural equivalence: (P 2,K) and (P ′2,K ′) are
equivalent if there is a homeomorphism sending P ′2 to P 2 and K ′ to K.

We give the examples of two-dimensional atoms most often encountered.
The atom A is homeomorphic to a disc. It is foliated by concentric circles

retracting to the singular leaf, the central point. The atom B is a bifurcation
of one circle into two, and its singular leaf is a ‘figure eight’. The atom C2 is
a bifurcation of two circles into one. These atoms are shown in Fig. 1.

To describe the topology of systems, we need two infinite series of atoms. Since
their notation sometimes differs in different papers, we define the atoms of the
series Bn and Dn as shown in Fig. 1. Here n is the number of vertices (the com-
plexity) of the atom.

The series of atoms Dn is one of the series of maximally symmetric atoms
(see [18]).

Note that the atom B is a particular case of Bn (n = 1), and C2 is a particular
case of the maximally symmetric atoms Dn (n = 2). We shall assume that the
atoms B0 and D0 are homeomorphic to A, and D1 is homeomorphic to B.

Besides the two-dimensional atoms described above, we also introduce new atoms
which are called atoms with stars. Take an arbitrary atom (P 2,K) and consider
its graph K. Along with the atoms considered above, we consider another simple
atom: take an annulus for the surface P and its inner circle for the graph K. We
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Figure 1. The atoms A, B, C2 and examples of atoms of the infinite series

Bn and Dn, namely, the atoms D9 and B5

now construct atoms with stars. On some edges of K, we mark arbitrarily many
interior points. They are declared to be new vertices of K and are denoted by stars
(see the examples in Fig. 2).

Consider a topologically stable integrable system with a Bott integral f (see
[10], [17]) on Q3, and let L be the connected singular leaf of the Liouville foliation
on Q. Let U(L) be a connected invariant three-dimensional neighbourhood of this
leaf. Then U(L) is a 3-manifold with the structure of a Liouville foliation. Such
manifolds are called 3-atoms. More precisely, two such manifolds are regarded
as Liouville equivalent if, first, there is a leafwise diffeomorphism between them
and, second, this diffeomorphism preserves the orientation of 3-manifolds and the
orientation of the critical circles determined by the Hamiltonian flow.

The equivalence class of a manifold U(L) is called a 3-atom.

Theorem 1.1 (Fomenko; see [10], [17]). The following assertions hold.
1) Every manifold U(L), that is, every 3-atom, carries the structure of a Seifert

fibration whose singular fibres are of type (2, 1).
2) The base of the Seifert fibration on the 3-atom U(L) possesses the natural

structure of a 2-atom.
3) The projection π : (U(L), L) → (P 2,K) establishes a one-to-one correspon-

dence between 3-atoms and 2-atoms.
4) The singular fibres of type (2, 1) in U(L) correspond to the ‘stars’ on the

2-atom (P 2,K).

For visual purposes, we construct a map that sends every two-dimensional atom
(with or without stars) to a three-dimensional atom. Take an atom (P 2,K) and
construct a Morse function f on P 2 whose only critical level coincides with K. This
function is unique up to leafwise equivalence. It foliates P 2 by its level lines. It
follows from Fomenko’s theorem ([10], [17], Theorem 3.1) that the 3-manifold U(L)
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with the structure of Seifert fibration is uniquely determined (up to leafwise equiv-
alence) by the base P 2 with marked stars (if there are any). Since the non-singular
level lines of f on P 2 are circles, their ‘images’ in the 3-manifold U(L) are tori.
In the case when the two-dimensional atom (P 2,K) contains no stars, the singular
leaf (the image of K) is the direct product of K and a circle.

Suppose that the atom (P 2,K) contains starred vertices. Then we can construct
its double (P̂ 2, K̂) as a branched two-sheeted covering of (P 2,K) whose branch
points are exactly the starred vertices. To do this, for example, cut P 2 transver-
sally to K at the starred vertices and glue two copies of the resulting surface along
the edges of the slits. Note that f can be extended from P 2 to a Morse func-
tion f̂ on the surface P̂ . The double (P̂ 2, K̂) is endowed with a natural involution
τ : P̂ 2 → P̂ 2 that interchanges the two parts of the double, the original surfaces P 2.
This involution possesses the following properties:

1) τ2 = id;
2) τ preserves the function f , that is, f̂(τ(x)) = f̂(x) for all x ∈ P̂ ;
3) τ preserves orientation.

To construct a 3-atom, consider the cylinder P̂ × [0, 2π] and glue its bases along
the involution τ by identifying the points (x, 2π) and (τ(x), 0). As a result, we
obtain an orientable 3-manifold U with boundary. This manifold is referred to as
a 3-atom with stars.

For the double of the two-dimensional atom A∗ we can take the two-dimensional
atom B. Therefore the three-dimensional atom A∗ (see Fig. 3) is obtained as a skew
product of the two-dimensional atom B and a circle: one must ‘twist’ B by π. Hence
the atom A∗ corresponds to a bifurcation of one torus into one (in contrast to the
three-dimensional atom B describing a bifurcation of two tori into one). One can
similarly obtain the atom A∗∗ using the two-dimensional atom C2 as a double. The
atom A∗∗ also describes a bifurcation of two tori into one, but there are two critical
circles.

Figure 2. Planar atoms with stars of the series B∗
n and B∗∗

n , namely, the

atoms B∗
5 and B∗∗

5

We now describe the infinite series B∗
n and B∗∗

n , n > 0, of atoms with stars that
are used in this paper. The two-dimensional atoms of these series are obtained by
adding the starred vertices on the boundary circles of the corresponding graphs K
(see Fig. 2). For the doubles of the atoms of the series B∗

n and B∗∗
n we take the

atoms B2n+1 and D2n+2 respectively.
The resulting Fomenko molecule (the graph W ) does not describe the topology

of the Liouville foliation completely because it does not contain all the information
about how the regular neighbourhoods of singular leaves are actually glued. To
describe the topology of the foliation, one must choose pairs of so-called admissible
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Figure 3. The three-dimensional atoms A, B and A∗

bases on the boundary tori and indicate the transition matrices from one basis
to the other. The structure of an atom-bifurcation gives a rule for choosing an
admissible basis. See [10], [13], [17], [19] for details. Thus there are two admissible
bases at the points of all the edges of the rough molecule W , which is a Liouville
torus. For every such pair of bases there is a transition matrix from one to the
other. It is also called a gluing matrix. Since only one cycle in an admissible basis
is uniquely determined (the complementary cycle can be chosen non-uniquely), the
resulting gluing matrix can change when one set of admissible bases is replaced
by another. However, the gluing matrix determines certain numerical marks that
coincide for all such matrices (see [10], [13], [17], [19]). These marks r, ε and n are
invariant under admissible changes of bases on the boundary tori (see Lemmas 4.5
and 4.6 in [10]).

Definition 1.3. The molecule W endowed with the numerical marks r, ε and nk

is called the marked molecule or the Fomenko–Zieschang invariant.

Theorem 1.2 (Fomenko and Zieschang; see [10]). Two non-degenerate topolog-
ically stable integrable Hamiltonian systems on regular isoenergy surfaces Q3

1 =
{x ∈ M4

1 : f1(x) = c1} and Q3
2 = {x ∈ M4

2 : f2(x) = c2} are Liouville equivalent
if and only if their marked molecules coincide.

Thus the calculation of the Fomenko–Zieschang invariant is a visual method for
the classification of integrable Hamiltonian systems up to Liouville equivalence.

1.2. Billiards.

1.2.1. The classical statement of the billiard problem. Let Ω be a domain in the
plane R2 such that its boundary is piecewise smooth and the angles at the cusps are
equal to π/2. Consider the dynamical system describing the motion of a point mass
inside Ω with natural reflection at the boundary P = ∂Ω. This system is called
‘the billiard in the domain’. We assume that at points where P is not smooth (at
the cusps with angles π/2, as said above), the trajectories of the system can be
extended by continuity: having hit the corner at a vertex, the point mass bounces
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off along the same trajectory, without loss of velocity. Thus the phase space of the
system is the manifold

M4 := {(x, v) : x ∈ Ω, v ∈ TxR2, |v| > 0}/ ∼,

where the equivalence relation is given by the rule

(x1, v1) ∼ (x2, v2) ⇔ x1 = x2 ∈ P, |v1| = |v2| and v1 − v2 ⊥ Tx1P.

Here TxP is the tangent plane to Ω at the point x and |v| is the Euclidean length
of the vector v.

1.2.2. Hamiltonian smoothing. The billiard system is not smooth in general since,
as a rule, we cannot introduce a smooth structure in Cartesian coordinates because
of the gluing at some of the boundary points. The definitions above must be modi-
fied to take account of the boundary points. The following approach and definitions
are due to Fomenko; see also Lazutkin’s book [20] and Kudryavtseva’s paper [21].

The phase manifold M4 is piecewise smooth and splits into smooth pieces (whose
union will be denoted by M̃4), which are glued at the points that project (in the
case of a billiard system) to the same points of the boundary of the domain where
the billiard is defined. The symplectic structure on M4 will be introduced only
on M̃4. We assume that the smooth symplectic structures in adjacent smooth
domains match continuously on the interface, that is, their ‘right and left’ one-sided
limits coincide. We say that a piecewise-smooth system on M4 is integrable (in the
piecewise-smooth sense, but these words will be omitted for brevity in what follows)
if there exist functionally independent functions f and H which are continuous
on M4 and smooth on M̃4 and are in involution on M̃4.

Consider a piecewise-smooth isoenergy manifold Q3 and the connected com-
ponents of the common level sets of f and H. Suppose that the Hamiltonian
flows sgrad f and sgradH are complete. If the connected compact components
of the common level sets of f and H can be shown to be homeomorphic to either
a piecewise-smooth torus or a piecewise-smooth three-dimensional atom (for finitely
many singular values of f), then we say that the piecewise-smooth Liouville the-
orem holds. In this case we can construct the rough molecule W and define the
marks. For a billiard in a compact domain, it is obvious that the Hamiltonian flows
are complete.

A piecewise-smooth Liouville foliation for a billiard system differs from a Liou-
ville foliation for a classical integrable Hamiltonian system in the following
aspect: as a rule, every common level surface is either a piecewise-smooth atom
or a piecewise-smooth torus. However, in what follows we shall use the same nota-
tion for atoms and molecules as in the classical case.

Lazutkin [20] showed that if the boundary of the billiard is convex, then the
inverse image of a neighbourhood of it under the projection M4 → Ω can be
endowed with a smooth structure and a symplectic structure on M4 in such a way
that the functions f and H are smooth and the natural projection M̃4 → M4 is
a smooth symplectic map. However, it has not yet been possible to establish the
smoothness at the inverse images of cusp boundary points (corners) or points where
the boundary is non-convex.
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The piecewise-smooth Liouville theorem was proved by Fokicheva [22] for the
class of billiards bounded by arcs of confocal ellipses and hyperbolas. We shall use
these results in this paper.

1.2.3. Integrability of billiards in domains bounded by arcs of confocal quadrics.
Let Ω be a plane domain bounded by segments of confocal quadrics.

Theorem 1.3 (Jacobi, Chasles; see [1]). The tangent lines to a geodesic curve on
a quadric in n-dimensional Euclidean space, drawn at all points of this curve, are
tangent to this quadric and to (n − 2) additional confocal quadrics, which are the
same for all points of the geodesic curve.

Remark 1.1. There are two Russian terms for confocal quadrics in the multi-
dimensional case: ‘sofokusnye’ and ‘konfokal’nye’.

In the planar two-dimensional case, it follows from the Jacobi–Chasles theorem
that the tangents at every point of a billiard trajectory inside Ω are also tangent
to an ellipse or a hyperbola confocal with the family of quadrics that form the
boundary P of Ω.

