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Blow-up of solutions of a full non-linear equation
of ion-sound waves in a plasma

with non-coercive non-linearities

M. O. Korpusov, D. V. Lukyanenko, A. A. Panin, and E. V. Yushkov

Abstract. We consider a series of initial-boundary value problems for the
equation of ion-sound waves in a plasma. For each of them we prove
the local (in time) solubility and perform an analytical-numerical study
of the blow-up of solutions. We use the method of test functions to obtain
sufficient conditions for finite-time blow-up and an upper bound for the
blow-up time. In concrete numerical examples we improve these bounds
numerically using the mesh refinement method. Thus the analytical and
numerical parts of the investigation complement each other. The time
interval for the numerical modelling is chosen in accordance with the ana-
lytically obtained upper bound for the blow-up time. In return, numerical
calculations specify the moment and pattern of this blow-up.

Keywords: blow-up of a solution, non-linear initial-boundary value prob-
lem, Sobolev-type equations, exponential non-linearity, Richardson extra-
polation.

Introduction

This paper is devoted to an analytical-numerical investigation of the equation of
ion-sound waves in a plasma in the one-dimensional approximation:

(uxx − eεu)tt + uxx = (|ux|q)t, x ∈ (0, l), t > 0.

Such equations arise in many problems of mathematical physics, in particular,
in the theory of ion-sound waves in a plasma [1]–[3]. However, one usually studies
the linearized version of this equation. Our investigation of the full equation of
ion-sound waves is motivated by the fact that after linearization of the Boltzmann
distribution

exp(εu), ε > 0,

with respect to the small parameter ε > 0, the equation may not account for the
essentially non-linear effects such as a finite-time blow-up of solutions. On the other
hand, the presence of the non-linear operator

uxx − exp(εu)
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under the sign of the second time derivative in the full equation makes the situation
rather difficult for analytical and numerical investigation.

In this paper we consider three series of boundary conditions: the homogeneous
Dirichlet or Neumann conditions and the homogeneous non-local boundary con-
ditions at the endpoints of a finite interval. In all cases we obtain the local (in
time) solubility in the classical sense using the method of contraction mapping. We
also establish sufficient conditions for the finite-time blow-up of solutions of these
initial-boundary value problems. This is done using various versions of the non-
linear capacity method (test-function method) of Pokhozhaev and Mitidieri [4].

We also mention other methods for studying blow-up patterns, such as Levine’s
energy method and its modifications [5]–[8] and the method of self-similar modes
based on various comparison criteria and developed by Samarskii, Galaktionov,
Kurdyumov and Mikhailov [9] (see also [10]).

However, as a rule, the analytical approach gives only upper bounds for the
blow-up time. Therefore numerical diagnostics of the blow-up time (based on ideas
of Kalitkin, Al’shin, Al’shina and Koryakin [11], [12], [8]) is of much interest. The
main idea is to compare the theoretical order of accuracy with the effective numer-
ical one estimated by Richardson’s method. The time layer where these orders
become clearly different gives a bound (with accuracy approximately equal to the
grid step) for the blow-up time, and localization of blow-up in the space variable
is performed according to the distribution of the effective accuracy order on this
layer. The analytical and numerical parts of the investigation complement each
other. Namely, the time interval for the numerical modelling is chosen in accor-
dance with the analytically obtained upper bound for the blow-up time. In return,
numerical calculations specify the moment and pattern of this blow-up (see Exam-
ples 2 and 3 in § 5).

This paper continues a series of papers by the authors. It was started in [13],
where we considered non-stationary non-linear equations with non-coercive non-
linearities. Such equations are difficult because no energy methods can be applied.
We considered other model equations of ion-sound waves, in particular, in [14]–[16].

The paper is organized as follows. In § 1 we derive the equation in question from
the physical model. In § 2 we give a mathematical statement of the initial-boundary
value problems to be studied. § 3 is devoted to proving the local (in time) solubility
of these problems, and in § 4 we establish sufficient conditions for blow-up of their
solutions.

Finally, in § 5 we describe a method for numerically improving the information
about blow-up for any concrete initial data leading to a blow-up regime, and end
by stating some conclusions.

§ 1. Derivation of the equation

Consider an electron-ion plasma in a domain D ⊂ RN , N > 1. In the approxi-
mation of a quasistationary electric field we have the equations

div E = ni − ne, rotE = 0, (1)

where E is the electric field strength vector and ne (resp. ni) is the density of
electrons (resp. ions). Assuming that D is superficially simply connected, we can
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introduce the potential ϕ of the electric field. It is related to the vector E by the
formula

E = −∇ϕ. (2)

Then the density of electrons is adequately described by the Boltzmann distribution

ne = n0(x) exp
(

eϕ

kTe

)
, (3)

where n0(x) is the equilibrium distribution of the electrons, Te is their tempera-
ture and k is the Boltzmann constant. The concentration ni of ions satisfies the
continuity equation

∂ni

∂t
= −div J, (4)

where J is the current density of the ion component of the plasma. We consider
two components of the current,

J = J1 + J2, (5)

where J1 accounts for the time dispersion,

J1 =
∫ t

0

σ(t, τ)E(τ) dτ, σ(t, τ) ∈ C2([0, T ]⊗ [0, T ]), (6)

and J2 accounts for the current induced by ‘warm-up’ of the plasma. The term J2

is of the form
J2 = −γ∇Ti, γ > 0, (7)

where Ti is the temperature of the ions. On the other hand, the temperature Ti of
the ions satisfies the equation

ε
∂Ti

∂t
= ∆Ti + a|E|q, a > 0, q > 0, (8)

with a small parameter ε > 0. Therefore, instead of (8), we consider the corre-
sponding stationary equation

∆Ti + a|E|q = 0. (9)

We obtain the following differential corollary from the equations (1)–(3):

∆ϕ− n0(x) exp
(

eϕ

kTe

)
= −ni. (10)

The system of equations (4)–(7) and (9) yields the following differential corollary:

∂ni

∂t
=

∫ t

0

σ(t, τ)∆ϕ(τ) dτ − γa|∇ϕ|q. (11)

The equations (10) and (11) yield the differential corollary

∂

∂t

(
∆ϕ− n0(x) exp

(
eϕ

kTe

))
+

∫ t

0

σ(t, τ)∆ϕ(τ) dτ = c0|∇ϕ|q, (12)
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where c0 = γa > 0. In the important particular case σ(t, τ) = σ0 > 0 we arrive at
the differential equation

∂2

∂t2

(
∆ϕ− n0(x) exp

(
eϕ

kTe

))
+ σ0∆ϕ(t) = c0

∂

∂t
|∇ϕ|q. (13)

Assuming that n0(x) = const and passing to dimensionless quantities, we arrive
at the equation

∂2

∂t2
(∆u− eεu) + ∆u =

∂

∂t
|∇u|q, x∈ (0, l), t > 0, ε > 0 is a parameter, q > 1.

(14)
In this paper we consider the one-dimensional case and study the initial and

boundary conditions for which the solution blows up.

§ 2. Statement of the problem

Thus we consider a series of initial-boundary value problems for the equation

(uxx − eεu)tt + uxx =(|ux|q)t, x ∈ (0, l), t > 0, ε > 0 is a parameter, q > 1,
(15)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x) (16)

and one of the following boundary conditions: the Dirichlet conditions

u(0, t) = u(l, t) = 0, (17)

or the Neumann conditions

ux(0, t) = ux(l, t) = 0, (18)

or the non-classical non-local conditions

u(0, t) = 0, u(l, t) = lux(0, t). (19)

In what follows the problem (15)–(17) is referred to as Problem A, the problem
(15), (16), (18) as Problem B, and the problem (15), (16), (19) as Problem C.
We assume that the initial data are compatible with the boundary conditions in
all these problems, that is, the functions u0(x), u1(x) satisfy the corresponding
boundary conditions.

§ 3. Local solubility

3.1. Preliminary transformations. We introduce the function

f(η) =
∞∑

n=2

εnηn

n!
= eεη − εη − 1.

Then
(eεu)tt = (f(u) + εu + 1)tt = (f(u) + εu)tt
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and the equation (15) can be rewritten in the form

(uxx − εu− f(u))tt + uxx − εu = −εu + (|ux|q)t. (20)

Our further arguments are applicable to each of the Problems A, B, C unless
otherwise stated. However, generally speaking, the values of the constants occurring
are different in each case.

We consider the function spaces C[0, l], C1[0, l] and the space Z2 of all functions
in C2[0, l] satisfying the chosen boundary conditions (17), (18) or (19). We put

‖w‖C1[0,l] ≡ ‖w‖C[0,l] + ‖w′‖C[0,l], ‖w‖Z2 ≡ ‖w‖C[0,l] + ‖w′‖C[0,l] + ‖w′′‖C[0,l].

Then Z2 is a closed subspace of C2[0, l] and hence a Banach space.
We consider the equation (20) in the space Z2. More precisely, we introduce the

linear operators

J20= the embedding of Z2 in C[0, l], ‖J20‖ = 1, (21)

J10= the embedding of C1[0, l] in C[0, l], ‖J10‖ = 1, (22)

J21= the embedding of Z2 in C1[0, l], ‖J21‖ = 1, (23)

d

dx
: C1[0, l] → C[0, l],

∥∥∥∥ d

dx

∥∥∥∥ = 1, (24)

d2

dx2
: Z2 → C[0, l],

∥∥∥∥ d2

dx2

∥∥∥∥ = 1, (25)

L : Z2 → C[0, l], Lw ≡ d2

dx2
w − εJ20w, (26)

and the non-linear operators

F : C[0, l] → C[0, l], F : w(x) 7→ f(w(x)) ≡ eεw(x) − εw(x)− 1,

Q : C[0, l] → C[0, l], w(x) 7→ |w(x)|q.

