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Periodic solutions of travelling-wave type
in circular gene networks

A. Yu. Kolesov, N. Kh. Rozov, and V. A. Sadovnichii

Abstract. We consider circular chains of unidirectionally coupled ordi-
nary differential equations which are mathematical models of artificial gene
networks. We study the problems of the existence and stability of special
periodic solutions, the so-called travelling waves, in these chains. We estab-
lish that the number of such periodic solutions grows unboundedly as the
number of links in the chain grows. However, at most one of these trav-
elling waves can be stable. We give an explicit algorithm for choosing the
stable cycle.

Keywords: chain of unidirectionally coupled equations, artificial gene net-
work, travelling wave, asymptotics, stability.

§ 1. Description of mathematical models and methods of study

1.1. Artificial gene networks. Artificial gene oscillators are of interest as sim-
plified models of key biological processes such as the cell-division cycle and circa-
dian rhythms. The simplest gene oscillator, which was suggested in [1] and called
a repressilator, consists of at least three elements. Every element unidirectionally
inhibits its neighbour (see Fig. 1, where the element A inhibits synthesis of B, the
element B inhibits synthesis of C, and the third element C inhibits synthesis of A,
completing the chain).

Figure 1

A mathematical model of the system shown in Fig. 1 is of the form

ṁj = −mj +
α

1 + uγ
j−1

, u̇j = ε(mj − uj), j = 1, 2, 3, (1.1)
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where u0 = u3. Following [1], we assume that each element of the oscillator con-
sists of mRNA (matrix ribonucleic acid) with concentration mj and protein with
concentration uj . We further assume that the time evolution of mj is characterized
by the processes of synthesis and degradation. The first process is described by the
function α/(1+uγ

j−1), where uj−1 is the protein repressor concentration for the jth
mRNA, γ = const > 0 is the coefficient of cooperation, and α = const > 0 is the
transcription rate in the absence of repressors. The second process is described by
the linear term −mj .

In the case of proteins with concentration uj we suppose that their dynamics is
given by linear processes of synthesis (the term εmj in the second equation of (1.1))
and degradation (the term −εuj of the same equation). Here ε = const > 0 is the
ratio of the degradation rates of the protein and the mRNA.

As a rule, the model (1.1) is studied under the biologically natural assumption
that ε is small. In this situation, the time change εt→ t yields the system

εṁj = −mj +
α

1 + uγ
j−1

, u̇j = mj − uj , j = 1, 2, 3, (1.2)

which obeys Tikhonov’s well-known reduction principle (see [2]). In accordance
with this principle we put ε = 0 in (1.2) and express the variables mj in terms
of uj−1. Thus we arrive at a three-dimensional system

u̇j = −uj +
α

1 + uγ
j−1

, j = 1, 2, 3, (1.3)

where u0 = u3.
The problem of self-oscillations of (1.3) has been studied by many authors (see,

for example, [3]–[5]). They considered the cases when a stable cycle results from
Andronov–Hopf bifurcations and the case when γ � 1.

A number of systems more general than (1.3) were suggested for describing
artificial gene networks. For example, four classes of such systems (not necessary
circular) were introduced in [6], [7]. Restricting ourselves to the simplest circular
systems, we have the following typical representatives of these classes:

u̇j = −uj +
α

1 + δ1u
γ1
j−1 + δ2u

γ2
j−2 + · · ·+ δsu

γs

j−s

, j = 1, 2, . . . ,m; (1.4)

u̇j = −uj +
α

(1 + δ1u
γ1
j−1)(1 + δ2u

γ2
j−2) · · · (1 + δsu

γs

j−s)
, j = 1, 2, . . . ,m; (1.5)

u̇j = −uj +
α

1 + uγ1
j−1u

γ2
j−2 · · ·u

γs

j−s

, j = 1, 2, . . . ,m; (1.6)

u̇j = −uj +
s∑

k=1

αk

1 + δku
γk

j−k

, j = 1, 2, . . . ,m. (1.7)

In all the formulae (1.4)–(1.7) we assume that m > s + 1, u−k = um−k for k =
0, 1, . . . , s− 1, α = const > 0, αk, δk, γk = const > 0, k = 1, . . . , s.