The functions |v|, the modulus of the velocity vector, and Λ, the parameter of
the confocal quadric, commute with respect to the standard symplectic structure
on the plane. Since they are constant along billiard trajectories, they also commute
in the limit at the boundary of the domain. Hence this ‘billiard system’ possesses
two independent (see [1]) integrals:

1) |v|, the modulus of the velocity vector,
2) Λ, the parameter of the confocal quadric.

In this paper, by confocal quadrics we mean a family of confocal ellipses and
hyperbolas. Billiards in domains bounded by arcs of confocal parabolas are also
integrable. The Liouville foliations of such billiards are classified up to Liouville
equivalence in [9].

We fix Cartesian coordinates (x, y) on the plane R2. Consider the family of
confocal quadrics

(b− λ)x2 + (a− λ)y2 = (a− λ)(b− λ), (1.1)

where a > b > 0 are fixed parameters of the family and λ is the parameter of the
quadric. When λ < b (resp. b < λ < a) this relation determines a family of confocal
ellipses (resp. hyperbolas). When λ = b, it determines the line Ox, which may be
regarded as the union of two degenerate hyperbolas (rays emanating from the foci
of the family) and a degenerate ellipse (the interval between the foci). When λ = a,
it determines the line Oy, which may be regarded as a limiting hyperbola. In what
follows we regard the line Oy as a hyperbola.

For example, consider the billiard in the ellipse with parameter λ = 0. The
trajectories at various levels of the integral Λ behave as follows (see [1] for details).
When Λ = 0, there are two trajectories corresponding to the circuits around the
boundary of the ellipse in opposite directions. When Λ ∈ (0, b), the trajectories are
tangent to the ellipse with parameter Λ and also belong to one of two classes: clock-
wise circuits or anti-clockwise circuits. The value Λ = b of the integral corresponds
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to a singular leaf of the 3-atom B (see [6]): the trajectories lying on this leaf
pass successively through the foci of the family (1.1). The critical circle is the
trajectory along the major axis of the ellipse. When Λ ∈ (b, a), the tangents to
the trajectory are tangent to the hyperbola with parameter Λ. The value Λ = a
corresponds to the vertical trajectory along the minor axis of the ellipse.

A similar picture can be observed for billiards with corners on the boundary. The
trajectory at the level Λ = b of the integral consists of intervals of straight lines
passing through the foci of the family (1.1). Every convex segment of the billiard’s
boundary corresponds to a level of the integral such that the trajectories lying on
this level pass along this segment (the so-called minimal values of the integral for
elliptic convex segments and maximal values of the integral for hyperbolic convex
segments in the terminology of [22]).

We mention that no family of confocal ellipses and hyperbolas can bound a clas-
sical rectangular billiard table since this family contains only two straight lines (the
coordinate axes).

Remark 1.2. In what follows we write ‘billiard’ instead of ‘domain’ or ‘billiard
domain’. It is usually clear from the context whether we sre speaking of two-
dimensional domains or billiard dynamics.

Definition 1.4. A simple elementary compact (planar) billiard is a flat compact
Riemannian manifold with boundary which can be embedded isometrically in the
plane in such a way that the boundary of its image consists of arcs of confocal
ellipses and hyperbolas and contains no angles larger than π.

A composite elementary compact (locally planar) billiard is a compact locally
flat manifold obtained by gluing together finitely many simple elementary billiards
along some boundary arcs of hyperbolas in such a way that, first, the embedded
images of these billiards in the plane are locally on different sides of the gluing arc
(we omit this requirement when the arc is a straight line segment), second, the
angles arising on the boundary of the domain do not exceed π and, third, boundary
arcs are glued by means of isometries. Here we do not require the existence of an
isometric embedding of the whole composite elementary billiard in the plane.

For brevity, simple and composite elementary billiards will be referred to as
elementary.

Definition 1.5. An elementary billiard (Ω, Ui) bounded by arcs of quadrics in the
confocal family (1.1) is said to be equivalent to another elementary billiard (Ω′, U ′

i)
bounded by arcs of quadrics in the same family (1.1) if (Ω′, U ′

i) can be obtained
from (Ω, Ui) by composing the following transformations.

1) A successive change of boundary segments of the images of some simple
elementary billiards Ui under their isometric embeddings in the plane by
continuously deforming them in the class of quadrics (1.1) in such a way
that the value of the parameter λ for the modified boundary segment never
reaches b. Here we require that the values of λ for the quadrics (hyperbolas)
containing the images of the common boundary arc of any two simple ele-
mentary billiards under their isometric embeddings in the plane that agree
on this arc before the deformation, either change simultaneously or remain
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equal to each other (so that the isometric embeddings continue to agree
on this arc both during and after the deformation). We also require that
the values of λ change simultaneously or remain equal to each other for the
quadrics (ellipses) that contain the images of elliptic boundary segments
(of distinct elementary billiards) having a common vertex.

2) The symmetry with respect to an axis of the family (1.1) in all simple ele-
mentary billiards Ui simultaneously.

3) Combining several simple elementary billiards into a single one or splitting
an elementary billiard into smaller ones.

Proposition 1.1 (see [22]). Every elementary billiard is equivalent to a billiard
in one of the following three series.

1) A finite series consisting of six billiards embeddable in the plane: the bil-
liard A2 bounded by an ellipse, the billiard A1 bounded by an elliptic arc
and a hyperbolic arc, the billiard A0 bounded by two elliptic arcs and two
hyperbolic arcs, and their upper halves, that is, the domains A′

2, A′
1, A′

0

bounded by the same quadrics as A2, A1, A0 respectively and by the focal
line (the subscript is the number of foci of the family (1.1) that belong to the
billiard).

2) An infinite series of ring billiards Cn: the billiard C2 is bounded by two
ellipses, the billiard C1 is the result of its factorization by the action of Z2,
and the other billiards are their n-sheeted coverings (thus n is the total
number of intervals of the focal line that lie in the billiard).

3) The series of ribbon billiards consisting of three infinite subseries : Bn, B′
n

and B′′
n. Their elements are simply connected parts of the billiards Cn with

no (Bn), one (B′
n) or two (B′′

n) boundary segments lying on the focal line
(here n is the total number of intervals of the focal line in the billiard).

Figure 4. Elementary billiards that form the finite series A

Definition 1.6. Consider a compact billiard in the plane bounded by arcs of con-
focal quadrics such that the angles at the corner boundary points do not exceed π.
Then the boundary of the billiard is either a simple closed curve or the disjoint union
of two ellipses. Take the minimal system of arcs of quadrics forming the boundary
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Figure 5. Examples of elementary billiards in the infinite series B and C.

The billiards B4 (left) and C4 (right) are shown

of the billiard. These arcs are called the compact segments of the quadrics bounding
the billiard (or the boundary segments of the billiard).

We shall distinguish segments of four types: an ellipse, an arc of a non-degenerate
hyperbola confined between two ellipses, an arc of a non-degenerate ellipse confined
between two hyperbolas, and an interval of the focal line.

Let Ωi be a system of compact billiards bounded by arcs of the same family
of confocal quadrics. We define the notion of a (compact) generalized billiard.
A generalized billiard ∆ consists of finitely many elementary billiards Ωi glued
along common convex elliptic segments of their boundaries (and possibly along
some hyperbolic segments, which gives rise to so-called conical points). Here we
prohibit all gluings giving rise to angles exceeding π on the boundary of the resulting
generalized billiard, and angles exceeding 2π at the interior points of the billiard.

We now describe the phase space M4 of a generalized billiard. Let Pi be the
union of all open boundary segments of the billiard Ωi that are not gluing edges.
We define

M4
Ωi

:= {(x, v) : x ∈ Ωi, v ∈ TxΩi, |v| > 0}/ ∼,

where the equivalence relation is given by the rule

(x1, v1) ∼ (x2, v2) ⇔ x1 = x2 ∈ Pi, |v1| = |v2| and v1 − v2 ⊥ Tx1Pi.

Here TxPi is the tangent plane to the billiard Ωi at the point x and |v| is the
Euclidean length of the vector v.

We glue the manifold M4 from M4
Ωi

. Let Qij be one of the gluing edges along
which the elementary billiards Ωi and Ωj are glued (there can be several such edges).
In the case when Ωi and Ωj are isometrically embedded in the plane in such a way
that the images of the gluing segments coincide and are glued by the identity map
and the billiards themselves lie on the same side of these segments, the manifolds
M4

Ωi
and M4

Ωj
are glued by the following rule:

(x1, v1) ∈ M4
Ωi
∼ (x2, v2) ∈ M4

Ωj
⇔ x1 = x2 ∈ Qij ,

|v1| = |v2| and v1 − v2 ⊥ Tx1Qij .

We similarly define the rule of gluing M4
Ωi

and M4
Ωj

in the general case. This rule
is sometimes referred to as the generalized billiard law.

A trajectory of the resulting billiard system ‘jumps’ from one elementary bil-
liard to another when it arrives at a gluing edge, and bounces off by the standard
reflection law when it arrives at the boundary of the billiard ∆ (see Fig. 6).
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We discuss separately the case of a conical point obtained by gluing two corners
of two of the distinct elementary billiards Ω comprising the billiard ∆. An easy
continuity argument shows that the reflection law will be as follows. A point mass
that arrives at the conical point from an elementary billiard Ω reflects back along
the same straight line and continues moving on the same elementary billiard Ω (see
Fig. 6). Hence a ‘jump’ of the mass point at an endpoint of the gluing edge is
possible only when four elementary billiards are glued together at this cusp vertex.
Clearly, the integrability of the system persists under this definition of the phase

Figure 6. The picture on the left shows the motion in the generalized bil-

liard on a convex gluing edge of two elementary billiards. The middle picture

shows how the motion at a conical point is extended by continuity. The

picture on the right indicates that if the gluing edge is non-convex, then

the trajectories hitting the gluing edge tangentially cannot be extended by

continuity: after hitting the non-convex boundary, they can either continue

on the same leaf or proceed to the other leaf as limits of two types of

trajectories

manifold M4: we still have an additional integral Λ, the parameter of the confocal
quadric to which the billiard trajectory is tangent. This is because the boundaries
of all the planar (elementary) billiards Ωi comprising the generalized billiard ∆
and, in particular, all the gluing edges, are formed by arcs of the same family of
confocal quadrics.

Definition 1.7. A generalized billiard ∆ glued from elementary billiards Ωi along
gluing edges fij is said to be equivalent to another generalized billiard ∆′ glued
from Ω′i along gluing edges f ′ij if ∆′ can be obtained from ∆ by replacing the
elementary billiards Ωi with equivalent billiards.

Generalized billiards can conveniently be described using the following nota-
tion. We denote generalized billiards without conical points by ∆α and indicate in
brackets the elementary billiards comprising the billiard ∆. When several equiva-
lent billiards are successively glued to each other, we indicate the number of copies,
for example, by writing ∆α(kA0). Otherwise we indicate the constituents as sep-
arate summands. For example, the notation ∆α(Ω + kA0 + Ω) means that two
equivalent billiards Ω are glued not to each other but to the billiards A0. We use
a special notation ∆α(kA0)2 for the billiard glued from k copies of A0 along all
elliptic boundaries into a billiard homeomorphic to an annulus.
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Generalized billiards with conical points will be denoted by ∆β . We introduce
three types of conical points. Conical points of type x are formed by gluing along
a convex elliptic segment l and a horizontal segment m. Conical points of type y are
formed by gluing a convex or vertical hyperbolic segment m and a convex elliptic
segment l. Conical points of type c or, in other words, central conical points are
formed by gluing along a convex or vertical hyperbolic segment m and a horizontal
segment l corresponding to the quadric with parameter b.