Then the equation (20) takes the form

d2

dt2
(
Lu(t)− F(J20u(t))

)
+ Lu(t) = −εJ20u(t) +

d

dt
Q

(
d

dx
J21u(t)

)
, (27)

where the differentiation with respect to t is understood as strong differentiation
in C[0, l].

The operator L can be inverted. If Lw = g(x), then

w = Gg,

where G : C[0, l] → Z2 is the Green operator. Concrete expressions for G in each
of the problems A, B, C will be given below. Applying G to both sides of (27), we
pass to an equivalent equation in the space Z2:

d2

dt2
(
u(t)−GF(J20u(t))

)
+ u(t) = G

(
−εJ20u(t) +

d

dt
Q

(
d

dx
J21u(t)

))
. (28)
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For brevity we introduce the notation

H = G ◦ F ◦ J20, Q1 = Q ◦ d

dx
◦ J21.

Then the equation (28) takes the form

d2

dt2
(
u(t)−H(u(t))

)
+ u(t) = G

(
−εJ20u(t) +

d

dt
Q1(u(t))

)
.

As a rule, we shall write this in the simplified and more ‘classical’ form

d2

dt2
(u−H(u)) + u = G(−εu + (|ux|q)t),

which is understood in the sense of (28).
Integrating the resulting equation with respect to t in Z2, we obtain that

d

dt
(u−H(u))−(u1−H′f (u0)u1)+

∫ t

0

u(s) ds = −ε

∫ t

0

Gu(s) ds+G(|ux|q)−G(|u0,x|q).

Here and in what follows, u0,x stands for the derivative of u0 with respect to x, and
a primed operator with subscript f means the Fréchet derivative of this operator.

Integrating again with respect to t, we obtain that

u−H(u)− (u0 −H(u0))− (u1 −H′f (u0)u1)t

= −
∫ t

0

(t− s)(u(s) + ε(Gu)(s)) ds +
∫ t

0

G(|ux|q)(s) ds−G(|u0,x|q)t. (29)

3.2. Auxiliary assertions.

Lemma 1. There are ε1 and C1 such that for all ε ∈ (0, ε1) we have

‖G‖ 6
C1

ε
.

Proof. Consider the equation

vxx − εv = g(x) (30)

with one of the following boundary conditions: the Dirichlet conditions

v(0) = v(l) = 0, (31)

or the Neumann conditions
vx(0) = vx(l) = 0,

or the non-classical non-local conditions

v(0) = 0, v(l) = lvx(0).
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1. The Dirichlet problem. The Green function of the problem (30), (31) is given
by the formula

G(x, ξ) =
1√

ε sinh
√

ε l

{
sinh

√
ε x sinh

√
ε (ξ − l), 0 6 x 6 ξ 6 l,

sinh
√

ε ξ sinh
√

ε (x− l), 0 6 ξ 6 x 6 l.

Taking this into account, we write the desired function in the explicit form

v(x) =
1√

ε sinh
√

ε l

[
sinh

√
ε (x− l)

∫ x

0

sinh
√

ε ξg(ξ) dξ

+ sinh
√

ε x

∫ l

x

sinh
√

ε (ξ − l)g(ξ) dξ

]
.

To find the norm of the solution in Z2, we calculate its first and second deriva-
tives. We have

v′(x) =
1√

ε sinh
√

ε l

[√
ε cosh

√
ε (x− l)

∫ x

0

sinh
√

ε ξg(ξ) dξ

+
√

ε cosh
√

ε x

∫ l

x

sinh
√

ε (ξ − l)g(ξ) dξ

]
,

v′′(x) =
1√

ε sinh
√

ε l

[
ε sinh

√
ε (x− l)

∫ x

0

sinh
√

ε ξg(ξ) dξ

+ ε sinh
√

ε x

∫ l

x

sinh
√

ε (ξ − l)g(ξ) dξ

]
+ g(x).

Thus,

|v(x)| 6 1√
ε sinh

√
ε l

[
(sinh

√
ε l)2x‖g‖C[0,l] + (sinh

√
ε l)2(l − x)‖g‖C[0,l]

]
=

1√
ε sinh

√
ε l

(sinh
√

ε l)2l‖g‖C[0,l] =
sinh

√
ε l√

ε
l‖g‖C[0,l],

|v′(x)| 6 1√
ε sinh

√
ε l

[√
ε (cosh

√
ε l)(sinh

√
ε l)x‖g‖C[0,l]

+
√

ε (cosh
√

ε l)(sinh
√

ε l)(l − x)‖g‖C[0,l]

]
= l cosh

√
ε l‖g‖C[0,l],

|v′′(x)| 6 1√
ε sinh

√
ε l

[
ε(sinh

√
ε l)2x‖g‖C[0,l] + (sinh

√
ε l)2(l − x)‖g‖C[0,l]

]
+ ‖g‖C[0,l] 6

(
l
√

ε sinh
√

ε + 1
)
‖g‖C[0,l].

Estimating the norm of the solution in Z2, we obtain that

‖v‖Z2 ≡ ‖v‖C[0,l] + ‖v‖C1[0,l] + ‖v‖C2[0,l]

6 l

(
sinh

√
ε l√

ε
+ cosh

√
ε l +

√
ε sinh

√
ε l

)
‖g‖C[0,l] + ‖g‖C[0,l].

Putting

γ(ε) := ‖G‖, γ̃(ε) := l

(
sinh

√
ε l√

ε
+ cosh

√
ε l +

√
ε sinh

√
ε l

)
+ 1,
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we obviously have

0 < γ(ε) 6 γ̃(ε) → l(l + 1) + 1 as ε → +0.

Hence there is an ε0 > 0 such that for all ε ∈ (0, ε0) we have

γ(ε) < 2(l(l + 1) + 1).

2. The Neumann problem. The Green function of this problem is of the form

G(x, ξ) =
−1√

ε sinh
√

ε l

{
cosh

√
ε x cosh

√
ε (ξ − l), 0 6 x 6 ξ 6 l,

cosh
√

ε ξ cosh
√

ε (x− l), 0 6 ξ 6 x 6 l.

The desired function and its derivatives are given by the formulae

v(x) =
−1√

ε sinh
√

ε l

[
cosh

√
ε (x− l)

∫ x

0

cosh
√

ε ξg(ξ) dξ

+ cosh
√

ε x

∫ l

x

cosh
√

ε (ξ − l)g(ξ) dξ

]
,

v′(x) =
−1√

ε sinh
√

ε l

[√
ε sinh

√
ε (x− l)

∫ x

0

cosh
√

ε ξg(ξ) dξ

+
√

ε sinh
√

ε x

∫ l

x

cosh
√

ε (ξ − l)g(ξ) dξ

]
,

v′′(x) =
−1√

ε sinh
√

ε l

[
ε cosh

√
ε (x− l)

∫ x

0

cosh
√

ε ξg(ξ) dξ

+ ε cosh
√

ε x

∫ l

x

cosh
√

ε (ξ − l)g(ξ) dξ

]
+ g(x).

The following bounds hold:

|v(x)| 6 1√
ε sinh

√
ε l

[
(cosh

√
ε l)2(x + (l − x))‖g‖C[0,l]

]
=

(cosh
√

ε l)2√
ε sinh

√
ε l

l‖g‖C[0,l],

|v′(x)| 6 1√
ε sinh

√
ε l

√
ε sinh

√
ε l cosh

√
ε l(x + (l − x))‖g‖C[0,l]

= l cosh
√

ε l‖g‖C[0,l],

|v′′(x)| 6
[
ε

(cosh
√

ε l)2√
ε sinh

√
ε l

l + 1
]
‖g‖C[0,l].

Thus we have

‖G‖ =: γ(ε) 6 l

(
(cosh

√
ε l)2√

ε sinh
√

ε l
(1 + ε) + cosh

√
ε l

)
+ 1 =: γ̃(ε).

Therefore,

γ̃(ε) ∼ l

(
1 +

1 + ε

εl

)
+ 1 = l

(
1 +

1
εl

+
1
l

)
+ 1 = 2 + l +

1
ε

as ε → +0.
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Hence there is an ε0 > 0 such that for all ε ∈ (0, ε0) we have

γ(ε) < 4 + 2l +
2
ε
,

or
εγ(ε) < (4 + 2l)ε + 2 < C for some C > 0.

3. The non-local boundary conditions. The Green operator is given by the formula

Gg = G0g + G1g ≡
∫ l

0

G0(x, ξ)g(ξ) dξ + v1(x),

where

G0(x, ξ) =
−1√

ε

{
sinh

√
ε x cosh

√
ε ξ, 0 6 x 6 ξ 6 l,

sinh
√

ε ξ cosh
√

ε x, 0 6 ξ 6 x 6 l,

v1(x) = − sinh
√

ε x√
ε

∫ l

0

√
ε l cosh

√
ε ξ − cosh

√
ε l sinh

√
ε ξ

sinh
√

ε l −
√

ε l
g(ξ) dξ

= − sinh
√

ε x√
ε

1
sinh

√
ε l−

√
ε l

∫ l

0

(√
ε l cosh

√
ε ξ− cosh

√
ε l sinh

√
ε ξ

)
g(ξ) dξ.