By travelling waves of the systems (1.4)–(1.7) we mean special periodic solutions
of the form

uj = u(t+ (j − 1)∆), j = 1, 2, . . . ,m, ∆ = const > 0. (1.8)
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We shall study the problems of the existence and stability of such solutions for the
systems (1.4), (1.5) under the additional assumptions

γk =
γ0

k

ε
, γ0

k, δk = const > 0, α = const > 1, 0 < ε� 1. (1.9)

We mention that the travelling waves (1.8) are the most natural attractors of
circular chains of unidirectionally coupled equations. However, these chains admit
more complicated oscillations. For example, it was shown by numerical analysis
in [8] that a ring of three unidirectionally coupled generators possesses a chaotic
self-induced oscillatory regime. A series of papers (see, for example, [9]–[11]) was
dedicated to the transition to chaos in unidirectionally coupled chains of oscillators
as the number of links increases in an appropriate way.

1.2. General scheme of investigation. Our methods of analyzing travelling
waves are based on the further development of methods suggested in [12]–[14]. Since
they are rather universal, it makes sense to explain them in maximal generality,
that is, for an arbitrary circular system

ẋj = f(xj , xj−1, . . . , xj−s), j = 1, 2, . . . ,m. (1.10)

Here m > s + 1, xj = xj(t) ∈ Rn, x−k = xm−k for k = 0, 1, . . . , s − 1, and the
vector-valued function f(x, y1, . . . , ys) with values in Rn is infinitely differentiable
with respect to all variables x ∈ Rn, yk ∈ Rn, k = 1, . . . , s.

To find cycles of the form (1.8) for the system (1.10), we consider an auxiliary
equation with delay:

ẋ = f
(
x, x(t−∆), x(t− 2∆), . . . , x(t− s∆)

)
, (1.11)

where x = x(t) ∈ Rn. We assume that equation (1.11) has a non-trivial (that is,
non-constant) periodic solution x = x∗(t,∆) of period T∗ = T∗(∆) > 0 for all values
of ∆ in some interval (∆1,∆2) ⊂ (0,+∞). Then the following assertion holds.

Lemma 1.1. Suppose that the equation

T∗(∆) =
m∆
p

(1.12)

has a root ∆ = ∆(p) ∈ (∆1,∆2) for some positive integer p. Then, for every such
root, the system (1.10) possesses a cycle (travelling wave)

Cp : xj = x(p)(t+ (j − 1)∆(p)), j = 1, 2, . . . ,m, (1.13)

of period T(p) = m∆(p)/p, where x(p)(t) = x∗(t,∆)|∆=∆(p) .

Proof. Since all the functions

xj(t) = x(p)(t+ (j − 1)∆(p)), j = 1, 2, . . . ,m, (1.14)

are solutions of the same equation (1.11) for ∆ = ∆(p), we have

ẋj(t) = f
(
xj(t), xj(t−∆(p)), xj(t− 2∆(p)), . . . , xj(t− s∆(p))

)
,

j = 1, 2, . . . ,m.
(1.15)
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In (1.15), we take into account that the following relations hold by (1.12), (1.14):

xj(t− k∆(p)) = xj−k(t), j = k + 1, . . . ,m, k = 1, . . . , s,

xj(t− k∆(p)) = xj(t+ (m− k)∆(p)) = xm−k+j(t), j = 1, . . . , k, k = 1, . . . , s.

We thus obtain that the functions (1.14) satisfy the system (1.10). �

The problem of the stability of the cycle (1.13) reduces to studying the disposition
of the multipliers of the linear system

ḣj =
s∑

k=0

Ak,p(t+ (j − 1)∆(p))hj−k, j = 1, 2, . . . ,m, (1.16)

where hj = hj(t) ∈ Rn, h−k = hm−k, k = 0, 1, . . . , s− 1, and the matrices Ak,p(t)
are given by the equations

A0,p(t) =
∂f

∂x

(
x(p)(t), x(p)(t−∆(p)), . . . , x(p)(t− s∆(p))

)
,

Ak,p(t) =
∂f

∂yk

(
x(p)(t), x(p)(t−∆(p)), . . . , x(p)(t− s∆(p))

)
, k = 1, . . . , s.