We introduce the following notation for the gluing rules to indicate precisely the
resulting conical point: ∆β(Ω)2c means that we are gluing two copies of an elemen-
tary billiard Ω and obtain a central conical point of type c, ∆β(Ω)2y means that we
are gluing two copies of Ω and obtain a conical point of type y, ∆β(Ω)2x means that
we are gluing two copies of Ω and obtain a critical point of type x. Double sub-
scripts mean that the gluing gives rise to two conical points. For example, ∆β(Ω)22y

is a generalized billiard glued from two copies of Ω in such a way that two conical
points of type y arise.

Proposition 1.2 (see [22]). Every generalized billiard belongs to one of the follow-
ing four classes.

1) The class of generalized billiards glued from elementary billiards of the same
type without conical points : the five ‘simple doubled ’ billiards of the form
∆α(2Ω), where Ω is equivalent to A′

0, A′
1, A1, A2, A′

2, and the four infinite
series

∆α(kA0), k > 1, ∆α(kA0)2, k > 0, ∆α(2Bk), ∆α(2Ck).

2) The class of generalized billiards glued from elementary billiards of distinct
types without conical points : the four billiards ∆α(Ω1 + Ω2), where Ω1 con-
tains the foci of the family and is equivalent to A′

1, A′
2, A1, A2, and Ω2 does

not contain the foci and is equivalent to B′
1, B′′

2 , B1, C2 respectively, and
the five infinite series ∆α(kA0 + B0), ∆α(kA0 + A′

0), ∆α(A′
0 + kA0 + B0),

∆α(B0 + kA0 + B0) and ∆α(A′
0 + kA0 + A′

0), k > 0.
3) The class of generalized billiards glued from elementary billiards of the same

type with conical points : the thirteen billiards

∆β(A′
1)

2
y, ∆β(A′

1)
2
x, ∆β(A′

1)
2
c , ∆β(A′

1)
2
cxy, ∆β((A′

1)
2
c + (A′

1)
2
c),

∆β(A′
0)

2
c , ∆β(A′

0)
2
y, ∆β(A′

0)
2
cy, ∆β((A′

0)
2
c + (A′

0)
2
c),

∆β((A′
0)

2
c + 2A′

0), ∆β(A′
2)

2
2x, ∆β(A1)22y and ∆β(A0)22y

and the nine infinite series

∆β((A0)2y + 2kA0), ∆β((A0)2y + 2kA0 + (A0)2y), ∆β(Bk)2y,

∆β(Bk)22y, ∆β(B′
k)2yx, ∆β(B′

k)2y, ∆β(B′
k)2x,

∆β(B′′
k )2x and ∆β(B′′

k )22x.

4) The class of generalized billiards glued from elementary billiards of distinct
types with conical points : the billiard

∆β((A′
1)

2
c + C1)
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and the seven infinite series

∆β((A′
0)

2
c + 2kA0), ∆β((A′

0)
2
c + 2kA0 + 2B0), ∆β((A0)2y + 2kA0 + 2B0),

∆β((A′
0)

2
c + 2kA0 + 2A′

0), ∆β((A0)2y + 2kA0 + 2A′
0),

∆β((A′
0)

2
c + 2kA0 + (A′

0)
2
c) and ∆β((A0)2y + 2kA0 + (A′

0)
2
c).

1.3. Topological classification of integrable billiards.

Theorem 1.4 (see [7]). The Fomenko–Zieschang invariant (the marked molecule
W ∗ describing the topology of the Liouville foliation on the isoenergy surface Q3 for
an elementary billiard Ω) is of the form A

r=0, ε=1−−−−−−→ A if the billiard Ω contains no
segments of the focal line (neither inside the billiard, nor on the boundary), that is,
if Ω is equivalent to A′

0, A′
1, A′

2, B0, B′
1 or B′′

2 . If Ω contains segments of the
focal line, then the molecule is of the form shown in the table (see Fig. 7).

Notation Billiard Fomenko–Zieschang invariant

A0

A1

A2

Bn

B′
n+1

B′′
n+2

Cn

Figure 7. The Fomenko–Zieschang invariants (the marked molecules des-

cribing the topology of the Liouville foliations on isoenergy surfaces Q3)

for elementary billiards whose interior has non-empty intersection with the

focal line
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Theorem 1.5 (see [22]). Let ∆ be a generalized billiard consisting of elementary
billiards Ω. Suppose that at least one elementary billiard Ω contains a focus of
the family (inside the billiard or on the boundary). Then the Fomenko–Zieschang
invariants (the marked molecules W ∗ describing the topology of Liouville foliations
on isoenergy surfaces Q3 for such generalized billiards ∆) comprise nine pairwise-
inequivalent types. If ∆ contains no intervals of the focal line either inside the
billiard or as gluing edges, then the Fomenko–Zieschang invariant is of the form

A
r=0, ε=1−−−−−−→ A for ∆ without conical points, and of the form A

r=1/2, ε=1−−−−−−−→ A for
∆ with conical points. The invariants for the other billiards are shown in the table
(see Fig. 8).

Generalized billiard Fomenko–Zieschang invariant

∆α(2A1)

∆α(A2 + C1)

∆α(2A2)

∆α(A1 + B1)

∆β(A′
1)

2
c

∆β((A′
1)

2
c + C1)

∆β(A′
1)

2
x

∆β(A′
2)

2
2x

∆β((A′
1)

2
c + (A′

1)
2
c)

∆β(A′
1)

2
2y

∆β(A′
1)

2
xyc

Figure 8. The Fomenko–Zieschang invariants (the marked molecules des-

cribing the topology of the Liouville foliations on isoenergy surfaces Q3)

for generalized billiards containing the foci
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Theorem 1.6 (see [22]). Let ∆ be a generalized billiard consisting of elementary
billiards Ω. Suppose that none of the billiards Ω contains foci. Then the Fomenko–
Zieschang invariant (the marked molecule W ∗ describing the topology of the
Liouville foliation on the isoenergy surface Q3) takes the following form for such
generalized billiards ∆ (see Fig. 9 for details).

1) The molecule contains one or two lower edges (two edges only when the
billiard is homeomorphic to an annulus). On these edges we have r = ∞,
ε = ±1.

2) When the billiard is homeomorphic to an annulus, the bifurcation at the level
Λ = b of the integral is described by the atom Dn, where n is the number of
intervals of the focal line that lie inside all the billiards Ω.

3) When the billiard is simply connected, the bifurcation at the level Λ = b of
the integral is described by the atom Bn, where n is the number of intervals
of the focal line that lie inside all the elementary billiards Ω, and the atom
has stars whose number is equal to the number of conical points of type c
or x in the billiard ∆ (the conical points of type c and x lie on the axis Ox).

4) The upper edges of the molecule are marked by r = 0, ε = 1 or r = 1/2,
ε = 1. The number of fractional marks in the molecule coincides with the
number of conical points of type y.

Figure 9. The Fomenko–Zieschang invariants (the marked molecules des-

cribing the topology of Liouville foliations on isoenergy surfaces Q3) for

generalized billiards that do not contain foci. The first row (resp. the second

and third rows) shows the molecules for billiards without conical points

(resp. with one and two conical points)
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§ 2. Liouville equivalence of billiards to cases of rigid body dynamics

Having calculated the Fomenko–Zieschang invariants for elementary and gener-
alized billiards, we see that they often coincide with those already calculated in the
integrable cases of rigid body dynamics (Euler, Lagrange, Kovalevskaya, Zhukovskii,
Goryachev–Chaplygin–Sretenskii, Kovalevskaya–Yehia, Clebsch and Sokolov). This
enables us to prove that integrable cases of rigid body dynamics are Liouville equiv-
alent to elementary and generalized billiards. The papers [14], [22] contain a list
of Liouville equivalent foliations currently known. They also indicate the domains
(on the bifurcation diagrams of the Euler, Lagrange, Kovalevskaya, Zhukovskii
and Goryachev–Chaplygin–Sretenskii cases) that correspond to these isoenergy
3-surfaces. For each invariant they describe a billiard that models the behaviour of
solutions on these isoenergy surfaces.

Theorem 2.1 (see [14]). The following cases of rigid body dynamics are modelled
by (that is, are Liouville equivalent to) the generalized billiards indicated.

1) The Euler case (see [10]) is completely modelled by the generalized billiards
shown in Fig. 10, (a), (h), (i). They correspond to the zones I, II, III respec-
tively of energy H .

2) The Lagrange case (see [10], [23]) is modelled by the generalized billiards
shown in Fig. 10, (c) (energy zone 5).

3) The Kovalevskaya case (see [10]) is modelled by the generalized billiards
shown in Fig. 10, (c) (energy zone 5).

4) The Goryachev–Chaplygin–Sretenskii case (see [10], [23], [24]) is modelled
by the generalized billiards shown in Fig. 10, (c) (energy zone 4, isoenergy
surface Q3 ' S1 × S2) and Fig. 10, (g) (energy zone 2, isoenergy surface
Q3 ' S3).

5) The Zhukovskii case (see [10], [25], [26]) is modelled by the generalized bil-
liards shown in Fig. 10, (b) (energy zone 11, isoenergy surface Q3 ' RP 3),
Fig. 10, (c) (energy zone 2, isoenergy surface Q3 ' S1 × S2), Fig. 10, (d)
(energy zone 8, isoenergy surface Q3 ' S3) and Fig. 10, (f) (energy zone 12,
isoenergy surface Q3 ' RP 3).

6) The Kovalevskaya–Yehia case (see [27]) is modelled by the generalized bil-
liards shown in Fig. 10, (c) (energy zone h16, isoenergy surface Q3 ' S1×S2)
and Fig. 10, (e) (energy zone h18, isoenergy surface Q3 ' S3).

7) The Clebsch case (see [28]) is modelled by the generalized billiards shown in
Fig. 10, (e) (energy zone 2, isoenergy surface Q3 ' S3), Fig. 10, (h) (energy
zones 10, 12, isoenergy surface Q3 ' S1×S2) and Fig. 10, (i) (energy zone 5,
isoenergy surface Q3 ' RP 3).

8) The Sokolov case (see [29]) is modelled by the generalized billiards shown
in Fig. 10, (e) (energy zone B, isoenergy surface Q3 ' S3) and Fig. 10, (i)
(energy zone I, isoenergy surface Q3 ' RP 3).

A calculation of the Fomenko–Zieschang invariants for the geodesic flow on an
ellipsoid (the Jacobi problem) and the Euler case (motion of a rigid body with fixed
centre of mass) enabled us to establish their Liouville equivalence and even their
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Generalized
billiard

The Fomenko–Zieschang
invariant describing

the generalized billiard

Equivalent
known cases of
integrability

for a rigid body

(a) Lagrange, Euler

(b) Lagrange, Zhukovskii

(c)

Kovalevskaya, Goryachev–
Chaplygin–Sretenskii,

Zhukovskii,
Kovalevskaya–Yehia

(d) Zhukovskii

(e) Clebsch, Sokolov,
Kovalevskaya–Yehia

(f) Zhukovskii

(g) Goryachev–Chaplygin–
Sretenskii

(h) Euler, Clebsch

(i) Euler, Clebsch, Sokolov

Figure 10
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continuous orbital equivalence (a theorem of Bolsinov and Fomenko [30], [31]): the
Fomenko–Zieschang molecule in the Euler case with area constant zero is equal
to the Fomenko–Zieschang invariant for the Jacobi problem. The same invariant
also occurs for generalized billiards, namely, in the case of the billiard ∆α(2A2)
glued from two ellipses (see Fig. 10, (i)). Indeed, the billiard glued from two planar
ellipses may be regarded as a limit of the geodesic motion on an ellipsoid as the
shortest semi-axis of the ellipsoid tends to zero (notice that this is exactly the way
in which Birkhoff [3] proved the integrability of classical billiards in ellipses).