Proceeding as in the previous cases, we easily verify that for sufficiently small ε > 0
the term G0g satisfies an ε-independent estimate. Note that

0 6
sinh

√
ε x√

ε
6

sinh
√

ε l√
ε

→ l, ε → +0,

sinh t = t +
t3

6
+ o(t3) =⇒ 1

sinh t− t
=

1
t3/6 + o(t3)

=
6
t3

1
1 + o(1)

∼ 6
t3

,

whence
1

sinh
√

ε l −
√

ε l
∼ 6

l3ε3/2
, ε → +0.

Estimating the integrand, we have

|
√

ε l cosh
√

ε ξ − cosh
√

ε l sinh
√

ε ξ| 6
√

ε l cosh
√

ε l + cosh
√

ε l sinh
√

ε l

= cosh
√

ε l(
√

ε l + sinh
√

ε l) ∼ 2
√

ε l.

Hence the following bounds hold for all sufficiently small ε > 0:

|v1(x)| 6 2l
12

l3ε3/2
4
√

ε l‖g‖C[0,l] =
96
lε
‖g‖C[0,l],

|v′1(x)| 6 cosh
√

ε l
12

l3ε3/2
4
√

ε l‖g‖C[0,l] =
C2

ε
‖g‖C[0,l],

|v′′1 (x)| 6
√

ε sinh
√

ε l
12

l3ε3/2
4
√

ε l‖g‖C[0,l] = C3‖g‖C[0,l].

Thus,

‖G1‖ 6 C3 +
C4

ε
=⇒ ε‖G1‖ 6 C3ε + C4 < C

for some C > 0 and all sufficiently small ε > 0. �
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Remark 1. It is useful to note that the bound for the norm of the Green operator
is uniform with respect to ε in the case of Dirichlet boundary conditions.

Lemma 2. Let [0, 1] 3 x 7→ z(x) be a continuous function. Then the operator

Q : z(x) 7→ |z(x)|q, Q : C[0, l] → C[0, l], q > 1,

is Fréchet continuously differentiable and

(Q′f (z)h1)(x) = h1(x)q|z(x)|q−1 sgn z(x).

Proof. Step 1. This operator is differentiable in the sense of Gâteaux:(
d

dζ
|z(x) + ζh1(x)|q

)∣∣∣∣
ζ=0

=
(
h1(x)q|z(x) + ζh1(x)|q−1 sgn(z(x) + ζh1(x))

)∣∣
ζ=0

= h1(x)q|z(x)|q−1 sgn z(x).

Step 2. We claim that the Gâteaux derivative is a continuous function of the
parameter z(x) ∈ C[0, l] at every point z(x) ∈ C[0, l]. Fix an arbitrary z(x) ∈
C[0, l]. It suffices to prove that

∀ ε > 0 ∃ δ > 0 ∀h2(x) ∈ C[0, l] ‖h2(x)‖C[0,l] < δ

=⇒ ‖q|z(x) + h2(x)|q−1 sgn(z(x) + h2(x))− q|z(x)|q−1 sgn z(x)‖C[0,l] < ε.

This is indeed true because if ‖h2‖C[0,l] 6 1, then

∀x ∈ [0, l] |z(x) + h2(x)| 6 ‖z‖C[0,l] + 1

and the function
η 7→ |η|q−1 sgn η

is uniformly continuous on the closed interval [−‖z(x)‖C[0,l] − 1, ‖z(x)‖C[0,l] + 1]
(since it is continuous everywhere on R).
Step 3. It follows from the continuity of the Gâteaux derivative that Q is Fréchet
differentiable and its Gâteaux and Fréchet derivatives coincide ([17], Theorem 1.3
on p. 14). Then the Fréchet derivative is also continuous. �

In what follows, R > 0 is arbitrary and will be specified below. Lemma 2 yields
the following assertion.

Lemma 3. The map
Q : w 7→ G(|wx|q)

is Fréchet continuously differentiable and the following bound holds in the ball
‖w‖Z2 6 4R for ε ∈ (0, ε1):

‖Q′f (w)‖ 6
C1

ε
q (4R)q−1

.
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Proof. In view of (21)–(26), the map Q is the composite of the following operators:

Z2 J21−→ C1[0, l]
d/dx−→ C[0, l]

Q−→ C[0, l] G−→ Z2,

of which only Q is non-linear and

‖J21‖ =
∥∥∥∥ d

dx

∥∥∥∥ = 1, ‖G‖
Lemma 1

6
C1

ε
, ε ∈ (0, ε1).

The result now follows immediately from Lemma 2. �

Lemma 4. For ε∈ (0, ε2), ε2 =1/(2R), and all w(x)∈C[0, l] with ‖w‖C[0,l] 6 4R
we have

‖F′f (w)‖C[0,l]→C[0,l] 6 8Rε2 =: C2ε
2.

Proof. Clearly,(
F′f (w)h

)
(x) = ε(eεw(x) − 1)h(x) = εeεw(x)h(x)− εh(x). (32)

For every x ∈ [0, l], Maclaurin’s formula with the Lagrange form of the remainder
yields the following bound (with θ[x] ∈ [0, 1]):

|ε(eεw(x) − 1)| =
∣∣∣∣ε(1 + εw(x) +

ε2(θ[x]w(x))2

2
− 1

)∣∣∣∣
= ε2

∣∣∣∣w(x) +
εθ2[x]w2(x)

2

∣∣∣∣ 6 ε2|4R + 8R2ε| 6 8Rε2

for ε ∈ (0, ε2), ε2 = 1/(2R). Thus,

‖F′f (w)‖C[0,l]→C[0,l] = sup
x∈[0,l]

|ε(eεw(x) − 1)| 6 8Rε2

for ‖w‖C[0,l] 6 4R, ε ∈ (0, ε2), ε2 = 1/(2R). �

Lemma 5. The function

F′f (w) : C[0, l] → L(C[0, l], C[0, l])

of the parameter w is Fréchet continuously differentiable and its derivative is equal
to

F′′f (w)(h1, h2) = ε2eεw(x)h1(x)h2(x). (33)

Proof. Since the term εh(x) in (32) is independent of w(x), it suffices to consider
the operator

h1(x) 7→ εeεw(x)h1(x).

We have

eεw(x)+εh2(x) − eεw(x) − εeεw(x)h2(x) = eεw(x)
(
eεh2(x) − 1− εh2(x)

)
=

eεw(x)

2
(
θ2[x]εh2(x)

)2 = o(‖h2‖C[0,l]), θ2[x] ∈ [0, 1].

This proves (33). The continuous dependence of this operator on w(x) can easily
be proved. �
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Lemma 6. When

ε ∈
(
0,min(ε1, ε2, ε3)

)
, ε3 =

1
12C1C2

,

the operator H is twice Fréchet continuously differentiable and we have the following
bound for its Fréchet derivative: for all w ∈ Z2 with ‖w‖Z2 6 4R,

‖H′f (w)‖ 6
1
12

.

Proof. This follows from Lemmas 1, 4, 5 and the chain rule for Fréchet derivatives. �

3.3. Main theorems. Thus we arrive at the following equation in Z2 (see (29)):

u(t) = D(u)(t) ≡ (u0 −H(u0)) + (u1 −H′f (u0)u1 −G(|u0,x|q))t

+ H(u) +
∫ t

0

G(|ux|q)(s) ds−
∫ t

0

(t− s)(u(s) + ε(Gu)(s)) ds. (34)

Theorem 1. There is an ε0 > 0 such that for every ε ∈ (0, ε0) one can find a T (ε)
such that the equation (34) has the unique solution u(t) ∈ C([0, T (ε)], Z2) on the
closed interval [0, T (ε)].

Proof. We introduce the following notation:

y0 = u0 −H(u0), y1 = u1 −H′f (u0)u1 −G(|u0,x|q), y2(t) = y0 + y1t,

I1(u) =
∫ t

0

G(|ux|q)(s) ds, I2(u) =
∫ t

0

(t− s)
(
u(s) + ε(Gu)(s)

)
ds.

Clearly, y0 ∈ Z2, y1t ∈ Z2 for every t and y2(t) ≡ y0 + y1t ∈ C∞([0, T ], Z2) for
all T > 0.

We use the contraction mapping method. Our plan is as follows.
1) Choose R = max(1, ‖y0‖Z2).
2) Choose T ′: ‖y0‖Z2 + T ′‖y1‖Z2 6 2R. Then

∀T ∈ (0, T ′] ‖y0 + y1t‖C([0,T ],Z2) 6 2R.

3) Choose a small ε0 > 0 such that for every ε ∈ (0, ε0) the operator H(w) is
a contraction with contraction constant α 6 1/12 in the ball ‖w‖Z2 6 4R. (This
is possible by Lemma 6.)

4) Choose a small T (ε) 6 T ′ such that I1(u) and I2(u) are contractions in

B4R(0) ≡
{
u(t) ∈ C([0, T (ε)], Z2)

∣∣ ∀ t ∈ [0, T (ε)] ‖u(t)‖Z2 6 4R
}

with contraction constant α 6 1/12. (The quantity T (ε) is actually independent
of ε for I2 in each of the Problems A, B, C and for I1 in Problem A.) A way of
performing such a choice will be described below.