Along with (1.16) we shall use the following auxiliary linear equation with delay:

ḣ =
s∑

k=0

κkAk,p(t)h(t− k∆(p)), (1.17)

where h(t) ∈ Cn, κ is an arbitrary complex parameter. More precisely, we are
interested in the multipliers νl(κ), l = 1, 2, . . . , indexed in such a way that their
absolute values decrease.

To clarify the meaning of the term ‘multiplier’ for the delay equation (1.17), we
consider the Banach space E = C([−s∆(p), 0]; Cn) of all vector-valued functions
h0(t) = (h0

1(t), . . . , h
0
n(t)) that are continuous for −s∆(p) 6 t 6 0, with the norm

‖h0‖E = max
16k6n

max
−s∆(p)6t60

|h0
k(t)|.

By the monodromy operator of equation (1.17) we mean a bounded linear operator
V : E → E acting on an arbitrary function h0(t) ∈ E by the rule

V h0 = h

(
t+

m∆(p)

p

)
, −s∆(p) 6 t 6 0, (1.18)

where h(t) is a solution of (1.17) on the time interval 0 6 t 6 m∆(p)/p with initial
function h0(t), −s∆(p) 6 t 6 0. Note that the spectrum of this operator is certainly
discrete since some power of it is compact (if m/p > s, then V itself is compact).
As in the case of ordinary differential equations, we call the eigenvalues of the
operator (1.18) multipliers of the equation (1.17).
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The problem of the connection between the multipliers of the systems (1.16)
and (1.17) was solved (in the case when s = 1) in [12] by the method of tuning
with respect to the parameter κ. We shall see that this method is also applicable
when s > 1, but first we explain its essence.

Choose any multiplier ν(κ) in the countable set of multipliers of (1.17) and
consider the corresponding equation (ν(κ))p = κ m. It will be shown that for
every root κ = κ0 6= 0 of this equation there is a multiplier of (1.16) given by the
equality ν = ν(κ0). The converse is also true: one can ‘tune’ to a multiplier ν of
the cycle (1.13) by selecting an appropriate parameter κ. In other words, every
multiplier ν of this cycle admits a representation ν = ν(κ0), where ν(κ) is one of
the multipliers of the auxiliary system (1.17) and κ0 is a root of the corresponding
equation (ν(κ))p = κ m.

It was mentioned in [13], [14] that the tuning method is analogous to the pro-
cess of tuning a radio receiver to a chosen station. Indeed, the set of all non-zero
roots of the equations in question may be regarded as a set of broadcast ‘frequen-
cies’, and the act of ‘tuning to a station’ corresponds to a concrete choice of one of
these roots, which results in getting the corresponding multiplier ν = ν(κ0) of the
system (1.16).

To make the tuning method rigorous, we consider the family of equations

[νl(κ)]p = κm, l ∈ N. (1.19)

Lemma 1.2. For every multiplier ν of the system (1.16) one can find a positive
integer l0 such that

ν = νl0(κ0), (1.20)

where κ0 is one of the roots of the equation (1.19) for l = l0. Conversely, if the
equation (1.19) has a root κ = κ0 for some l = l0, then the system (1.16) has
a multiplier of the form (1.20).

Proof. Fix any multiplier ν = ρ0 exp(iϕ0) of the system (1.16), where ρ0 > 0,
0 6 ϕ0 < 2π, and assume that it is simple. Then there is a unique (up to a factor)
Lyapunov–Floquet solution, that is, a solution of the form

hj = exp(µ0t)h∗,j(t), h∗,j(t) ∈ Cn, h∗,j

(
t+

m∆(p)

p

)
≡ h∗,j(t),

j = 1, 2, . . . ,m, µ0 =
p

m∆(p)
(ln ρ0 + iϕ0).

(1.21)

We note that the system (1.16) is invariant under changes of the form

t−∆(p) → t, hj−1 → hj , j = 1, 2, . . . ,m, (1.22)

and the solution (1.21), because of its uniqueness, is transformed by such a change
into a solution

hj = λ exp(µ0(t+ ∆(p)))h∗,j(t), j = 1, 2, . . . ,m,

where λ 6= 0 is a complex constant. Thus we have

Λh∗(t+ ∆(p)) = λh∗(t), (1.23)
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where h∗(t) =: (h∗,1(t), . . . , h∗,m(t)), and the entries of the nm-dimensional square
matrix

Λ =


0 0 0 . . . 0 I
I 0 0 . . . 0 0
0 I 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 0 . . . I 0


are the zero and identity matrices of order n.