In the Euler case, the topology of the foliation of the isoenergy surface Q3 with
area constant zero enables us to give a visual interpretation of the behaviour of
periodic solutions. We recall the following familiar experiment. Take an ordinary
book (or a piece of wood in the form of a book). Place it in the horizontal plane
as shown in Fig. 11 and throw it up causing it to spin around its horizontal axis of
symmetry. Then catch the book and look at the position in which it has returned.
The result will depend essentially on the original orientation of the book. The
book has three perpendicular axes of symmetry. When we throw the book making
it spin around the axis of smallest moment of inertia, the book returns to us in the
same position as before the throw. The same occurs when the book is thrown while
spinning around the axis of largest moment of inertia. But the picture is rather
different when we throw the book making it spin around the axis of intermediate
moment of inertia. If the binding of the book was originally in your left hand, then,
having caught the book, you will find the binding in your right hand.

Figure 11

This curious phenomenon is explained as follows. The flight of the book mod-
els the Euler case of heavy rigid body dynamics rather well. It suffices to forget
about the motion of the centre of mass of the book, that is, consider only its ‘pure
rotation’ around the centre of mass. We can also assume that the area constant
is equal to zero. Indeed, at each throw we make the book spin around the hori-
zontal axis which is directed parallel to one of the eigendirections of the tensor of
inertia. Hence the kinetic momentum vector is proportional to the angular veloc-
ity vector. The force of gravity is directed vertically downwards and is therefore
orthogonal to the kinetic momentum of the book. Since the area constant is equal
to the scalar product of the kinetic momentum and the force of gravity, we see
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that this constant vanishes in our experiment. Hence we are dealing with the Euler
case with area constant zero. The flight of the book can be regarded as a motion
along an integral trajectory of the dynamical system of the Euler case on a three-
dimensional isoenergy surface. The qualitative description of the motion is deter-
mined by the topology of the Liouville foliation. The three motions of the book
in the air correspond to the three types of integral trajectories.

The first type is given by stable periodic trajectories of the two ‘upper atoms’ A
of the molecule. Mechanically, this is a rotation of the book around the shortest
axis of its ellipsoid of inertia. The motion is stable and the book returns to its
original position.

The second type is given by stable periodic trajectories of the two ‘lower atoms’ A
of the molecule. This is a rotation of the book around the longest axis of its ellip-
soid of inertia. As we have seen, this motion is also stable.

The third type is given by two hyperbolic periodic trajectories corresponding to
the saddle atom C2. These trajectories pass through the vertices of the atom. The
flight of the book is now described by an integral trajectory that starts near the first
saddle periodic solution. Theoretically, one could make the book spin in such a way
that the corresponding point always moves along the saddle periodic trajectory. But
this cannot be done in practice. Small deviations, which always exist, will force the
book to move along an integral trajectory which is only initially close to the saddle
periodic solution. Then the trajectory quickly leaves this solution and, after some
time, begins to approach to the second periodic solution. The integral trajectory
actually moves along a planar annulus (on the singular leaf of the 3-atom C2),
‘winding off’ its outer boundary and ‘winding onto’ the inner boundary of the
annulus. At the moment when you catch the book, the trajectory has almost
reached the second periodic solution. This is precisely the phenomenon of ‘the
binding turned upside down’. By making the book spin around its intermediate
axis of inertia, you force the integral trajectory to move from one saddle vertex of
the atom C2 to the other.

This picture can be modelled more visually using the locally planar generalized
billiard ∆α(2A2). Consider a small neighbourhood Bε(x0) of a point x0 lying on
a fixed critical trajectory of the 3-atom C2. This atom describes the bifurcation of
the level curves of the function Λ on an isoenergy surface of the billiard ∆α(2A2),
which is glued from two ellipses.

Let x ∈ Bε(x0) be a point lying in the singular leaf but not on the critical
trajectory. Then it belongs to one of the four annuli (the trajectories on two of
them come arbitrarily close to the fixed critical circle, and those on the other two
‘wind off’ this circle and come arbitrarily close to the other critical circle). This
behaviour of the trajectories is shown at the upper pictures in Fig. 12.

Now let x ∈ Bε(x0) be a point outside the singular leaf. Then it lies on an elliptic
or hyperbolic torus depending on the type of the quadric touched by its tangents.
In both cases (see the lower pictures in Fig. 12) we observe that the trajectory
passing through x will soon come close to the other critical circle.

Note that in the case of the book we could not hit the singular leaf exactly
because of inaccuracies in the initial data. This gives rise to the reversal of the
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Figure 12. The upper pictures present the trajectories lying on the singular

leaf of the atom C2. This atom describes the bifurcation of the level curves

of the function Λ on an isoenergy surface of the billiard ∆α(2A2), which is

glued from two ellipses. The lower pictures show the trajectories lying on an

elliptic torus (left) and a hyperbolic torus (right). The trajectory is shown

by a solid (resp. broken) line when it moves along the upper (resp. lower)

copy of the billiard A2. The foci are shown by the bold dots

binding of the book as it spins around the intermediate axis. In a similar vein, the
trajectories of the billiard ∆α(2A2), being initially close to one critical circle, will
soon ‘wind’ in the opposite direction.

Some new invariants of Liouville equivalence have recently been calculated by
Fomenko’s school. In particular, Nikolaenko [32] completely classified the isoenergy
3-manifolds of the Chaplygin system in the dynamics of a rigid body in a liquid.
In [33] he calculated the Fomenko–Zieschang invariants for integrable systems of
Goryachev type. Sechkin [34] studied the topology of the dynamics of an ellipsoid
of revolution moving along a smooth horizontal plane under the force of gravity. His
answer is also in terms of Fomenko–Zieschang molecules. As a result, the authors
were able to prove the following assertion.

Proposition 2.1. The following cases of rigid body dynamics are modelled by
(or Liouville equivalent to) the generalized billiards indicated.

1) The Chaplygin case in the dynamics of a rigid body in a liquid (see [32])
is modelled by the generalized billiards shown in Fig. 13, (a), (e), (g) and
corresponding to energy zones (1), (2), (3) respectively.

2) The Goryachev case (see [33]) is modelled by the generalized billiards shown
in Fig. 13, (a) (energy zones (1) and (3)), Fig. 13, (c) (energy zone (2)) and
Fig. 13, (d) (energy zone (4)).

3) The dynamics of an ellipsoid of revolution moving along a smooth horizontal
plane under the force of gravity (see [34]) is modelled by the generalized
billiards shown in Fig. 13, (a), (b), (f).
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Generalized
billiard

The Fomenko–Zieschang
invariant describing

the generalized billiard

The new
known cases
of Liouville
equivalence

(a)
Goryachev, Chaplygin,
ellipsoid of revolution
on a smooth surface

(b) ellipsoid of revolution
on a smooth surface

(c) Goryachev

(d) Goryachev

(e) Chaplygin

(f) ellipsoid of revolution
on a smooth surface

(g) Chaplygin

Figure 13

§ 3. A new class of integrable billiards: non-compact
locally planar billiards bounded by confocal quadrics

3.1. Classification of billiards.

3.1.1. Elementary non-compact billiards.

Definition 3.1. A simple non-compact elementary (planar) billiard Θ is a con-
nected flat two-dimensional Riemannian manifold (with boundary) having an iso-
metric embedding in the plane such that its boundary ∂Θ consists of arcs of confocal
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ellipses and hyperbolas in the family (1.1) and the angles on the boundary of Θ are
equal to π/2.

Definition 3.2. A simple non-compact elementary billiard is said to be non-
singular if none of its boundary parts lies on the quadric with parameter b, that is,
on the focal line. All other simple non-compact elementary billiards are said to be
singular.

Definition 3.3. A simple non-compact elementary billiard Θ1 is said to be equiv-
alent to another simple non-compact elementary billiard Θ2 if Θ2 can be obtained
from Θ1 by a composition of symmetries with respect to the axes of the family (1.1)
(the lines Ox and Oy) and successive deformations of boundary arcs such that, first,
the deformation is performed in the class of arcs of quadrics in the family (1.1) and,
second, the parameter of the quadric where the boundary is modified never takes
the value b. In other words, the modified boundary part never lies on the line Ox
during the deformation.

Remark 3.1. In particular, the equivalence relation postulates that a non-singular
billiard cannot be equivalent to a singular one.

Proposition 3.1. Every simple non-singular non-compact elementary billiard is
equivalent to one of the following seven billiards : the billiards A2∞

0 and A∞
1 which

are bounded by branches of hyperbolas, the billiard C∞
2 which is bounded by an

ellipse, and the billiards A∞
0 , B∞

0 , B∞
1 and B∞

2 which are bounded by two hyperbolic
arcs and one elliptic arc (see Fig. 14).

Every simple singular elementary billiard is equivalent to one of the following six
billiards : the billiard A

′∞
0 which is bounded by the focal line and two hyperbolic arcs,

the billiards B
′∞
1 , B

′∞
2 and B

′′∞
2 which are bounded by an elliptic arc and arcs of

hyperbolas, possibly degenerate, the billiard A
′∞
1 which is bounded by the focal line

and one hyperbolic arc, and the billiard A
′∞
2 in the upper half-plane (see Fig. 14).

Proof. Let Θ be a simple non-compact billiard. We denote its boundary by ∂Θ.
Suppose that the union of arcs ∂Θ contains only arcs of non-degenerate hyper-

bolas. Then these arcs are whole branches of hyperbolas because they are not
confined by any arcs of ellipses. We obtain two possible cases: either ∂Θ consists
of one branch of a hyperbola and hence Θ is equivalent to A∞

1 , or it consists of two
branches (possibly of different hyperbolas) and hence Θ is equivalent to A2∞

0 .
Suppose that the union of arcs ∂Θ contains only arcs of non-degenerate ellipses.

Then, clearly, ∂Θ consists of whole ellipses (any other elliptic arc is a curvilinear
segment whose endpoints must lie on hyperbolic boundary arcs). If there are at
least two ellipses, then Θ is either compact or disconnected. Hence ∂Θ consists of
only one ellipse, and the corresponding Θ is equivalent to C∞

2 .
Suppose that the union of arcs ∂Θ contains both elliptic and hyperbolic arcs.

Let e be an elliptic arc (possibly degenerate) in ∂Θ. The endpoints of e lie on some
hyperbolic arcs h1 and h2 (possibly degenerate). We claim that the successive union
of the arcs h1, e, h2 exhausts the whole boundary ∂Θ.
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Figure 14. Simple non-compact elementary billiards

Assume that this is not the case. Then ∂Θ contains a segment q of a quadric
distinct from h1, e, h2. Note that q is neither an ellipse nor a branch of a hyperbola
since otherwise it would have points in common with h1, h2 or with e respectively.
Suppose that q is an elliptic arc. If its endpoints lie on the hyperbolic arcs h1, h2,
then the union of the arcs h1, e, h2, q bounds a quadrilateral, whence it follows that
Θ is either compact or disconnected. If at least one endpoint of the elliptic segment q
does not lie on the hyperbolic arcs h1 and h2, then there is a hyperbolic boundary
segment q′ having points in common with q. In this case, the angle formed by q
and q′ at their intersection point will be greater than π since Θ lies locally between
the elliptic segments e and q. Suppose that q is a hyperbolic segment. Then there
is an elliptic segment q̃ one of whose endpoints coincides with an endpoint of the
hyperbolic segment q. But the existence of q̃ has already been disproved.

Since the successive union of the arcs h1, e, h2 exhausts the whole ∂Θ, Θ can
be described case by case for all possible arcs e, h1, h2 (see Fig. 14). �
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Remark 3.2. It should be noted that simple non-compact elementary billiards can
be obtained, just like composite compact elementary billiards, by gluing infinitely
many simple elementary compact billiards.

Definition 3.4. Let Θ be a simple non-compact elementary billiard. Consider the
minimal system of arcs of quadrics constituting the boundary of the image of Θ
under its isometric embedding in the plane. We call these arcs segments of quadrics
bounding the billiard (or its boundary segments). Compact boundary segments
are ellipses, elliptic arcs confined between hyperbolas, or hyperbolic arcs confined
between ellipses. Non-compact boundary segments are branches of hyperbolas,
half-open intervals on branches of non-degenerate hyperbolas, rays on the line Ox
with the origin on non-degenerate hyperbolas, or the line Ox itself.