Then the following argument shows that the operator D( · ) on the right-hand
side maps the ball B4R(0) to itself and is a contraction mapping with contraction
constant α 6 1/4 on this ball.
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Indeed, by 3) and 4), for all u1(t), u2(t) ∈ B4R(0) we have∥∥(
H(u1) + I1(u1)− I2(u1)

)
−

(
H(u2) + I1(u2)− I2(u2)

)∥∥
C([0,T ],Z2)

6
1
4
‖u1 − u2‖C([0,T ],Z2).

Since H(0) = I1(0) = I2(0) = 0, the following assertions hold.
1) For every u(t) ∈ B4R(0) we have

‖H(u) + I1(u)− I2(u)‖C([0,T ],Z2)

=
∥∥(

H(u) + I1(u)− I2(u)
)
−

(
H(0) + I1(0)− I2(0)

)
‖C([0,T ],Z2)

6
1
4
‖u− 0‖C([0,T ],Z2) =

1
4
‖u‖C([0,T ],Z2) 6

1
4
· 4R = R.

Therefore,

for every u(t) ∈ B4R(0) we have D(u) ∈ BR(y2) ⊂ B3R(0) ⊂ B4R(0). (35)

2) For all u1(t), u2(t) ∈ B4R(0) we have

‖D(u1)−D(u2)‖C([0,T ],Z2) 6
1
4
‖u1 − u2‖C([0,T ],Z2).

Since BR(y2) ⊂ B4R(0), it follows that for all u1, u2 ∈ BR(y2) we have

‖D(u1)−D(u2)‖C([0,T ],Z2) 6
1
4
‖u1 − u2‖C([0,T ],Z2).

We now explain how to make the choice of T (ε) in 4). We separately consider
all terms of D(u) not contained in y2(t): H(u), I1(u), I2(u).

By Lemma 6 the following bound holds for ε ∈ (0,min(ε1, ε2, ε3)) and for all
u1, u2 ∈ C([0, T ], Z2) with ‖ui‖C([0,T ],Z2) 6 4R, i = 1, 2, where T > 0 is arbitrary:

‖H(u1)−H(u2)‖C([0,T ],Z2) 6
1
12
‖u1 − u2‖C([0,T ],Z2).

We now consider I1(u). Recall that q > 1. By Lemma 3, for all ε ∈ (0, ε1)
and ‖wk‖Z2 6 4R, k = 1, 2, we have

‖G(|w1,x|q)−G(|w2,x|q)‖Z2 6
C1

ε
q(4R)q−1‖w1 − w2‖Z2 .

Choose T1(ε) = 1/(12(C1/ε)q(4R)q−1). Then for every T 6 T1(ε) we have

‖I1(u1(t))− I1(u2(t))‖C([0,T ],Z2) 6
1
12
‖u1(t)− u2(t)‖C([0,T ],Z2)

for all u1(t), u2(t) ∈ C([0, T ], Z2) with ‖ui(t)‖C([0,T ],Z2) 6 4R, i = 1, 2.
Finally, we consider I2(u). We have

u + εG(u) = (I + εGJ20)u, ‖I + εGJ20‖ 6 1 + ε
C1

ε
= 1 + C1, ε ∈ (0, ε1).
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Then, for all T > 0,∥∥∥∥∫ t

0

(t− s)(u(s) + ε(Gu)(s)) ds

∥∥∥∥
C([0,T ],Z2)

6 T 2‖u + εGu‖C([0,T ],Z2).

Thus for every T 6 T2 =
√

1/(12(1 + C1)) we have

‖I2(u1(t))− I2(u2(t))‖C([0,T ],Z2) 6
1
12
‖u1(t)− u2(t)‖C([0,T ],Z2).

As a result, we put ε0 = min(ε1, ε2, ε3), fix an arbitrary ε ∈ (0, ε0) and take

T (ε) = min(T ′, T1(ε), T2).

By what was said above, the operator D(u) on the right-hand side of (34) maps
the ball B4R(0) to itself in every Banach space C([0, T̃ ], Z2) with T̃ 6 T (ε) and is
a contraction map on this ball. Hence, in every Banach space C([0, T̃ ], Z2) with
T̃ 6 T (ε), the integral equation (34) has a unique solution among all functions of
norm not exceeding 4R.

We can now prove the uniqueness of solutions of (34) in C([0, T (ε)], Z2) (not only
in the ball B4R(0)). Indeed, by (35), every solution of (34) in C([0, T (ε)], Z2) that
lies in B4R(0) is actually contained in B3R(0). On the other hand, assume that there
is a solution ũ(t) ∈ C([0, T (ε)], Z2) different from u(t). Then it does not lie in
the ball B4R(0) (since the uniqueness of solutions in this ball has already been
established). Then the solution ũ(t) leaves B4R(0) for some t = t2 < T (ε) and leaves
B3R(0) for some t = t1 and we have the strict inequality t1 < t2 because ũ(t) is
continuous. Hence the restriction of ũ(t) to [0, t2] is a solution in C([0, t2], Z2) lying
in B4R(0), but not in B3R(0). The resulting contradiction proves the uniqueness
of solutions. �

We shall use the following theorem.

Theorem 2 (see [18], Theorem 12.3.3 on p. 651). Let F be a continuously differ-
entiable map from an open ball U = Br(x0) in a Banach space X to a Banach
space Y . Suppose that Λ := F ′f (x0) is a one-to-one map of X onto Y . Then F
is a one-to-one map of some neighbourhood V of x0 onto some neighbourhood W
of F (x0). Moreover, the map G := F−1 : W → V is continuously differentiable
and we have

G′f (y) =
(
F ′f (F−1(y))

)−1
, y ∈ W.

Then the following theorem can be proved.

Theorem 3. Let u(t)∈C([0, T (ε)], Z2) be the solution whose existence and unique-
ness were established in Theorem 1. Then u(t) possesses the following smoothness
property : u(t) ∈ C2([0, T0(ε)], Z2), T0(ε) 6 T (ε).

Proof. Step 1. Consider again the equation (34) and rewrite it in the form

u(t)−H(u) = v(t), (36)
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where

v(t) = (u0 −H(u0)) +
(
u1 −H′f (u0)u1 −G(|u0,x|q)

)
t + I1(u)− I2(u),

I1(u) =
∫ t

0

G(|ux|q)(s) ds, I2(u) =
∫ t

0

(t− s)
(
u(s) + ε(Gu)(s)

)
ds.

We know that u(t) ∈ C([0, T (ε)], Z2). Hence u(t) + ε(Gu)(t) ∈ C([0, T (ε)], Z2)
and it follows from the general properties of integrals with variable upper limits
(depending on a parameter or not) that

I1(u)(t) ∈ C1([0, T (ε)], Z2), I2(u)(t) ∈ C1([0, T (ε)], Z2).

Since we obviously have

(u0 −H(u0)) +
(
u1 −H′f (u0)u1 −G(|u0,x|q)

)
t ∈ C2([0, T (ε)], Z2),

it follows that v(t) ∈ C1([0, T (ε)], Z2).
Step 2. Using Theorem 2, we establish that the operator

w 7→ w −H(w) =: K(w)

has a continuously differentiable inverse in some neighbourhood Ω of y0. Indeed,
since ‖u(t)‖Z2 ∈ B4R(0) for all t ∈ [0, T (ε)], it follows from Lemma 6 that

‖H′f (u(t))‖ 6
1
12

, t ∈ [0, T (ε)], (37)

and H′f (w) is continuous. Hence for all t ∈ [0, T (ε)] the operator

K′f (u(t)) ≡ I −H′f (u(t))

is invertible. In particular, the hypotheses of Theorem 2 hold at y0. Since u(t) is
continuous, there is a T0(ε) 6 T (ε) such that u(t) ∈ Ω for t ∈ [0, T0(ε)]. Therefore,

u(t) = K−1(v(t)) ∈ C1([0, T0(ε)], Z2).

But then I2(u)(t) ∈ C2([0, T0(ε)];Z2) and Lemma 3 yields that I1(u)(t) ∈
C2([0, T0(ε)];Z2), whence

v(t) ∈ C2([0, T (ε)], Z2).

Step 3. Differentiating (36), we obtain that(
I −H′f (u)

)
u′(t) = v′(t).

It was shown in Step 2 that the operator I −H′f (u(t)) (depending on the parame-
ter u(t)) has an inverse for every t ∈ [0, T0(ε)]:

u′(t) =
(
I −H′f (u(t))

)−1
v′(t).

By (37), the operator on the right-hand side can be represented by a Neumann
series. Therefore it is continuously differentiable with respect to t ∈ [0, T0(ε)].
Thus u(t) ∈ C2([0, T0(ε)], Z2). �
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§ 4. Blow-up of solutions

4.1. The method of test functions for Problems B and C. Blow-up of
solutions of Problem B can be proved using a very simple version of the method
of test functions. Namely, integrating the equation (15) with respect to x from 0
to l and using the boundary conditions (18), we obtain that

− d2

dt2

∫ l

0

eεu(x,t)dx =
d

dt

∫ l

0

|ux(x, t)|q dx,

or
d2

dt2

∫ l

0

eεu(x,t)dx +
d

dt

∫ l

0

|ux(x, t)|q dx = 0.