It follows from (1.23) that

h∗,m−j(t) = λj+1h∗,1(t− (j + 1)∆(p)), j = 0, 1, . . . ,m− 2, λm = 1. (1.24)

By (1.16), the component h∗,1(t) is a solution of the linear inhomogeneous equation

ḣ = −µ0h+A0,p(t)h+
s∑

k=1

Ak,p(t)h∗,m−k+1(t).

Since the functions h∗,m−k+1(t) are expressed in terms of h∗,1(t) by the following
equalities (see (1.24)):

h∗,m−k+1(t) = λkh∗,1(t− k∆(p)), k = 1, . . . , s,

the component h∗,1(t) also satisfies a delay equation

ḣ = −µ0h+
s∑

k=0

λkAk,p(t)h(t− k∆(p)). (1.25)

Our construction shows that the equation (1.25) certainly has multiplier 1. We
make the change exp(µ0t)h → h in this equation. Then the multiplier 1 is trans-
formed to a multiplier exp(mµ0∆(p)/p), and the equation (1.25) to the equation
(1.17) with κ = λ · exp(µ0∆(p)). Thus there necessarily exists a number l0 such
that

νl0(κ)|κ=λ·exp(µ0∆(p)) = exp
mµ0∆(p)

p
= ν.

The desired relations (1.19), (1.20) follow from this and the obvious equality
ν p = κ m.

The arguments are similar in the case when the multiplier ν is multiple. Indeed,
suppose that for a given multiplier there are exactly k0 linearly independent
Lyapunov–Floquet solutions. Then these solutions can be written in the matrix
form exp(µ0t)H(t), where the columns of the mn × k0 matrix H(t) are linearly
independent T(p)-periodic vector-valued functions. Furthermore, since the system
(1.16) is invariant under the changes (1.22), the following equality holds instead
of (1.23):

ΛH(t+ ∆(p)) = H(t)D (1.26)

for some non-degenerate constant k0 × k0 matrix D.



Travelling waves in circular gene networks 529

The property (1.26) enables us to reduce the justification of the formulae (1.19),
(1.20) to the previous case. To do this, we fix an eigenvalue λ of the matrix D and
denote the corresponding eigenvector by e. Then we easily see that (1.23) holds for
the vector-valued function h∗(t) = H(t)e. Subsequent arguments are as above.

Thus we have established that every multiplier ν of the system (1.16) can be
written in the form (1.20), where κ0 satisfies the equation (1.19) with number l0.
We now prove the converse. Suppose that the equation (1.19) with number l = l0
admits a root κ = κ0 6= 0. Then the equation

ḣ = −µ0h+
s∑

k=0

κk
0 exp(−µ0k∆(p))Ak,p(t)h(t− k∆(p)) (1.27)

with

µ0 =
p

m∆(p)
(ln ρ0 + iϕ0), ρ0 > 0, 0 6 ϕ0 < 2π, (1.28)

where ρ0 exp(iϕ0) = νl0(κ0), admits a non-trivial T(p)-periodic solution h = h̃(t).
Furthermore, we put

λ = κ0 exp(−µ0∆(p)) (1.29)

and note that this value of λ satisfies the requirement λm = 1 (see (1.24)) because
of (1.28) and the formula κm

0 = [νl0(κ0)]p. It follows that the equations (1.27) and
(1.25) coincide for this choice of λ.

To complete the proof, we consider the function h∗,1(t) = h̃(t) and define the
remaining components h∗,j(t), j = 2, . . . ,m, by the equalities (1.24), (1.29). Using
the relation (established above) between the equations (1.27) and (1.25), we obtain
a Lyapunov–Floquet solution (1.21) of the original system (1.16) corresponding
to the multiplier

ν = exp
mµ0∆(p)

p
= νl0(κ0). �

The lemmas established above give a general approach to the study of peri-
odic solutions of travelling-wave type in the circular systems (1.10). Indeed, the
problem of the existence of cycles of the form (1.13) reduces to finding a cycle
x∗(t,∆) of the auxiliary delay equation (1.11) and searching for roots of the equa-
tions (1.12). The problem of the stability of travelling waves is studied sepa-
rately and, by Lemma 1.2, consists in analyzing the disposition of the roots of
the equations (1.19). Although the system (1.19) generally contains a countable
number of equations, the set of their non-zero roots is certainly finite (otherwise
the finite-dimensional system (1.16) would have a countable number of distinct
multipliers, which is impossible).