Definition 3.5. A composite elementary non-compact billiard Θ is a two-
dimensional locally flat non-compact manifold (with boundary) that cannot be
embedded isometrically in the plane but can be obtained from compact elementary
billiards and simple non-compact elementary billiards by gluing them isometrically
along common boundary segments. Here we assume that the images of simple ele-
mentary billiards under isometric embeddings in the plane locally lie on different
sides of the common gluing segment. This enables us to endow a neighbourhood
of this segment with a flat metric which is compatible with the flat metrics on the
simple elementary billiards to be glued.

The set of elementary billiards to be glued is required to be finite or countable.

Definition 3.6. A composite non-compact elementary billiard Θ1 is said to be
equivalent to another composite non-compact elementary billiard Θ2 if Θ2 can
be obtained from Θ1 by a composition of the following transformations.

1) Symmetries with respect to the axes of the family (1.1) (the lines Ox and Oy)
in all simple billiards simultaneously.

2) Replacing a simple elementary billiard by an equivalent billiard in the sense
of Definitions 1.6 and 3.3.

3) Combining several simple elementary billiards into a single one or partition-
ing an elementary billiard into smaller ones.

Proposition 3.2. Every composite elementary non-compact billiard belongs to one
of the following five series.

1) (B′
0)∞ (resp. (B0)∞) is the billiard obtained by gluing infinitely many com-

pact elementary billiards of type B, where the compact hyperbolic boundary
segment is rectilinear (resp. curvilinear).

2) B∞ is the billiard obtained by gluing infinitely many compact elementary
billiards of type B and having no hyperbolic boundary segments.

3) B∞
n , B

′∞
n and B

′′∞
n , as well as the billiards C∞

1 and C∞
n , n > 2, are

analogues of simple non-compact elementary billiards.
4) (B′

0)
∞
∞ (resp. (B0)∞∞) is the billiard obtained by gluing infinitely many sim-

ple elementary non-compact billiards of type B∞, where the non-compact
hyperbolic boundary segment is rectilinear (resp. curvilinear).

5) B∞
∞ is the billiard obtained by gluing infinitely many non-compact elementary

billiards of type B∞.
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Proof. Let Θ be a composite non-compact elementary billiard obtained by gluing
members of a certain set of billiards Ui. We claim that the billiards Ui can only be
compact billiards of series B and C (Bn, B′

n, B′′
n and Cn) as well as non-compact

billiards of the series B∞
n (B∞

0 , B∞
1 , B∞

2 , B
′∞
1 , B

′∞
2 and B

′′∞
2 ). Indeed, com-

pact billiards of series A, when glued with finitely many other compact billiards,
still give compact billiards of series A. When the set of admissible gluing operations
is countable, the resulting billiard will be in the class of non-compact billiards of
series A. After admissible gluing of non-compact billiards of series A along bound-
ary segments with other elementary billiards, the result still belongs to the same
class (we recall that the result of gluing must be a manifold with boundary). The
billiards Ui cannot be equivalent to the billiards C∞

2 since these can be glued only
with the billiard A2 and the result will again be a manifold without boundary.

We now describe all possible results of gluing compact and non-compact ribbon
billiards of series B and compact ring billiards of series Cn. Note that compact
and non-compact ribbon billiards cannot be glued together (there are no common
boundary segments).

For the result of gluing compact billiards of series B to be non-compact, the
number of gluings must be infinite. Note that such billiards can be glued along
hyperbolic as well as elliptic segments. In the case of successive elliptic gluings,
if the number of billiards is finite, then all billiards to be glued are equivalent to
one another and to the result of the gluing. But if we glue infinitely many ribbon
billiards along elliptic segments, then the result of the gluing will be a non-compact
billiard (for example, the billiard B∞

1 can be obtained by gluing a countable set
of compact billiards B1). When infinitely many billiards are glued along only
hyperbolic segments, we obtain a billiard belonging to one of the first two series.

If at least one of Ui is equivalent to Cn, then so are all the others. The require-
ment of non-compactness of Θ implies that the set of admissible gluings must be
infinite. As a result, we obtain the billiards C∞

n . The remaining billiards of the
third series can be obtained in a similar way, by gluing infinitely many billiards
along elliptic segments or finitely many billiards along hyperbolic segments.

Admitting infinitely many gluings along both elliptic and hyperbolic segments,
we obtain billiards belonging to the last two series.

Note that non-compact ribbon billiards can be partitioned into an infinite
union of compact billiards. Hence, replacing such non-compact ribbon billiards
by a union of compact billiards, we arrive at the previous case. �

Definition 3.7. Unless otherwise stated, simple and composite non-compact ele-
mentary billiards as well as compact elementary billiards will be referred to as
elementary billiards and denoted by Θ.

We note that the notion of a boundary segment (see Definition 3.4) is now defined
only for simple non-compact elementary billiards, that is, for elementary billiards
that can be embedded isometrically in the plane. We now extend this notion to
composite elementary billiards.

Definition 3.8. Let Θ be a non-compact elementary billiard glued from some bil-
liards Ui. Suppose that two simple elementary billiards Ui and Uj are glued along



Integrable topological billiards 715

a common boundary segment l. Then among the new boundary segments of the
result there will be boundary segments of Ui and Uj that are disjoint from l, as well
as the new boundary segments obtained by gluing the segments intersecting l under
the restriction of the gluing along l to these segments. We define the boundary seg-
ments of the composite elementary billiard as the boundary segments resulting from
gluing all the constituent elementary billiards to each other in accordance with this
rule.

It is convenient to use the following classification of boundary segments.

Definition 3.9. A boundary segment of an elementary billiard is said to be hyper-
bolic (resp. vertical hyperbolic, elliptic) if it is obtained by gluing hyperbolic (resp.
vertical, elliptic) boundary segments of simple elementary billiards. A boundary
segment is said to be degenerate or horizontal if it is obtained by gluing bound-
ary segments (degenerate or horizontal) that lie on the focal line. A boundary
segment of an elementary billiard Ω is said to be convex (resp. non-strictly con-
vex ) if every point of this segment has a neighbourhood in Ω which is isometric to
a strictly convex (resp. non-strictly convex) subset of the plane.

3.1.2. Generalized non-compact billiards.

Definition 3.10. Let l1 and l2 be convex elliptic or horizontal boundary segments
of elementary billiards Θ1 and Θ2 (compact or non-compact) such that the images of
these segments under the local isometric embeddings of Θ1 and Θ2 (that is, under
the embeddings of the corresponding simple elementary billiards) in the plane coin-
cide and lie in the quadric with parameter λl1 = λl2 of the family (1.1). We define
the gluing of the billiards Θ1 and Θ2 along the elliptic segments l1 and l2 (whose
images after gluing will be referred to as the gluing edge) as the gluing along l1
and l2 by means of the homeomorphism between l1 and l2 which is compatible with
the given local isometric embeddings of Θ1 and Θ2 (that is, with the embeddings
of the corresponding simple elementary billiards) in the plane. The endpoints of
gluing edges are called gluing vertices.

Definition 3.11. Let m1 and m2 be convex hyperbolic or horizontal boundary
segments of elementary billiards Θ1 and Θ2 (compact or non-compact) such that
the images of these segments under the local isometric embeddings of Θ1 and Θ2

(that is, under the embeddings of the corresponding simple elementary billiards)
in the plane coincide and lie in the quadric with parameter λm1 = λm2 of the
family (1.1). We define the gluing of the billiards Θ1 and Θ2 along the hyperbolic
or horizontal segments m1 and m2 (whose images after gluing will be referred to as
the gluing edge) as the gluing along m1 and m2 by means of the homeomorphism
between m1 and m2 which is compatible with the given local isometric embeddings
of Θ1 and Θ2 (that is, with the embeddings of the corresponding simple elementary
billiards) in the plane. The endpoints of gluing edges are called gluing vertices.

Recall that since elementary billiards are manifolds with a flat smooth Rie-
mannian metric, the manifold resulting from their gluing will also be locally flat
although, in general, it has a piecewise-smooth Riemannian metric.
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Definition 3.12. A generalized (locally planar) non-compact billiard ∆ without
conical points is a two-dimensional orientable non-compact manifold (with bound-
ary) endowed with a piecewise-smooth Riemannian metric and resulting from glu-
ing (as defined above) certain compact and non-compact elementary billiards along
elliptic segments (Definition 3.10). Note that then each gluing vertex is incident to
one gluing edge and two free edges (such gluing vertices are called boundary gluing
vertices).

A generalized (locally planar) non-compact billiard ∆ with conical points is
a two-dimensional orientable non-compact manifold (with boundary) endowed with
a piecewise-smooth Riemannian metric and resulting from gluing (as defined above)
certain elementary billiards along segments (see Definitions 3.10 and 3.11) provided
that the following conditions hold. First, we require that each gluing vertex be inci-
dent to either one gluing edge and two free edges (such gluing vertices are called
boundary gluing vertices), two gluing edges and no free edges (such gluing vertices
are called conical points), or four gluing edges and no free edges (such gluing ver-
tices are called interior gluing vertices). Interior gluing vertices are incident to two
hyperbolic or horizontal gluing edges mi1 , mi2 and two elliptic or horizontal gluing
edges lj1 , lj2 . We denote the connected component of the union of all hyperbolic
(or horizontal) gluing edges by

⋃
i mi, i ∈ {1, . . . , n}, where the edges mi are joined

successively. Second, we require that at least one of the gluing edges m1 and mn

be incident to a conical point. Third, we require that the number of conical points
in a generalized billiard ∆ with conical points be greater than zero.

We point out that for every such billiard ∆ we fix a set of elementary billiards Θi

and a set of gluing edges fij between them such that the result of gluing these
billiards along these edges is ∆. The boundary segments of the billiards Θi that
are not gluing edges are called free edges, and their union for a fixed billiard ∆ is
called the free boundary. We use the notation ∆α for billiards glued without conical
points, and ∆β for those with conical points.

Definition 3.13. A generalized billiard ∆ is said to be equivalent to another gen-
eralized billiard ∆′ if ∆′ can be obtained from ∆ by replacing the constituent ele-
mentary billiards with equivalent billiards in such a way that the set of elementary
billiards constituting ∆ is mapped bijectively onto the set of elementary billiards
constituting ∆′ and the gluing edges between them coincide identically.

Proposition 3.3. Every generalized non-compact billiard ∆ is equivalent to a bil-
liard in one of the following four classes.

1) Generalized billiards glued from elementary billiards that are equivalent to
one another and containing no conical points :
• ∆α(2B∞);
• ∆α(2(B0)∞) and ∆α(2(B′

0)∞);
• ∆α

(∑∞
i=1 A0

)
and ∆α

(∑+∞
−∞ A0

)
.

2) Generalized billiards glued from elementary billiards that are equivalent to
one another and having conical points :
• ∆β

(∑∞
i=1 2A0

)
y
;

• ∆β(2A∞
0 )y ;
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• ∆β(2(B1)∞)y ;
• ∆β(2(B′

0)∞)x;
• ∆β(2A

′∞
1 )c;

• ∆β(2A
′∞
0 )c.

3) Generalized billiards glued from elementary billiards that belong to more than
one equivalence class and containing no conical points :
• ∆α

(∑∞
i=1 A0 + A′

0

)
;

• ∆α

(∑∞
i=1 A0 + B0

)
;

• ∆α

(
A∞

0 +
∑k

i=1 A0

)
, k 6 ∞;

• ∆α

(
A∞

0 +
∑k

i=1 A0 + B0

)
, k < ∞;

• ∆α

(
A∞

0 +
∑k

i=1 A0 + A′
0

)
, k < ∞;

• ∆α

(
A∞

0 +
∑k

i=1 A0 + A∞
0

)
, k < ∞.