Integrate with respect to t:

d

dt

∫ l

0

eεu(x,t)dx−
(

d

dt

∫ l

0

eεu(x,t)dx

)∣∣∣∣
t=0

+
∫ l

0

|ux(x, t)|q dx−
∫ l

0

|ux(x, 0)|q dx = 0,

or

d

dt

∫ l

0

eεu(x,t)dx− ε

∫ l

0

eεu0(x)u1(x) dx +
∫ l

0

|ux(x, t)|q dx−
∫ l

0

|u0,x(x)|q dx = 0.

Integrating again with respect to t, we obtain∫ l

0

eεu(x,t)dx−
∫ l

0

eεu0(x)dx− εt

∫ l

0

eεu0(x)u1(x) dx− t

∫ l

0

|u0,x(x)|q dx

+
∫ t

0

ds

∫ l

0

|ux(x, s)|q dx = 0.

We group the terms as follows:∫ l

0

eεu(x,t)dx +
∫ t

0

ds

∫ l

0

|ux(x, s)|q dx

=
∫ l

0

eεu0(x)dx + t

(
ε

∫ l

0

eεu0(x)u1(x) dx +
∫ l

0

|u0,x(x)|q dx

)
.

Since the terms on the left-hand side are non-negative, it follows that∫ l

0

eεu0(x)dx + t

(
ε

∫ l

0

eεu0(x)u1(x) dx +
∫ l

0

|u0,x(x)|q dx

)
> 0.

Therefore, if the term in brackets is negative, then Problem B cannot be globally
(in time) soluble and we have the following upper bound for the blow-up time:

Tbl = −
∫ l

0
eεu0(x) dx

ε
∫ l

0
eεu0(x)u1(x) dx +

∫ l

0
|u0,x(x)|q dx

. (38)
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The problem with non-local conditions (19) can be studied in a similar way
replacing the test function 1 by the test function l − x. In view of the boundary
conditions (19) we have∫ l

0

(l − x)uxx(x, t) dx = (l − x)ux(x, t)
∣∣x=l

x=0
+

∫ l

0

ux(x, t) dx

= −lux(0, t) + u(l, t)− u(0, t) = 0.

Therefore, multiplying (15) by l − x and integrating over [0, l], we obtain that

− d2

dt2

∫ l

0

(l − x)eεu(x,t) dx =
d

dt

∫ l

0

(l − x)|ux(x, t)|q dx,

which can be rewritten (in the same way as above) in the form∫ l

0

(l − x)eεu(x,t) dx +
∫ t

0

ds

∫ l

0

(l − x)|ux(x, s)|q dx

=
∫ l

0

(l − x)eεu0(x) dx + t

(
ε

∫ l

0

(l − x)eεu0(x)u1(x) dx +
∫ l

0

(l − x)|u0,x(x)|q dx

)
.

Under the condition

ε

∫ l

0

(l − x)eεu0(x)u1(x) dx +
∫ l

0

(l − x)|u0,x(x)|q dx < 0

we see that solutions of Problem C cannot exist for all t > 0 and the following
upper bound for the blow-up time holds:

Tbl = −
∫ l

0
(l − x)eεu0(x) dx

ε
∫ l

0
(l − x)eεu0(x)u1(x) dx +

∫ l

0
(l − x)|u0,x(x)|q dx

.

4.2. The method of test functions (a universal version). In this subsection
we use the non-linear capacity method of Pokhozhaev and Mitidieri [4] to prove
that for any boundary conditions there are initial data (16) for which the problem
is not globally (in time) soluble. Since the method works in the multi-dimensional
case (not only the one-dimensional case considered in this paper), we shall write
∆u instead of uxx and regard x as a multi-dimensional variable. In view of these
changes we consider in this subsection the general equation (14) instead of (15):

∂2

∂t2
(∆u− eεu) + ∆u =

∂

∂t
|∇u|q. (39)

We introduce a test function

ϕ(x, t) = ϕ1(x)ϕ2(t),

where
ϕ1(x) ∈ C2

0 (Ω), ϕ1(x) > 0, (40)
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and ϕ2(t) is of the form

ϕ2(t) =
(

1− t

T

)λ

. (41)

The parameters T > 0 and λ > 2 will be specified below.
For the reader’s convenience we present some elementary relations that will be

used below. These include the following expressions for the derivatives of ϕ2(t) and
their values at the endpoints:

ϕ2(t) =
(

1− t

T

)λ

, ϕ2(0) = 1, ϕ2(T ) = 0,

ϕ′2(t) = − λ

T

(
1− t

T

)λ−1

, ϕ′2(0) = − λ

T
, ϕ′2(T ) = 0,

ϕ′′2(t) =
λ(λ− 1)

T 2

(
1− t

T

)λ−2

, ϕ′′2(0) =
λ(λ− 1)

T 2
, ϕ′′2(T ) = 0,

(42)

and integration-by-parts formulae involving ϕ2(t) (these follow from (42)):∫ T

0

dt v′(t)ϕ2(t) = −v(0) +
λ

T

∫ T

0

dt v(t)
(

1− t

T

)λ−1

, (43)

∫ T

0

dt v′′(t)ϕ2(t) = −v′(0)− λ

T
v(0) +

λ(λ− 1)
T 2

∫ T

0

dt v(t)
(

1− t

T

)λ−2

. (44)

Multiplying both sides of (39) by the test function ϕ(x, t), we have(
∂2

∂t2
(∆u) + ∆u

)
ϕ(x, t) =

(
∂

∂t
|∇u|q +

∂2

∂t2
eεu

)
ϕ(x, t).

Integrating this relation over [0, T ]× Ω, we obtain that∫ T

0

dt ϕ2(t)
d2

dt2

∫
Ω

dx ϕ1(x)∆u +
∫ T

0

dt ϕ2(t)
∫

Ω

dx ϕ1(x)∆u

=
∫ T

0

dt ϕ2(t)
d

dt

∫
Ω

dx ϕ1(x)|∇u|q +
∫ T

0

dt ϕ2(t)
d2

dt2

∫
Ω

dx ϕ1(x)eεu(x,t).

Integrating by parts and using (43), (44), we arrive at

−
∫

Ω

dx ϕ1(x)∆u1(x)− λ

T

∫
Ω

dx ϕ1(x)∆u0(x)

+
λ(λ− 1)

T 2

∫ T

0

dt

(
1− t

T

)λ−2 ∫
Ω

dx ϕ1(x)∆u(x, t)

+
∫ T

0

dt

(
1− t

T

)λ ∫
Ω

dx ϕ1(x)∆u(x, t)
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= −
∫

Ω

dx ϕ1(x)|∇u0(x)|q +
λ

T

∫ T

0

dt

(
1− t

T

)λ−1 ∫
Ω

dx ϕ1(x)|∇u(x, t)|q

− ε

∫
Ω

dxϕ1(x)eεu0(x)u1(x)− λ

T

∫
Ω

dx ϕ1(x)eεu0(x)

+
λ(λ− 1)

T 2

∫ T

0

dt

(
1− t

T

)λ−2 ∫
Ω

dx ϕ1(x)eεu(x,t).

Collect all the u-independent terms on one side and use Green’s formula:

−
∫

Ω

dx∆u1ϕ1 −
λ

T

∫
Ω

dx∆u0ϕ1 +
∫

Ω

dx ϕ1|∇u0|q + ε

∫
Ω

dx ϕ1e
εu0u1

+
λ

T

∫
Ω

dx ϕ1e
εu0 − λ(λ− 1)

T 2

∫ T

0

dt

(
1− t

T

)λ−2 ∫
Ω

dx (∇ϕ1,∇u)

−
∫ T

0

dt

(
1− t

T

)λ ∫
Ω

dx (∇ϕ1,∇u)

=
λ

T

∫ T

0

dt

(
1− t

T

)λ−1 ∫
Ω

ϕ1|∇u|q dx

+
λ(λ− 1)

T 2

∫ T

0

dt

(
1− t

T

)λ−2 ∫
Ω

dx ϕ1e
εu.

We now pass from the repeated integral to a double interval over [0, T ]×Ω and
take into account that ϕ1(x) is different from 0 only on the set Ω1 b Ω:

−
∫

Ω

dx ∆u1ϕ1 −
λ

T

∫
Ω

dx ∆u0ϕ1 +
∫

Ω

dx ϕ1|∇u0|q + ε

∫
Ω

dxϕ1e
εu0u1

+
λ

T

∫
Ω

dx ϕ1e
εu0 − λ(λ− 1)

T 2

∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−2

(∇ϕ1,∇u)

−
∫∫

[0,T ]×Ω1

dt dx

(
1− t

T

)λ

(∇ϕ1,∇u)

=
λ

T

∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−1

|∇u|qϕ1

+
λ(λ− 1)

T 2

∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−2

ϕ1e
εu(x,t). (45)

We use ‘Young’s inequality with ε’

ab 6 εq aq

q
+

1
εq′

bq′

q′
,

1
q

+
1
q′

= 1
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to estimate the terms on the left-hand side above. With q as in (15), we have∣∣∣∣(∇ϕ1,∇u)
(

1− t

T

)λ−2∣∣∣∣ 6 |∇ϕ1| · |∇u|
(

1− t

T

)λ−2

= |∇ϕ1| · |∇u|
(

1− t

T

)(λ−1)/q(
1− t

T

)λ−2−(λ−1)/q

ϕ
1/q
1 ϕ

−1/q
1

6
εq
1

q
|∇u|q

(
1− t

T

)λ−1

ϕ1 +
1

εq′

1

1
q′
|∇ϕ1|q

′
(

1− t

T

)(λ−2−(λ−1)/q)q′

ϕ
−q′/q
1 ,

(46)∣∣∣∣(∇ϕ1,∇u)
(

1− t

T

)λ∣∣∣∣ 6 |∇ϕ1| · |∇u|
(

1− t

T

)λ

= |∇ϕ1| · |∇u|
(

1− t

T

)(λ−1)/q(
1− t

T

)λ−(λ−1)/q

ϕ
1/q
1 ϕ

−1/q
1

6
εq
2

q
|∇u|q

(
1− t

T

)λ−1

ϕ1 +
1

εq′

2

1
q′
|∇ϕ1|q

′
(

1− t

T

)(λ−(λ−1)/q)q′

ϕ
−q′/q
1 .