The analysis of the auxiliary equations (1.11), (1.17), which are basic in our
approach, generally leads to non-local problems. But they are tractable in some
cases of applicability of certain asymptotic methods. This happens in the case of
the systems (1.4), (1.5) under conditions (1.9).
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§ 2. Investigation of auxiliary equations

2.1. Analysis of an auxiliary non-linear equation. Consider the system (1.4)
and make the change of variables

uj = expxj , j = 1, 2, . . . ,m. (2.1)

On account of (1.9), this system takes the form

ẋj = −1 +
α exp(−xj)

Ω(xj−1, . . . , xj−s, ε)
, j = 1, 2, . . . ,m, (2.2)

where x−k = xm−k, k = 0, 1, . . . , s−1, and the function Ω is defined by the formula

Ω(y1, . . . , ys, ε) = 1 +
s∑

k=1

δk exp
γ0

kyk

ε
. (2.3)

We now pass from (2.2) to the corresponding auxiliary delay equation

ẋ = −1 +
α exp(−x)

Ω(x(t−∆), . . . , (t− s∆), ε)
. (2.4)

Our aim is to prove that this equation has a non-trivial periodic solution for every
fixed value of the parameter ∆ > 0 and for all ε, 0 < ε� 1.

The study of (2.4) simplifies since it admits a limit object as ε → 0. Indeed,
using the obvious equality

lim
ε→0

1
Ω(y1, . . . , ys, ε)

= R(y), (2.5)

where yk = const 6= 0, k = 1, . . . , s,

y = max{y1, y2, . . . , ys}, R(y) =

{
0 for y > 0,
1 for y < 0,

(2.6)

we see that the equation (2.4) passes to the following delay relay equation as ε→ 0:

ẋ = −1+α exp(−x)R(y), y = max
{
x(t−∆), x(t− 2∆), . . . , x(t− s∆)

}
. (2.7)

As in [15]–[17], we define the notion of a solution of (2.7) constructively. Fix
a number

σ0 : 0 < σ0 < ln
(

1 +
1
β

)
, (2.8)

where β = α− 1 > 0 (see (1.9)), put

θ(t) = ln
[
1 + β(1− exp(−t))

]
, t ∈

(
− ln

(
1 +

1
β

)
,+∞

)
, (2.9)

and consider the set of functions

ϕ(t) ∈ C[−s∆− σ0,−σ0], ϕ(t) < 0 ∀ t ∈ [−s∆− σ0,−σ0],
ϕ(−σ0) = θ(−σ0).

(2.10)

We stress that the family (2.10) is well defined since, by (2.8), the point t = −σ0

belongs to the domain of the function (2.9) and θ(−σ0) < 0.



Travelling waves in circular gene networks 531

We write xϕ(t), t > −σ0, for a solution of the equation (2.7) with an arbitrary
initial function (2.10), and we shall construct this solution by the method of steps,
successively considering time intervals of length ∆.

Consider the interval t∈ [−σ0,∆−σ0] and note that ϕ(t−k∆)< 0, k = 1, . . . , s,
for these values of t. Therefore, in accordance with (2.6), (2.7), the function xϕ(t)
is a solution on this interval of the Cauchy problem ẋ = −1+α exp(−x), x|t=−σ0 =
θ(−σ0) and, therefore,

xϕ(t) = θ(t). (2.11)

Moving forward with step ∆, we can ‘extend’ the formula (2.11) in t as soon as we
have

xϕ(t− k∆) < 0, k = 1, 2, . . . , s. (2.12)

Thus this formula holds on the half-open interval −σ0 6 t < ∆.
When t = ∆, one of the conditions (2.12) fails for the first time, and a switching

occurs. Namely, for ∆ 6 t 6 2∆ the solution xϕ(t) is defined from the Cauchy
problem ẋ = −1, x|t=∆ = θ(∆), that is, by the equality

xϕ(t) = θ(∆) + ∆− t. (2.13)