4) Generalized billiards glued from elementary billiards that belong to more than
one equivalence class and having conical points :
• ∆β

(
(2A′

0)c +
∑k

i=1 2A0 + 2A∞
0

)
, k < ∞;

• ∆β

(
(2A′

0)c +
∑∞

i=1 2A0

)
;

• ∆β

(
(2A0)y +

∑k
i=1 2A0 + 2A∞

0

)
, k < ∞.

Proof. We describe the class of billiards from which generalized non-compact bil-
liards can be glued. The billiards A∞

1 and A2∞
0 must be excluded from this class

since they have only hyperbolic boundary segments. We also exclude the billiard
A∞

2 since it can be glued only to itself and the resulting billiard has no boundary.
The billiards C∞

n , B∞
∞ , B∞

k have no convex elliptic segments and, therefore, also
cannot belong to the desired class of billiards. The billiards Cn, A1, A′

1, A2, A′
2,

B′
k, B′′

k , k > 0, Bn, n > 0, are also outside this class since admissible gluing along
elliptic segments between them gives only compact billiards, and gluing with other
elementary billiards is impossible (there are no common segments).

Thus the class of elementary billiards that constitute generalized non-compact
billiards consists of

1) the compact elementary billiards A0, A′
0 and B0,

2) the simple non-compact elementary billiards A∞
0 , A

′∞
1 and A

′∞
0 ,

3) the non-compact elementary ribbon billiards (B′
0)∞, (B0)∞ and B∞.

For a generalized billiard ∆ to be non-compact, it must contain either a non-
compact elementary billiard, or infinitely many compact elementary billiards. Hence
the class of generalized non-compact billiards glued from elementary billiards of the
same equivalence class and having no conical points consists of the simple dou-
bled billiards ∆α(2B∞), ∆α(2(B0)∞), ∆α(2(B′

0)∞) and the billiards ∆α

(∑∞
i=1 A0

)
and ∆α

(∑+∞
−∞ A0

)
, which are glued from infinitely many compact elementary bil-

liards A0.
Note that, by the classification of elementary billiards, two boundary segments

with a common point uniquely determine the equivalence class of an elementary bil-
liard. Hence a conical point can be obtained only by gluing two copies of the same
billiard. This gives rise to the following description of billiards glued from elemen-
tary billiards in the same equivalence class and having conical points. After gluing
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a pair of non-compact elementary billiards, nothing can be added to the result
and, therefore, we obtain the billiards ∆β(2A∞

0 )y, ∆β(2(B0)∞)y, ∆β(2(B′
0)∞)x,

∆β(2A
′∞
1 )c, ∆β(2A

′∞
0 )c. After gluing the compact billiard A0, we obtain the bil-

liard ∆β

(∑∞
i=1 2A0

)
y

with one conical point.
Note that both classes contain no billiards glued from A′

0 and B0. These billiards
have only one convex elliptic gluing segment and one cannot glue infinitely many
such billiards.

We now observe that if a generalized non-compact billiard is glued from ele-
mentary billiards of different equivalence classes, then its constituent elementary
billiards can only be the compact elementary billiards A0, A′

0, B0 and the non-
compact elementary billiard A∞

0 . We exclude non-compact ribbon billiards as well
as the billiards A

′∞
0 and A

′∞
1 since each of them can be glued only with an equiv-

alent billiard and nothing can be added to the result.
The elementary billiards A0, A′

0, B0 and A∞
0 can be glued to each other only

along convex elliptic segments. Note that only A0 has two convex elliptic segments,
which enables one to repeat the process of gluing infinitely many times and gives
rise to the compact ‘pieces’

∑k
i=1 A0 or non-compact ‘tails’

∑∞
i=1 A0 made from A0.

For a generalized billiard to be non-compact, it must contain either a non-compact
‘tail’ made from A0, or the non-compact billiard A∞

0 . It follows that the billiards
glued from elementary billiards that belong to more than one equivalence class and
having no conical points, are either of the form

∆α

( ∞∑
i=1

A0 + A′
0

)
and ∆α

( ∞∑
i=1

A0 + B0

)
(a non-compact ‘tail’ glued to a compact billiard), or of the form

∆α

(
A∞

0 +
k∑

i=1

A0

)
, k 6 ∞

(the successive gluing of a non-compact billiard and either a ‘piece’ or ‘tail’ made
from the billiards A0), or of the form

∆α

(
A∞

0 +
k∑

i=1

A0 + A′
0

)
, ∆α

(
A∞

0 +
k∑

i=1

A0 + B0

)
, k < ∞

(the successive gluing of a non-compact billiard, which may be empty, to a ‘piece’
made from A0 and to a compact billiard), or of the form

∆α

(
A∞

0 +
k∑

i=1

A0 + A∞
0

)
, k < ∞

(the gluing of two non-compact billiards to a ‘piece’ made from A0).
When a composite billiard with conical points is glued from billiards of distinct

equivalence classes A0, A′
0, B0 and A∞

0 , the conical points may result only from
gluing two billiards A′

0 (which gives a conical point of type c) or two billiards A0



Integrable topological billiards 719

(which gives a conical point of type y). It follows that all such billiards are glued
from a pair of billiards A′

0 or A0 (which form a conical point), a ‘piece’ (possibly
empty) made from the billiards A0, and either the non-compact billiard A∞

0 or an
infinite ‘tail’ made from the billiards A0. Thus all billiards glued from elementary
billiards of distinct equivalence classes and having conical points, belong to one of
the following three series of billiards:

∆β

(
(2A′

0)c +
∞∑

i=1

2A0

)
, ∆β

(
(2A′

0)c +
k∑

i=1

2A0 + 2A∞
0

)
,

∆β

(
(2A0)y +

k∑
i=1

2A0 + 2A∞
0

)
, k < ∞. �

3.2. Non-compact bifurcation-atoms. To describe the topology of non-
compact isoenergy surfaces Q3, one must define non-compact bifurcation-atoms
describing the bifurcations of tori, cylinders and planes. A theory of non-compact
atoms has not yet been constructed. Therefore we restrict ourselves to certain
examples that enable us to describe the Liouville foliation for some non-compact
integrable billiards.

Consider a three-dimensional non-compact isoenergy surface Q3 foliated by
the level surfaces of the integral f . Two phenomena may arise from the non-
compactness of Q3. First, the leaves of f may be non-compact and then one
must introduce new, non-compact atoms describing the bifurcations of non-compact
leaves. Second, the function f : Q3 → R may happen to take infinite values.
Then the neighbourhoods of the inverse images of the infinite values are described
by so-called ‘empty atoms’, which are homeomorphic to direct products of cylin-
ders (C∞) or planes (P∞) with the half-open interval [0, 1).

Remark 3.3. We introduce ‘empty atoms’ for two purposes. On the one hand,
this enables us to describe Q3 by a graph, avoiding those edges that are half-open
intervals with only one endpoint incident to a vertex of the graph. On the other
hand, this fixes the topology of the leaves of Q3 on such edges: in contrast to
the compact case when all leaves are tori, they can be either cylinders or planes
in the non-compact case. Our notation makes it unnecessary to indicate the type
of leaf (a cylinder or a plane) on the edges.

We describe atoms that are non-compact bifurcations of the leaves of f into one
another.

We first describe some two-dimensional non-compact atoms which will be used in
what follows. Consider the atom B. Its singular leaf is a figure eight. Take a point
on one ‘eyelet’ of this figure eight and consider an interval passing through this
point transversally to the singular leaf of B. This interval meets each non-singular
leaf (a circle) at exactly one point. Removing the interval, we obtain a non-compact
atom. Denote it by B′ (see Fig. 15). It describes a bifurcation of an interval into an
interval and a circle. Removing two intervals that intersect the singular leaf of B
on different sides of the singular point, we obtain the atom B′′ shown in Fig. 15.
This atom describes a bifurcation of two intervals into two intervals.
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Figure 15. The upper row shows (a) the two-dimensional compact atom B,

(b) the non-compact atom B′ obtained from B by removing a point of

the singular leaf and a neighbourhood of it on the neighbouring circles,

and (c) the non-compact atom B′′ obtained from B by removing a point

of the singular leaf, a neighbourhood of it on the neighbouring circles, and

the symmetric points

We similarly construct non-compact atoms of the series B′
n and B′′

n. These non-
compact atoms describe bifurcations of intervals and circles whose singular leaves
contain finitely many singular points. But we shall also need atoms with infinitely
many singular points, namely, analogues of atoms of the series Bn, to be denoted
by B∞ and B2∞. In other words, these are the limits of atoms of the series Bn

as n → ∞. These atoms describe bifurcations of infinitely many circles into one
interval (the atom B∞) or two intervals (the atom B2∞).

Non-compact 3-atoms are defined similarly to compact 3-atoms by taking the
direct or skew product of a two-dimensional (now non-compact) atom P and the cir-
cle S1 (the skew product is taken when the atom has stars). The atoms (B′

n)∗

and B∗
∞ with stars are natural analogues of the atom B∗

n. The doubles of these
atoms are denoted by B′′

2n and B2∞. Thus we first add a ‘prime’ which makes the
2-atom non-compact and then obtain a non-compact 3-atom as a skew product of
the non-compact 2-atom and the circle (the ‘star’ operation, now with brackets).

Non-compact 3-atoms can also be obtained as direct products of a two-
dimensional (compact or non-compact) atom and the line R. We denote such
non-compact atoms by P , where P is the corresponding compact or non-compact
2-atom.

3.3. Topological classification of non-compact billiards. A theory of invari-
ants of Liouville equivalence for non-compact isoenergy surfaces has not yet been
constructed. Therefore we restrict ourselves to rough Liouville equivalence (without
marks).

Theorem 3.1. The Liouville foliations and the isoenergy surfaces Q3 := {(x, v) ∈
M4 : x ∈ Θ, |v| = 1} of the non-compact billiards Θ are roughly classified by the
Fomenko molecules shown in the table below.



Integrable topological billiards 721

Non-compact billiard
The molecule describing the
topology of Liouville foliation
for the non-compact billiard

B∞
0 , B′∞

1 , B′′∞
2 , A′∞

1 , A′∞
2

A∞
1 , B∞

1

A∞
0 , ∆β(2A∞

0 )y, ∆α(A∞
0 + B0),

∆n(A∞
0 + A′

0)

A2∞
0

B∞
n , B′∞

n , B′′∞
n

C∞
n

(B′
0)∞, (B0)∞, ∆α(2(B′

0)∞), ∆α(2(B′
0)∞),

∆α(2(B0)∞), ∆α(
P∞

i=1 A0), ∆β(
P∞

i=1 2A0)y,

∆β(2(B1)∞)y, ∆α(
P∞

i=1 A0 + A′
0),

∆α(
P∞

i=1 A0 + B0)

B∞, ∆α(2B∞), ∆α(
P∞

−∞ A0)

(B′
0)
∞
∞, (B′

0)
∞
∞

B∞
∞

∆β(2A′∞
1 )c

∆β(2A′∞
0 )c

∆β(2(B′
0)∞)x, ∆β(2(A′

0)c +
P∞

i=1 2A0)
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Non-compact billiard
The molecule describing the
topology of Liouville foliation
of the non-compact billiard

∆α(A∞
0 +

Pn
i=1 A0), ∆α(A∞

0 +
Pn

i=1 A0 + B0),

∆α(A∞
0 +

Pn
i=1 A0 + A′

0), n <∞,

∆β((2A0)y +
Pn−1

i=1 2A0 + 2A∞
0 ), 1 6 n <∞

∆α(A∞
0 +

Pn
i=1 A0 + A∞

0 ), n <∞

∆β((2A′
0)c +

Pn−1
i=1 2A0 + 2A∞

0 ), n <∞

∆α(A∞
0 +

P∞
i=1 A0)

Lemma 3.1. Let Ω be a compact billiard. Then the inverse image of every bound-
ary segment of Ω on the leaves-tori of an isoenergy surface is a union of circles
that are non-contractible cycles.