(47)

These inequalities hold throughout the set where ϕ1(x) > 0. However, a calculation
in [4] shows that they can be extended by continuity to the closure of this set, that
is, to the support of ϕ1. We fix the set Ω1 to be equal to this support. Then, in
view of (46) and (47), we obtain from (45) that

−
∫

Ω

dx ∆u1ϕ1 −
λ

T

∫
Ω

dx ∆u0ϕ1 +
∫

Ω

dx ϕ1|∇u0|q + ε

∫
Ω

dx ϕ1e
εu0u1

+
λ

T

∫
Ω

dx ϕ1e
εu0 +

εq
1

q

λ(λ− 1)
T 2

∫∫
[0,T ]×Ω1

dt dx |∇u|q
(

1− t

T

)λ−1

ϕ1

+
1

εq′

1

1
q′

λ(λ− 1)
T 2

∫∫
[0,T ]×Ω1

dt dx |∇ϕ1|q
′
(

1− t

T

)(λ−2−(λ−1)/q)q′

ϕ
−q′/q
1

+
εq
2

q

∫∫
[0,T ]×Ω1

dt dx |∇u|q
(

1− t

T

)λ−1

ϕ1

+
1

εq′

2

1
q′

∫∫
[0,T ]×Ω1

dt dx |∇ϕ1|q
′
(

1− t

T

)(λ−(λ−1)/q)q′

ϕ
−q′/q
1

>
λ

T

∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−1

|∇u|qϕ1

+
λ(λ− 1)

T 2

∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−2

ϕ1e
εu.
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Collecting the homogeneous terms in the last inequality, we have

−
∫

Ω

dx ∆u1ϕ1 −
λ

T

∫
Ω

dx ∆u0ϕ1 +
∫

Ω

dxϕ1|∇u0|q

+ ε

∫
Ω

dx ϕ1e
εu0u1 +

λ

T

∫
Ω

dx ϕ1e
εu0

+
1

εq′

1

1
q′

λ(λ− 1)
T 2

∫∫
[0,T ]×Ω1

dt dx |∇ϕ1|q
′
(

1− t

T

)(λ−2−(λ−1)/q)q′

ϕ
−q′/q
1

+
1

εq′

2

1
q′

∫∫
[0,T ]×Ω1

dt dx |∇ϕ1|q
′
(

1− t

T

)(λ−(λ−1)/q)q′

ϕ
−q′/q
1

>

(
λ

T
− εq

1

q

λ(λ− 1)
T 2

− εq
2

q

) ∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−1

|∇u|qϕ1

+
λ(λ− 1)

T 2

∫∫
[0,T ]×Ω1

dt dx

(
1− t

T

)λ−2

ϕ1e
εu. (48)

Note that the right-hand side is positive for sufficiently small ε1, ε2 and ϕ1 6≡ 0. All
the terms on the left-hand side depend only on the initial data and test functions,
but not on the solution. We separate those terms on the left-hand side that depend
only on the initial data:∫

Ω

dx

(
− λ

T
∆u0 + |∇u0|q +

λ

T
eεu0

)
ϕ1 +

∫
Ω

dx (−∆u1 + εu1e
εu0)ϕ1

and, using Green’s formula, rewrite them as∫
Ω

dx

(
− λ

T
∆u0 + |∇u0|q +

λ

T
eεu0

)
ϕ1 +

∫
Ω

dx (−∆ϕ1 + εϕ1e
εu0)u1.

Thus, putting
u1(x) = −r

(
−∆ϕ1(x) + εϕ1(x)eεu0(x)

)
(49)

and choosing r sufficiently large, we obtain that the left-hand side of (48) is negative
or equal to zero and, therefore, (48) does not hold. It follows that the solution with
the chosen initial data cannot exist on the whole interval [0, T ].

§ 5. Numerical diagnostics of the blow-up of solutions

In this section we discuss in detail the methods for finding numerical diagnostics
of the fact of blow-up and specifying its localization in space and time. We recall
that the a priori results obtained analytically in § 4 give a bound for the blow-up
time but fail to give a detailed description of the process of blow-up. The numerical
approach, which uses this analytical information, can help in specifying the blow-up
pattern and the moment of blow-up.

Remark 2. We use the notation uinit0(x), uinit1(x) instead of u0(x), u1(x) because
such subscripts will be used to define mesh values of functions.

We start by reducing the original equation (15) to a system of first order in time.
This will enable us to use the effective numerical methods described below. Thus
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the problem1
∂2

∂t2
(uxx − eεu) + uxx =

∂

∂t
(ux)2, x ∈ (0, l), t ∈ (0, Tbl],

u(x, 0) = uinit0(x), ut(x, 0) = uinit1(x),
ux(0, t) = ux(l, t) = 0

(50)

takes the form 

∂

∂t
(uxx − eεu) = v, x ∈ (0, l), t ∈ (0, Tbl],

∂

∂t
(v − (ux)2) + uxx = 0,

u(x, 0) = uinit0(x),
v(x, 0) = uinit1(x)xx − εuinit1(x)eεuinit0 (x).

(51)

Here we fix q = 2 for convenience of the numerical modelling. Our approach can
also be realized for other values of q > 1, but then the problem (51) and subsequent
formulae change somewhat.

The stiff method of lines and the Rosenbrock scheme with a complex
coefficient. The numerical modelling of (51) involves using the stiff method of
lines (SMOL) [19], [20] in order to reduce the original system of partial differential
equations to an implicit system of ordinary differential equations (unfortunately
not resolved with respect to the derivatives), which can be solved effectively by the
one-stage Rosenbrock scheme with a complex coefficient CROS1 [21].

We first introduce a uniform grid XN only in the spatial variable x with step
h = (l − 0)/N containing N + 1 nodes (and, accordingly, N intervals): XN =
{xn, 0 6 n 6 N : xn = 0 + nh}. Then, after a finite-difference approximation of
the spatial derivatives in (51) within the second order of accuracy, we obtain the
following system of ordinary differential equations for N − 1 unknown functions
un ≡ un(t) ≡ u(xn, t) (n = 1, . . . , N − 1, u0 and uN are found from the relations
induced by the boundary conditions) and N − 1 auxiliary functions vn ≡ vn(t) ≡
v(xn, t) (n = 1, . . . , N − 1, v0 and vN do not occur in the system):

dun−1

dt
− (2 + εh2eεun)

dun

dt
+

dun+1

dt
= h2vn,

dvn

dt
+

un+1−un−1

2h2

dun−1

dt
− un+1−un−1

2h2

dun+1

dt
=−un+1− 2un +un−1

h2
,

un(0) = uinit0(xn),

vn(0)=
uinit1(xn+1)− 2uinit1(xn) +uinit1(xn−1)

h2
− εuinit1(xn)eεuinit0 (xn),

u0 =
4
3
u1 −

1
3
u2,

uN =
4
3
uN−1 −

1
3
uN−2.

(52)
1We pose the problem of finding the solution for all times not exceeding Tbl, although we

know that the solution does not exist at the last moment and may even blow up earlier. This is
because we want to detect the blow-up of the solution numerically and, therefore, we need to have
a numerical solution for all these times.
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This system may be rewritten in the vector formM(u)
du
dt

= f(u),

u(0) = uinit,
(53)

where u = (u1, u2, u3, . . . , uN−1, v1, v2, v3, . . . , vN−1)T , f = (f1, f2, f3, . . . , f2N−2)T

and uinit = (u1(0), u2(0), u3(0), . . . , uN−1(0), v1(0), v2(0), v3(0), . . . , vN−1(0))T .
The vector-valued function f has the following structure:

fn =



h2vn if n = 1, . . . , N − 1,

− 1
h2

(
u2 − 2u1 +

(
4
3
u1 −

1
3
u2

))
if n = N,

− 1
h2

(un−N+2 − 2un+N+1 + un−N ) if n = N + 1, . . . , 2N − 3,

− 1
h2

((
4
3
uN−1 −

1
3
uN−2

)
− 2uN−1 + uN−2

)
if n = 2N − 2

and the matrix-valued function M has the following entries:

Mn,n =



4
3
− (2 + εh2eεu1) if n = 1,

−(2 + εh2eεun) if n = 2, . . . , N − 2,

4
3
− (2 + εh2eεuN−1) if n = N − 1,

1 if n = N, . . . , 2N − 2,

Mn,n−1 =

1 if n = 2, . . . , N − 2,

−1
3

+ 1 if n = N − 1,

Mn,n+1 =

−
1
3

+ 1 if n = 1,

1 if n = 2, . . . , N − 2,

Mn,n−N =


1

2h2
(un−N+2 − un−N ) if n = N + 1, . . . , 2N − 3,

1
2h2

(
4
3
un−N+1 −

4
3
un−N

)(
1 +

1
3

)
if n = 2N − 2,

Mn,n−N+1 =


1

2h2

(
4
3
un−N+2 −

4
3
un−N+1

)(
4
3

)
if n = N,

1
2h2

(
4
3
un−N+1 −

4
3
un−N

)(
−4

3

)
if n = 2N − 2,

Mn,n−N+2 =


1

2h2

(
4
3
un−N+2 −

4
3
un−N+1

)(
−1

3
− 1

)
if n = N,

− 1
2h2

(un−N+2−un−N ) if n =N +1, . . . , 2N−3.