The formula (2.13) holds as soon as we have

yϕ(t) = max
{
xϕ(t−∆), xϕ(t− 2∆), . . . , xϕ(t− s∆)

}
> 0. (2.14)

It follows from (2.11), (2.13) that the condition (2.14) holds on the interval
∆ < t < s∆ + t0, where

t0 = θ(∆) + ∆ > ∆. (2.15)

Indeed, if we assume a priori that (2.14) holds, then (2.11), (2.13) imply that the
domains of positivity of the functions xϕ(t − k∆), k = 1, . . . , s, are the intervals
(k∆, k∆+t0). Since the union of these intervals is equal to the interval (s∆, s∆+t0),
we see that (2.14) does indeed hold on this interval.

As t passes through the value t = s∆ + t0, the function (2.14) changes sign and
the next switching occurs. In this case by (2.7), (2.13), (2.15) we have the Cauchy
problem ẋ = −1 + α exp(−x), x|t=s∆+t0 = −s∆, whose solution is given by the
formulae

xϕ(t) = θ(t− T0),

T0 = (s+ 1)∆ + ln
[
1 + β(1− exp(−∆))

]
+ ln

[
1 +

1
β

(1− exp(−s∆))
]
.

(2.16)

We discuss separately the domains of validity of the formulae (2.16). First we
specify the choice of the parameter σ0 in (2.10). In addition to (2.8), we adopt the
requirement

σ0 < ln
[
1 +

1
β

(1− exp(−s∆))
]
, (2.17)

which means that σ0 < T0− s∆− t0. Recall that the relations (2.16) were obtained
under the a priori hypothesis yϕ(t) < 0. By the equalities (2.13)–(2.16) and the
condition (2.17), this hypothesis certainly holds on the time interval s∆ + t0 <
t 6 T0 − σ0.
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Figure 2

To conclude our construction of the solution xϕ(t), we note that the condition
(2.17) on σ0 implies that the function xϕ(t + T0), −s∆ − σ0 6 t 6 −σ0, belongs
to the initial set of functions (2.10). This means that the whole process repeats
when t > T0 − σ0. Moreover, it follows from (2.11), (2.13), (2.16) that every
solution xϕ(t) with initial condition (2.10) coincides for all t > −σ0 with the same
T0-periodic function (see Fig. 2)

x0(t) =


θ(t) for 0 6 t 6 ∆,
t0 − t for ∆ 6 t 6 s∆ + t0,

θ(t− T0) for s∆ + t0 6 t 6 T0,

x0(t+ T0) ≡ x0(t). (2.18)

We now discuss the connection between periodic solutions of the equations (2.4)
and (2.7). The following assertion is deduced from the general results in [15] on the
C1-closeness of the trajectories of the relay system and the relaxation system and
from analogous results contained in [12]–[14], [16], [17].

Lemma 2.1. Suppose that the parameter σ0 satisfies the conditions (2.8), (2.17)
and the other parameters satisfy (1.9). Then there is a sufficiently small ε0 > 0
such that for all ε, 0 < ε 6 ε0, the equation (2.4) has an exponentially orbitally
stable cycle x = x∗(t, ε), x∗(−σ0, ε) ≡ θ(−σ0) of period T∗(ε), satisfying the limit
equalities

lim
ε→0

max
06t6T∗(ε)

|x∗(t, ε)− x0(t)| = 0, lim
ε→ 0

T∗(ε) = T0. (2.19)

This lemma is proved (and similar assertions are thoroughly justified) in [12]–[17].
We restrict ourselves to the minimal results on the asymptotic behaviour of the cycle
x∗(t, ε). Besides the general properties (2.19) we need the following facts.

1) The equation x∗(t, ε) = 0 has exactly two simple roots τj = τj(ε), j = 1, 2,
on the interval −σ0 6 t 6 T0 − σ0/2. They satisfy the asymptotic formulae

τ1 = O(ε), τ2 = t0 +O(ε), ε→ 0. (2.20)
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2) We have

max
−σ06t6T0−σ0/2

|x∗(t, ε)− x0(t)| = O(ε), max
t∈Σ

|ẋ∗(t, ε)− ẋ0(t)| = O(ε),

T∗(ε) = T0 +O(ε), ε→ 0,
(2.21)

where the set Σ is the closed interval [−σ0, T0 − σ0/2] with the following open
intervals deleted:(
∆+τ1(ε)−

√
ε, ∆+τ1(ε)+

√
ε
)
,

(
s∆+τ2(ε)−

√
ε, s∆+τ2(ε)+

√
ε
)
, j = 1, 2.