The proof of this lemma follows from the proofs of theorems on the topological
classification of compact integrable billiards (see [22], Theorems 4.1 and 4.2).

Proof. It follows from the lemma that if we can represent a non-compact billiard
as a limit of compact billiards equivalent to one another (that is, we simply let
one or two boundary segments of a given billiard tend to infinity), then the non-
singular leaves-tori either remain tori (if their projection to the domain of the
compact billiard contains no segments tending to infinity), become cylinders (if
their projection to the domain of the compact billiard contains exactly one segment
tending to infinity), or become planes (if their projection to the domain of the
compact billiard contains three consecutive segments tending to infinity).
First step. The billiards B∞

0 , B
′∞
1 , B

′′∞
2 , A

′∞
0 , A

′∞
1 and A

′∞
2 . Each of these

non-compact billiards can be obtained as a limit of compact billiards equivalent to
one another when a convex elliptic boundary segment is located at infinity. The
molecule describing the topology of the Liouville foliation of the compact billiard
is of the form A − A. It follows from the lemma that, as we pass to the limit,
all tori become cylinders (since they will be cut along the cycles corresponding to
the elliptic segment at infinity). Hence one of the atoms A becomes the atom C∞

(the empty limit of cylinders) because its singular circle represented the motion
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along the convex elliptic segment. The other atom A becomes the atom A: its
singular line corresponds to the motion along either a convex hyperbolic boundary
arc, or the vertical line Oy.
Second step. Focusless billiards (analogues of compact billiards glued from the
ribbon billiards of series B and ring billiards of series C): B∞

n , B
′∞
n , B

′′∞
n and C∞

n .
The proof for these billiards is similar to that in the previous step. Note that
the inverse image of the convex elliptic segment in the isoenergy surface of the
compact billiard contains the singular leaf of the two-dimensional atom Bn (or Dn

for the billiard Cn). Thus, passage to the limit is equivalent to cutting the compact
3-atom transversally to the singular circle. This gives rise to a non-compact 3-atom
obtained as the product of the same base and the line.
Third step. The billiards glued from A∞

0 , A2∞
0 and finitely many billiards A0,

A′
0 and B0. Suppose that the billiard Θ has no conical points and can be obtained

as a limit of a compact billiard Ω of the form

∆α

(
P +

k∑
i=1

A0 + A0

)
or

∆α

(
A0 +

k∑
i=1

A0 + A0

)
,

where the billiard P is either empty, equivalent to A′
0, or equal to B0, and k > 0

is a certain number. The limit is taken as the free convex segment of the extreme
billiards A0 (the first and last to be glued) tends to infinity.

Note that the 3-atom describing the bifurcation at the saddle level of the inte-
gral Λ on the isoenergy surface of the compact billiard Ω, is now equal to Bn,
where n is the number of billiards A0 constituting the billiard Ω. The circles of the
saddle leaf are the motions along the focal line in each billiard A0. If we consider
the union of the arcs of some hyperbola that lie in the billiards constituting Ω and
endow this union with unit velocity vectors, then we obtain a section of the 3-atom,
and this section will be the corresponding 2-atom Bn. Fig. 16 shows the partition
of this 2-atom into parts whose points lie in the corresponding elementary billiards
constituting Ω.

As we pass to the limit, the hyperbolic arcs lying in the extreme billiards A0

become non-compact. This gives rise to a discontinuity in the 2-atom Bn, which
therefore becomes either the atom B′

n (one discontinuity, the billiard of the form
∆α(P +

∑k
i=1 A0 + A0)), or the atom B′′

n (two discontinuities, the billiard of the
form ∆α(A0 +

∑k
i=1 A0 + A0)).

A similar argument can be performed for the billiard A2∞
0 . Here the discontinu-

ities occur in the 2-atom B.
Suppose that Θ is equivalent to ∆β(2A∞

0 )y. We regard this billiard as a limit
of the billiards ∆β(A0)2y. In contrast to the cases above, we cannot now con-
struct a section transversal to the critical circle of the 3-atom B that describes the
bifurcation at the saddle level of the integral Λ on the isoenergy surface of the bil-
liard ∆β(A0)2y. The obstacle is the additional gluing of convex elliptic segments that
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Figure 16. The partition of the section of the 3-atom describing the bifur-

cation at the saddle level of the integral Λ on the isoenergy surface of the

compact billiard Ω, into parts whose points lie in the corresponding ele-

mentary billiards that constitute Ω. The upper and lower pictures show the

partition for the billiards ∆α

`
P+

Pk
i=1 A0+A0

´
and ∆α

`
A0+

Pk
i=1 A0+A0

´
respectively

forms the conical point. However, we can construct this section in such a way that
it coincides with the section described above (the equipped arcs of hyperbolas) on
those parts of the billiards A0 that lie on one side of the focal line and are not glued
into the conical point. As we pass to the limit, the convex elliptic segments of these
parts tend to infinity. This gives rise to discontinuities in those two-dimensional
atoms B that are homeomorphic to the equipped parts of hyperbolas. A similar
construction can also be performed in the case when Θ is equivalent to the billiard

∆β

(
(2A0)y +

n∑
i=1

2A0 + 2A∞
0

)
.

Suppose that Θ is equivalent to the billiard ∆β(2A
′∞
0 )c. We regard this billiard

as a limit of the billiards ∆β(A′
0)

2
c . Then the 3-atom describing the bifurcation

at the saddle level of the integral Λ on the isoenergy surface of this billiard is the
atom A∗. The section transversal to the critical circle is the 2-atom B. It can
also be obtained as equipped arcs of hyperbolas filling the billiards A′

0. When we
pass to the limit, both ‘eyelets’ of these atoms tear. The resulting non-compact
2-atom still has the structure of a skew product with the circle. Thus we obtain
the 3-atom (A′)∗. A similar construction can be performed for the billiard

∆β

((
2A

′∞
0

)
c
+

n∑
i=1

2A0 + 2A∞
0

)
.

Fourth step. The billiards A∞
1 and ∆β(2A

′∞
1 )c. We regard the billiard A∞

1 as
a limit of the billiards A1. Since this billiard contains the foci of the family (1.1), it
would be non-trivial to construct a fibration of the 3-atom A∗ into two-dimensional
atoms B transversal to the critical circle. However, this section can be constructed
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near an elliptic boundary segment using the arcs of confocal ellipses equipped with
velocity vectors. We fix the ellipse with parameter b/2. The arcs of ellipses belong
to the domain of the billiard A1 when λ ∈ [t, b/2], where t is the parameter of
the elliptic boundary segment of A1. These arcs, equipped with their unit velocity
vectors, are homeomorphic to two two-dimensional atoms B (two because there are
two directions of the velocity vectors: left and right) when λ 6= t and one atom B
when λ = t. The union of these arcs (equipped with the velocity vectors) in the
isoenergy manifold Q3 is homeomorphic to the direct product of the 2-atom B and
the closed interval [t, b/2]. As we pass to the limit, t tends to −∞ and, therefore,
this union of arcs tears into two products of the ‘left’ and ‘right’ atoms B (according
to the direction of their velocity vectors) and the interval (−∞, b/2]. These intervals
are glued with the remaining compact part of the atom A∗ (the product of a closed
interval and the atom B) and form the non-compact 3-atom B. A similar argument
can be performed for the billiard ∆β(2A

′∞
1 )c, which can be regarded as a limit of

the billiards ∆β(A′
1)

2
c .

Fifth step. Billiards with infinitely many intervals of the focal line. Suppose that Θ
contains no conical points and can be obtained as a limit of compact billiards Ωk

of the form ∆α

(∑k
i=1 A0 + P

)
as k → ∞. Here the billiard P is either empty,

or equivalent to A′
0 or B0, or equal to A∞

0 . For finite k, the atom describing
the bifurcation at the saddle level of the integral Λ will be homeomorphic either
to the compact atom Bk (if the billiard Ωk is compact), or to the non-compact
atom B′

k. As k tends to infinity, the number of critical circles of these atoms grows
and, as a result, the limit is either the non-compact 3-atom B∞ (if the domain
of Θ contains no domains of A∞

0 as a subdomain), or the 3-atom B′
∞. If Θ can be

represented as a limit of the billiards Ωk of the form ∆α

(∑k
i=−k A0

)
as k → ∞,

then the limit of the 3-atoms Bk (which describe the bifurcation at the saddle level
of the integral Λ for the billiards Ωk) will be the non-compact atom B2∞.

Suppose that Θ is equivalent to the billiard ∆β

(∑∞
i=1 2A0

)
y
. Then it can be

represented as a limit of the billiards Ωk of the form ∆β

(∑k
i=1 2A0

)
y

as k → ∞.
Then the limits of the compact two- and three-dimensional saddle atoms Bk (both
in sections transversal to the critical circle and in the whole 3-atoms) will be equal
to the non-compact 2- and 3-atoms B∞. A similar argument can be performed for
the billiard ∆β

(
(2A′

0)c +
∑∞

i=1 2A0

)
, which can be represented as a limit of the

billiards Ωk of the form ∆β

(
(2A′

0)c +
∑k

i=1 2A0

)
as k →∞.

Suppose that Θ is equivalent to (B′
0)∞ or (B0)∞. Then Θ can be cut along arcs of

confocal hyperbolas into infinitely many billiards B1 and B′
0, namely,

∑∞
i=1 B1+B′

0

or
∑∞

i=1 B1. In this case we can regard the billiards (B′
0)∞ and (B0)∞ as limits

as k → ∞ of the compact billiards Ωk of the form
∑k

i=1 B1 + B′
0 and

∑k
i=1 B1,

respectively. For finite k, the atom describing the bifurcation at the saddle level
of the integral Λ will be homeomorphic to the compact 3-atom Bk, which tends to
the 3-atom B∞ as k tends to infinity. This argument can also be performed for the
billiards ∆β((2B0)∞)y and ∆β((2B′

0)∞)x, which can be represented as limits of
the compact billiards Ωk of the form

∑k
i=1 2B1 + (B0)2y and

∑k
i=1 B1 + (B′

0)
2
x

(respectively) as k →∞. When Θ is equivalent to B∞, we can cut it along arcs of
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confocal hyperbolas into infinitely many billiards B1 and thus represent it as a limit
of the billiards Ωk of the form

∑k
i=−k B1 as k → ∞. Then the 3-atom describing

the bifurcation at the saddle level of the integral Λ will be homeomorphic to the
non-compact atom B2∞.