The other entries of M are equal to zero.
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The numerical modelling of (53) will be done using the Rosenbrock scheme with
a complex coefficient (CROS1). This is the best choice for solving such problems
since this scheme has a high order of accuracy (O(τ1)) and is monotone and stable
(L2), see [22].

Remark 3. It is important to note that the Rosenbrock scheme has order of accuracy
O(τ2) in the case of a constant matrix M (see [11], [12]). An implicit system of
ordinary differential equations with such a matrix can be obtained by introducing
two auxiliary variables in (51): w = uxx − eεu and g = v − (ux)2. Then we
obtain an implicit system of ordinary differential equations (similar to (52)) with
a constant (although degenerate) matrix twice the size of the original matrix. This
increases the computation time. Which of these approaches is more effective from
the computational point of view is still an open question. Our main purpose is to
demonstrate the numerical diagnostics of the blow-up of solutions in space and/or
time. Thus the question raised in this remark will not be studied in this paper.

To implement this scheme, we introduce a uniform grid (one can also use a quasi-
uniform grid without changing the algorithm) TM in t having M +1 nodes (that is,
M intervals): TM = {tm, 0 6 m 6 M : 0 = t0 < t1 < t2 < · · · < tM−1 < tM = Tbl}.

We can now use the scheme CROS1 to solve the system (53):

u(tm+1) = u(tm) + (tm+1 − tm) Rew,

where w is a solution of the system[
M(u(tm))− 1 + i

2
(tm+1 − tm)fu(u(tm))

]
w = f(u(tm)). (54)

Here fu is the Jacobian, whose structure for the system under consideration is as
follows:

(fu)n,n+N−1 = h2 if n = 1, . . . , N − 1,

(fu)n,n−N =


− 1

h2
if n = N + 1, . . . , 2N − 3,

− 1
h2

+
1

3h2
if n = 2N − 2,

(fu)n,n−N+1 =



2
h2

− 4
3h2

if n = N,

2
h2

if n = N + 1, . . . , 2N − 3,

2
h2

− 4
3h2

if n = 2N − 2,

(fu)n,n−N+2 =


− 1

h2
+

1
3h2

if n = N,

− 1
h2

if n = N + 1, . . . , 2N − 3.

The other entries of fu are equal to zero for the equation under consideration.
Thus the matrix of the system (54) consists of four blocks of size (N−1)×(N−1)

(the structure of this matrix is shown in Fig. 1). This enables us to use an algorithm
for solving systems of linear algebraic equations (SLAE) that finds the solution
of (54) in O(N) operations.
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Figure 1. The structure of the matrix of SLAE (54)

Calculations on refined grids. In numerical calculations, it is important to
obtain not only an approximate numerical result, but also a bound for its accuracy.
The method of calculating the a posteriori asymptotically exact bound for the error
(see [11]) enables us to do this. It can also help to detect the fact of blow-up of an
exact solution [12]. The main formulae and assertions of this subsection were first
given in [23], [11], [12].

We have approximated all spatial derivatives in (51) with accuracy O(h2),
and the numerical modelling of (53) uses the scheme CROS1 of accuracy O(τ1).
Hence the resulting method of solving (51) has accuracy O(τ1 + h2).

We begin by introducing the base grid XN×TM : {xn, tm}, 06n 6N , 06m 6M .
Then we successively refine the grids, starting with the base, and compute the
solutions u(x, t) on the resulting grids. Since the theoretical order of accuracy in
time (resp. space) is equal to 1 (resp. 2), we successively refine the mesh in time
(resp. space) by an integer factor rt (resp. rx) in such a way that r1

t = r2
x (see [23]

for details). For computations, it is most convenient to choose rt =4 and rx =2.
Then each subsequent grid Xrs−1

x N×Trs−1
t M (s is the number of the grid) has nodes

coinciding with the nodes (xn, tm) of the base grid. At these nodes (x, t) we can
obtain an a posteriori asymptotically exact bound for the error (see [23], [12]),

∆(rs
xN,rs

t M)(x, t) =
u(rs

xN,rs
t M)(x, t)− u(rs−1

x N,rs−1
t M)(x, t)

rt
1 − 1

+ o(τ1 + h2),

and estimate the effective order of accuracy ([23], [12]),

peff
s (x, t) = logrt

u(rs−1
x N,rs−1

t M)(x, t)− u(rs−2
x N,rs−2

t M)(x, t)

u(rs
xN,rs

t M)(x, t)− u(rs−1
x N,rs−1

t M)(x, t)
.

At those points (x, t) where the solution of the original problem has continuous first
temporal and second spatial derivatives, we have the convergence

peff
s (x, t) −−−→

s→∞
ptheor = 1 (55)
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and the corresponding error bound is asymptotically exact as s → ∞ (or, equiva-
lently, N,M →∞). Absence of the convergence (55) indicates that the exact solu-
tion loses smoothness. In particular, in the case of a power-type ‘singularity’ u(x, t)∼
(t∗ − t)−β for every t > t∗, the effective order of accuracy peff(x, t) −−−−−−→

N,M→∞
−β.

This enables us to find the exponent β. If peff(x, t) −−−−−−→
N,M→∞

−∞ for every t > t∗,

we can assert that the solution increases exponentially, that is, u(x, t) = ∞.
If peff(x, t) −−−−−−→

N,M→∞
0 for every t > t∗, then the solution grows logarithmically

in a neighbourhood of the ‘singularity’: u(x, t) ∼ ln(t∗ − t). The blow-up time t∗

of the solution can be found within accuracy equal to the grid step.
If the solution loses smoothness simultaneously on the whole domain of the spa-

tial variable, then the deviation of peff(x, t) from convergence to 1 occurs simulta-
neously at all points of the grid {xn} beginning with the first temporal layer t > t∗

(see Examples 1 and 2). If the solution blows up at a single point x∗, then the
method described enables us to follow in time the process of blow up of the solu-
tion at the other points (see Example 3). This diagnostics of the blow-up process
becomes possible because the scheme CROS never overfills, even when the solution
of the problem tends to infinity ([11], [12]).

Example 1. We first consider an example with the input data

uinit0(x) ≡ 0, uinit1(x) ≡ −1, l = π, ε = 1.

Then the solution of (50) can be written down explicitly:

u(x, t) = ln(1− t).

Clearly, the blow-up time of this solution is t∗ = 1 and the solution grows
logarithmically in a neighbourhood of this point.

We apply our numerical algorithm to detect the time and location of the blow-up
and compare the result with the theoretical answer. To solve the problem (50)
numerically, we take the following set of parameters: Tbl = 1 (calculated from the
formula (38); we assume that q =2 here and in what follows), N =50, M =50,
rx =2, rt =4, S =6 (the number of successive grids used in this computation,
including the original grid).

Having obtained the approximate numerical solution on various grids, we can
verify the convergence of the effective order of accuracy to the theoretical one for
every temporal layer using the formula

peff
s (tm) = logrt

√∑N
n=1

(
u(rs−1

x N,rs−1
t M)(xn, tm)− u(rs−2

x N,rs−2
t M)(xn, tm)

)2√∑N
n=1

(
u(rs

xN,rs
t M)(xn, tm)− u(rs−1

x N,rs−1
t M)(xn, tm)

)2
,

(56)
where s is the number of the grid. We stress once again that the notation (xn, tm)
is used for the nodes coinciding with the corresponding nodes of the base grid.
After calculations on S nested grids, the effective order of accuracy peff converges
to ptheor = 1 (see Fig. 2) for every temporal layer tm except for the layer corre-
sponding to t50: peff(t50) → 0, and this means that the solution blows up at time
t∗ ∈ (t49, t50] ≡ (0.98, 1] and grows logarithmically at t∗: u(x, t) ∼ ln(1− t).
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Figure 2. Example 1. The effective order of accuracy for each temporal

layer. Blow-up of the solution is detected at time t∗ ∈ (t49, t50]≡ (0.98, 1].

Here and in what follows the zero temporal layer is not shown

Figure 3. Example 1. The effective order of accuracy for each spatial point

of the temporal layer corresponding to the moment t50 = 1, at which the

fact of blow-up has been detected. The blow-up of the solution is detected

at all spatial points of this temporal layer

For each spatial point of the chosen temporal layer corresponding to the moment
tm, we can also estimate the effective order of accuracy by the formula

peff
s (xn, tm) = logrt

u(rs−1
x N,rs−1

t M)(xn, tm)− u(rs−2
x N,rs−2

t M)(xn, tm)

u(rs
xN,rs

t M)(xn, tm)− u(rs−1
x N,rs−1

t M)(xn, tm)
. (57)
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For example, this formula can be used for the temporal layer corresponding to
the moment t50 (at which the blow-up of the solution has been detected) in order
to specify whether the solution blows up on the whole temporal layer or only at
separate points in the spatial variable. We see in Fig. 3 that the solution blows up
at all spatial points of this temporal layer.