Suppose that Θ is equivalent to one of the billiards ∆α(2(B′
0)∞), ∆α(2(B0)∞)

or ∆α(2B∞), that is, Θ can be partitioned into an infinite union of the doubled
billiards ∆α(2B1) and ∆α(2B′

0). Note that taking the ‘doubled’ billiard in the case
of a ribbon billiard of series B does not change the topology of the Liouville foliation.
Therefore the molecules for the billiards ∆α(2(B′

0)∞), ∆α(2(B0)∞) and ∆α(2B∞)
coincide with those for the billiards (B′

0)∞, (B0)∞ and B∞.
Suppose that Θ is equivalent to one of the billiards (B′

0)
∞
∞, (B0)∞∞ or B∞

∞ . Then
it can be obtained as a limit of the billiard Θ̃ which is equivalent to (B′

0)∞, (B0)∞
or B∞ respectively. We now describe the foliation of the 3-atom corresponding to
the bifurcation at the saddle level of the integral Λ on the isoenergy surface Q3

for the billiard Θ̃. Suppose that the elliptic boundary segments of Θ̃ lie on the
ellipses with parameters λe > λE . Fix a parameter λ ∈ (λE , λe). The (infinite)
union of those arcs of the ellipse with parameter λ that lie in Θ̃, when equipped
with velocity vectors, is homeomorphic to a pair of planar atoms B∞ (or B2∞ in the
case when Θ̃ is equivalent to B∞). The infinite union of the arcs of the ellipse with
the boundary parameter (that is, either λe or λE) is homeomorphic to one planar
atom B∞ (B2∞ in the case when Θ̃ is equivalent to B∞). Thus the whole 3-atom is
the direct product of a circle and the corresponding planar saddle atom. We pass
to the limit as E → −∞. Then the billiard Θ̃ tends to Θ, and the circle (which
was earlier multiplied by the 2-atom) tends to a line. Hence the 3-atom describing
the bifurcation at the saddle level of the integral Λ on the isoenergy surface Q3 will
be homeomorphic to the atom B∞ for the billiards (B′

0)
∞
∞ and (B0)∞∞, and to the

atom B2∞ for the billiard B∞
∞ . �

Remark 3.4. The equivalence relation on the set of non-compact billiards enables
us to pass to certain billiards having only rectilinear boundaries: the billiard A

′∞
1

in a non-compact angle and the billiards A
′∞
2 , A∞

1 in a half-plane. Note that by the
choice of integral we obtain two different Liouville foliations, which are described
by different Fomenko molecules.

§ 4. Non-convex generalized billiards glued from
elementary ones along non-convex segments

Definitions 3.10, 3.11 of gluing of elementary billiards prohibit gluing along
non-convex segments. To explain this, suppose that two elementary billiards C2 are
glued along a non-convex elliptic segment lying on the ellipse with parameter λ0.
Denote the resulting billiard by ∆γ(2C2).

The intervals that form any given trajectory (as a polygonal arc) lie on straight
lines that are tangent to some quadric (an ellipse or a hyperbola). This quadric is
said to be integral (an integral ellipse or an integral hyperbola).

The trajectories lying at the levels Λ < λ0 of the integral do not intersect the
gluing segment: moving towards the gluing segment, they reach the integral ellipse,
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Figure 17. Trajectories of the billiard ∆γ(2C2) at the integral levels λ < λ0

(left) and λ > λ0 (middle). Trajectories at the level Λ = λ0 (right) cannot

be defined as their simultaneous continuous limit. The dashed lines indicate

integral ellipses

touch it and move away staying always on the same copy of C2. The trajectories
lying at the levels with b > λ > λ0 pass from one copy of C2 to the other when-
ever they reach the gluing segment. The generalized billiard law gives no answer
about the behaviour of the trajectories at the level Λ = λ0. At this level of the inte-
gral, the interior gluing edge lies on the integral ellipse. Having reached the integral
ellipse, the trajectory must stay on the same copy of C2 (being a continuous limit
of trajectories lying at levels with λ < λ0) and, on the other hand, pass to the other
copy (being a continuous limit of trajectories lying at levels with b > λ > λ0).

Although the trajectories at the level Λ = λ0 of the integral are undefined, all
other non-singular leaves for Λ 6= λ0 are tori and all singular leaves can be described
by three-dimensional atoms. Hence Q3 possesses the structure of a Liouville foli-
ation. A circle lying in the inverse image of the points of the non-convex gluing
segment on the singular leaf Λ = λ0 is referred to as a singular circle. It turns out
that the topology of a neighbourhood of the leaf Λ = λ0 is nonetheless described
by the three-dimensional atom B.

In this section we describe the topology of the Liouville foliation for gener-
alized billiards with non-convex gluing in the example of the billiards ∆γ(2B1)
and ∆γ(2C2) that are glued from two copies of B1 and C2 respectively.

Proposition 4.1. Let ∆γ(2B1) be the non-convex generalized billiard glued from
two copies of the domain B1 along a non-convex boundary segment lying on the
ellipse with parameter λ0. Then the topology of the Liouville foliation on the three-
dimensional isoenergy surface Q3 of ∆γ(2B1) is described by the 3-atom B.

Let ∆γ(2C2) be the non-convex generalized billiard glued from two copies of the
domain C2 along a non-convex boundary segment lying on the ellipse with parame-
ter λ0. Then the topology of the Liouville foliation on the three-dimensional isoen-
ergy surface Q3 of ∆γ(2C2) is described by the disjoint union of two 3-atoms B.

Proof. There is no loss of generality in assuming that the convex elliptic boundary
segments of the elementary billiards B1 and C2 whose gluing yields the non-convex
generalized billiards ∆γ(2B1) and ∆γ(2C2), lie on the ellipse with parameter 0.
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The level sets of the function Λ for B1 and C2 consist of two-dimensional tori
when Λ < b (see [22]): one torus for B1 and two tori (which differ by the direction of
motion, clockwise or anticlockwise) for C2. The generalized billiard law introduced
on the gluing edge in the billiards ∆γ(2B1) and ∆γ(2C2) does not influence the tori
when Λ < λ0. Therefore we have two tori (each on its own copy of B1) for ∆γ(2B1)
and four tori for ∆γ(2C2). When Λ > λ0, we must cut the tori corresponding to
one copy of the domain of the elementary billiard along certain cycles (see § 3.1)
in the inverse image of the gluing segment and then glue them by the generalized
billiard law with slit tori that are Liouville leaves in the other copy of the domain
of the elementary billiard. This again results in a torus.

We now suppose that Λ = λ0. Then the inverse image of the gluing segment on
the tori is one cycle. The singular leaf of the atom B arises when we glue two tori
(each torus corresponds to its own copy of the elementary billiard) along this cycle.

Fig. 18 shows a section of the piecewise-smooth 3-atom B which is a three-
dimensional neighbourhood of the singular leaf of the integral. Here we do not
consider integral trajectories but look only at pairs (point, vector). This approach
yields a Liouville foliation which in this case coincides with the foliation on the
ordinary 3-atom B. Its singular leaf is the direct product of a figure eight and
a circle (see Fig. 18). The behaviour of integral trajectories on the Liouville tori
close to the singular leaf can be found in the standard way. Nevertheless, the limit
of these trajectories as we approach the singular leaf is not well defined (see Fig. 17
and Fig. 6). This is because a trajectory of the mass point, having touched the
non-convex gluing edge, ‘does not know’ which of the two leaves to choose for its
further motion. Therefore the critical circle on the singular leaf of the 3-atom B is
not an integral trajectory and is not a continuous limit of close trajectories. �

Figure 18. A section of the 3-atom B. It shows the projections of the

trajectories of the billiards ∆γ(2B1) and ∆γ(2C2) near the integral level

that contains the non-convex gluing edge. The undefined trajectory is shown

by the dashed line

Remark 4.1. In other words, although the bifurcation at the level Λ = λ0 is des-
cribed by the 3-atom B (that is, the change of level sets of Λ can be explained
using B), the trajectories on the singular leaf of this 3-atom admit no continuous
extension. The singular leaf of the classical atom B consists of two annuli, and the
trajectories on them infinitely ‘wind off’ one boundary of the annulus and infinitely
‘wind onto’ the other. On the same 3-atom, trajectories attain the boundary of the
annulus for a finite time, and then the motion is undefined: there are equal reasons
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for a trajectory to stay on the same annulus or proceed to the other. Because of
this non-uniqueness, the motion along the singular circle (the non-convex gluing
edge) cannot be represented as an integral trajectory.

We have already mentioned that the Liouville foliation is well defined for non-
convex generalized billiards. Therefore, as above, we can study its topology using
the Fomenko–Zieschang invariant. However, this invariant does not now give com-
plete information, for example, about the stability or instability of closed integral
trajectories since they are now undefined in the case when the saddle atom cor-
responds to the non-convex gluing edge of the billiard. At the same time, the
behaviour of the trajectories on the other atoms is standard.

Proposition 4.2. The topology of the Liouville foliation on the isoenergy sur-
face Q3 of the non-convex generalized billiards ∆γ(2B1) and ∆γ(2C2) is described
by the Fomenko–Zieschang invariants shown in Fig. 19.

Figure 19. The Fomenko–Zieschang molecules describing the topology of

the Liouville foliation on the isoenergy surface Q3 for the non-convex gen-

eralized billiards ∆γ(2B1) (top) and ∆γ(2C2) (bottom)

Proof. We first prove the assertion for ∆γ(2B1). Choose pairs of cycles λ as shown
in Fig. 20. Here the dashed lines indicate arcs of the integral quadric that deter-
mines the Liouville torus. To choose a cycle on the torus, we take a curve in its
projection to the billiard domain and equip it with velocity vectors in such a way
that the marked pairs point-vector form a non-trivial cycle with required properties
on the torus (see [10] for the cycle choice rules). The cycles λ on the boundary tori
of the minimax atoms A must be contracted to a point as the torus approaches the
critical circle of the atom A. In the left part of Fig. 20, the cycles whose projec-
tions lie on the arcs of hyperbolas vanish as the integral quadric (dashed) tends to
the convex boundary of the domain. We observe the same behaviour in the right
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part of Fig. 20 for the cycle whose projection lies on the gluing ellipse between the
boundary hyperbola and the integral hyperbola. The other cycles λ are chosen on
the boundary tori of the saddle atoms B. When the tori approach the singular leaf
of the 3-atom B, these cycles must tend to its singular circle. We first consider the
atom B that describes the bifurcation of the Liouville foliation at the level Λ = λ0

of the integral. Its singular circle is the gluing arc equipped with the tangent veloc-
ity vectors. The left and middle pictures in Fig. 20 show that the curves lying on
ellipses and equipped with the velocity vectors tend to the desired cycles as the
tori approach the singular leaf of B. We now consider the atom B that describes
the bifurcation at the level Λ = b of the integral. Its singular circle is the motion
along intervals of the focal line. The middle and right pictures in Fig. 20 show that
the curves lying on hyperbolas and equipped with the velocity vectors tend to the
desired cycles as the tori approach the singular leaf of B.

Figure 20. Pairs of cycles λ on the projection of Liouville tori for the

billiard ∆γ(2B1)

Note that on each torus, the cycles λ intersect at one point and, therefore, form
a basis on this torus. Then on each torus, the pairs of these cycles may be regarded
as a basis (λ, µ) chosen by the rule for the minimax atom A. Note that the cycles
complementary to the cycles λ on the tori corresponding to the saddle atoms are
constrained by the existence of a global section, and this again enables us to regard
them as the cycles µ. The orientation of the cycles λ on the boundary tori of the
saddle atoms B, as well as the orientation of the cycles µ on the boundary tori of
the minimax atoms A, is given by the flow of the vector field, that is, it coincides
with the direction of the velocity vectors in the equipment of the curves in the
projections of these tori to the domain of the billiard. We obtain that the gluing
matrices on all edges are of the form(

0 1
1 0

)
.

The marks are uniquely calculated from the gluing matrices.
The proof for the billiard ∆γ(2C2) is perfectly analogous. �

Corollary 4.1. The billiard ∆γ(2B1) is Liouville equivalent to the billiard in an
ellipse in the Minkowski metric.
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Proof. The topology of the Liouville foliation for the billiards in ellipses and the
geodesic flows on ellipsoids has been studied by Dragović and Radnović [8]. Note
that the molecule in their paper has the mark ε = −1 between the saddle atoms B.
However, it follows from § 4.5.2 in [10] that reversal of the orientation on Q3 implies
that the sign of this mark ε is switched while all other marks are preserved. Hence
the Liouville foliations given by this molecule coincide. �

Remark 4.2. One of the three Fomenko–Zieschang molecules classifying the Liou-
ville foliation of the geodesic flow in the Minkowski metric (studied in [8]) coincides
with the Fomenko–Zieschang molecule describing the foliation on the isoenergy sur-
face Q3 for the billiard ∆γ(2C2). The other two invariants coincide, after reversing
the orientation of Q3, with the molecule for the billiard in an ellipse in the ordinary
metric.
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