Example 2. We now consider the following example:

uinit0(x) ≡ 0, uinit1(x) ≡ −[x(π − x)]2 sinx, l = π, ε = 10−1.

In this case, the exact solution of (50) cannot be obtained analytically. We again
use the algorithm described above for the numerical diagnostics of the blow-up of
the solution in time and space. The upper bound Tbl for the blow-up time t∗ can be
calculated numerically by the formula (38): Tbl ≈ 3.7. To solve the problem (50)
numerically, we use the following set of parameters: Tbl = 3.7, N = 50, M = 50,
rx = 2, rt = 4, S = 5 (the number of grids used in the calculation, including the
original grid).

As in Example 1, we can estimate the effective order of accuracy using the for-
mula (56). After calculations on S nested grids, the effective order of accuracy peff

converges to ptheor = 1 (see Fig. 4) for every temporal layer before the layer corre-
sponding to t7: peff(t7) → 0. This means that the solution blows up at a moment
t∗ ∈ (t6, t7] ≡ (0.44, 0.52] and grows logarithmically at t∗: u(x, t) ∼ ln(t∗ − t).

Figure 4. Example 2. The effective order of accuracy for each temporal

layer. Blow-up of the solution is detected at t∗ ∈ (t6, t7] ≡ (0.44, 0.52]

Thus, the analytically obtained blow-up time turns out to be considerably over-
valued in this example. This demonstrates the utility of numerical diagnostics. On
the other hand, the analytical estimate is also necessary. It gives us a rough local-
ization of the blow-up time, so that we know the time interval for launching the
numerical analysis.
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The formula (57) for the time layer corresponding to the moment t7, at which the
blow-up of the solution had been detected, can also be used to specify whether
the solution blows up on the whole temporal layer or only at separate points in the
spatial variable. We see in Fig. 5 that the solution blows up at all spatial points of
this temporal layer.

Figure 5. Example 2. The effective order of accuracy for each spatial point

of the first temporal layer where the blow-up had been detected

Example 3. We now consider one of the most interesting examples:

uinit0(x) ≡ 0, uinit1(x) ≡ −[x(π − x)]2 sinx, l = π, ε = 1010.

It is similar to Example 2 except for the value of ε, which is now much larger.
The exact solution of (50) cannot be found analytically. The upper bound (38)
for the blow-up time t∗ is given by Tbl ≈ 3.7 · 10−11. To solve the problem (50)
numerically, we use the following set of parameters: Tbl = 3.7 · 10−11, N = 50,
M = 50, rx = 2, rt = 4, S = 6 (the number of grids used for the calculations,
including the original grid).

We can also estimate the effective order of accuracy for each temporal layer using
the formula (56) (see Fig. 6). We see that blow-up occurs near the midpoint t∗ ∈
[t22, t23) ≡ (1.6 · 10−11, 1.7 · 10−11] of the modelled time interval and peff(t24) → 0.
This means that the solution grows logarithmically at t∗: u(x, t) ∼ ln(t∗ − t).

Using the formula (57) for various temporal layers, we can specify (see Fig. 7)
that the blow-up first occurs at the midpoint of the interval (0, π) and then spreads
to all other points of the domain of the spatial variable.

Example 4. The following Examples 4a and 4b are of a different kind. Here we
give a practical application of the results of § 4.2. Without giving a specific bound
for the blow-up time, we shall show that for a large class of boundary conditions
(containing all the conditions (17)–(19)) one can choose the initial data (16) in such
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Figure 6. Example 3. The effective order of accuracy for each temporal layer.

Blow-up of the solution is detected at t∗ ∈ (t22, t23] ≡ (1.6·10−11, 1.7·10−11]

a way that the solution blows up no later than the prescribed moment T of time.
To do this, we proceed as follows.

1) Fix a test function ϕ1(x) (see (40)) satisfying the boundary conditions and
choose the parameter λ > 2 in (41).

2) For the same q as in (15) and for the chosen T and λ, fix the values of ε1, ε2

in (48) in such a way that the coefficient

λ

T
− εq

1

q

λ(λ− 1)
T 2

− εq
2

q

is positive.
3) Choose r in (49) so large that the left-hand side of (48) is equal to 0 for the

chosen T (this can always be achieved since only the first and fourth terms on
the left-hand side of (48) depend on u1(x)).

We have chosen the following values of the parameters:

l =π, q =2, ε =0.2, λ =4, T =1, ε1 = ε2 =
1
2
, u0(x)≡ 0.

Then
λ

T
− εq

1

q

λ(λ− 1)
T 2

− εq
2

q
= 4− 3

2
− 1

8
> 0.

This guarantees that the right-hand side of (48) is positive. For ϕ1(x) we take the
function

ϕ1(x) =

0, x ∈ [0, a] ∪ [b, π],

sin3 π
x− a

b− a
, x ∈ (a, b),

a = 0.1π, b = 0.9π. Note that this function satisfies the conditions (18) and (17)
and is twice continuously differentiable on [0, π].
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Figure 7. Example 3. The effective orders of accuracy for all spatial points

of several temporal layers (t19, t22, t23, t27, t34 and t50). The blow-up of

the solution is first detected at the midpoint of the interval (0, π). Then it

spreads to all other points of this interval

To choose the parameter r in (49), we require the left-hand side of (48) be equal
to zero:

−
∫

Ω

dx ∆u1ϕ1 −
λ

T

∫
Ω

dx ∆u0ϕ1 +
∫

Ω

dx ϕ1|∇u0|q

+ ε

∫
Ω

dx ϕ1e
εu0u1 +

λ

T

∫
Ω

dx ϕ1e
εu0
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+
1

εq′

1

1
q′

λ(λ− 1)
T 2

∫∫
[0,T ]×Ω1

dt dx |∇ϕ1|q
′
(

1− t

T

)(λ−2−(λ−1)/q)q′

ϕ
−q′/q
1

+
1

εq′

2

1
q′

∫∫
[0,T ]×Ω1

dt dx |∇ϕ1|q
′
(

1− t

T

)(λ−(λ−1)/q)q′

ϕ
−q′/q
1 = 0.

In view of the choice of the parameters above, we arrive at

r =
4

∫ π

0
ϕ1(x) dx + 37

3

∫ π

0
(ϕ′1)

2

ϕ1
dx∫ π

0
(−ϕ′′1 + εϕ1)2 dx

≈ 5.3.

We now choose the Neumann boundary conditions (18) in Example 4a and the
Dirichlet conditions (17) in Example 4b. The bound (38) for the blow-up time is
also available in the first case, and we state it for purposes of comparison.

Example 4a (choosing the Neumann boundary conditions (18)). In accordance
with what was said above, we put

uinit0(x) ≡ 0, uinit1(x) ≡ −r(−ϕ′′1(x) + εϕ1(x)), l = π, ε = 0.2.

Figure 8. Example 4a. The effective order of accuracy for each temporal

layer. Blow-up of the solution is detected at time t∗ ∈ (t4, t5] ≡ (0.08, 0.10]

To solve the problem (50), we take the following set of parameters: T =1, N =50,
M =50, rx =2, rt =4, S =6 (the number of grids used in the calculation, including
the original grid). By estimating the effective order of accuracy for each temporal
layer by the formula (56) (see Fig. 8), we can see that the solution blows up at
a moment t∗ ∈ (t5, t6] ≡ (0.10, 0.12]. Unfortunately, we were not able to obtain the
exact asymptotic behaviour of peff(t5) and, therefore, we cannot be certain about
the pattern of blow-up of u(x, t).
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Again using (57) for various temporal layers, we can specify that the blow-up of
the solution on the corresponding temporal layer occurs at all spatial points in x.

Note that the bound (38) for the blow-up time is equal to Tbl = 13.83.

Example 4b (choosing the Dirichlet boundary conditions (17)). In accordance
with what was said above, we put

uinit0(x) ≡ 0, uinit1(x) ≡ −r(−ϕ′′1(x) + εϕ1(x)), l = π, ε = 0.2.

Figure 9. Example 4b. The effective order of accuracy for each temporal

layer. Blow-up of the solution is detected at t∗ ∈ (t16, t17] ≡ (0.32, 0.34]

To solve the problem (50) numerically, we take the following set of parameters:
T = 1, N = 50, M = 50, rx = 2, rt = 4, S = 6 (the number of grids used in the
calculation, including the original grid). Estimating the effective order of accuracy
for each temporal layer using the formula (56) (see Fig. 9), we can see that blow-up
of the solution occurs at a moment t∗ ∈ (t16, t17]≡ (0.32, 0.34] and peff(t17) → −1.
This means that the solution has power-type growth u(x, t) ∼ (t∗ − t)−1 at the
point t∗.

Conclusion

In this paper we have considered the equation of ion-sound waves in a plasma
in the one-dimensional approximation. We have performed an analytic-numerical
investigation of a series of initial-boundary value problems for this equation. We
have established the local solubility, found sufficient conditions for finite-time
blow-up of solutions and obtained an upper bound for the blow-up time. In the
example of the problems considered, we have demonstrated that the time and pat-
tern of blow-up can be specified numerically using estimates of Richardson’s effec-
tive order of accuracy. It is important to mention that the analytic and numeri-
cal parts of this approach are interrelated: the numerical method enables one to
improve the results obtained analytically (for any concrete data) and uses these
results as a rough estimate for the blow-up time.
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