2.2. Analysis of the auxiliary linear equation. In this subsection we study
the asymptotic behaviour of the multipliers of the following linear equation analo-
gous to (1.17):

ḣ = A0,∗(t, ε)h+
s∑

k=1

κkAk,∗(t, ε)h(t− k∆). (2.22)

Here the coefficients are given by the formulae

A0,∗(t, ε) = −α exp(−x∗(t, ε))
Ω∗(t, ε)

, (2.23)

Ak,∗(t, ε) = −α exp(−x∗(t, ε))
Ω2
∗(t, ε)

δkγ
0
k

ε
exp

γ0
kx∗(t− k∆, ε)

ε
, k = 1, . . . , s,

Ω∗(t, ε) = 1 +
s∑

l=1

δl exp
γ0

l x∗(t− l∆, ε)
ε

,

(2.24)

where κ is an arbitrary complex parameter.
The following assertion describes some properties of the coefficients (2.23), (2.24)

which will be used later.

Lemma 2.2. For all sufficiently small ε > 0 we have bounds of the form

max
−σ06t6T∗(ε)−σ0

|A0,∗(t, ε)| 6 M1, max
−σ06t6∆−σ0

|A1,∗(t, ε)| 6 M2 exp
−q1
ε
,

max
t∈Σ1

|A1,∗(t, ε)| 6 M3 exp
−q2√
ε

;
(2.25)

max
−σ06t6T∗(ε)−σ0

|Ak,∗(t, ε)| 6 Mk+2 exp
−qk+1

ε
, k = 2, . . . , s− 1; (2.26)

max
−σ06t6s∆−σ0

|As,∗(t, ε)| 6 Ms+2 exp
−qs+1

ε
,

max
t∈Σ2

|As,∗(t, ε)| 6 Ms+3 exp
−qs+2√

ε
,

(2.27)

where

Σ1 = [−σ0, T∗(ε)− σ0] \
(
∆ + τ1(ε)−

√
ε, ∆ + τ1(ε) +

√
ε
)
,

Σ2 = [−σ0, T∗(ε)− σ0] \
(
s∆ + τ2(ε)−

√
ε, s∆ + τ2(ε) +

√
ε
) (2.28)
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and the constants Mk > 0, k = 1, . . . , s + 3, qk > 0, k = 1, . . . , s + 2, are
independent of ε. Moreover, we have the following asymptotic formulae as ε→ 0:∫ ∆+τ1(ε)+

√
ε

∆+τ1(ε)−
√

ε

A1,∗(t, ε) dt = − 1 + 1/β
1 + β(1− exp(−∆))

+O(ε),∫ ∆+τ1(ε)+
√

ε

∆+τ1(ε)−
√

ε

|A1,∗(t, ε)| dt =
1 + 1/β

1 + β(1− exp(−∆))
+O(ε),

(2.29)

∫ s∆+τ2(ε)+
√

ε

s∆+τ2(ε)−
√

ε

As,∗(t, ε) dt = −(β + 1) exp(s∆) +O(ε),∫ s∆+τ2(ε)+
√

ε

s∆+τ2(ε)−
√

ε

|As,∗(t, ε)| dt = (β + 1) exp(s∆) +O(ε).

(2.30)

Proof. First, note that the first bound in (2.25) is an obvious corollary of (2.23)
and the general asymptotic properties (2.19) of the periodic solution x∗(t, ε). Fur-
thermore, by (2.19), (2.24) the coefficient Ak,∗(t, ε) admits the following estimate
for all t ∈ [−σ0, T∗(ε) − σ0] satisfying x0(t − k∆) 6= 0 (that is, outside some fixed
neighbourhoods of the points t = k∆ and t = k∆ + t0):

|Ak,∗(t, ε)| 6 M exp
−q
ε
, M, q = const > 0. (2.31)

This estimate remains valid in a neighbourhood of the point t = k∆ provided
that x0(k∆ − l0∆) > 0 for some l0 6= k, 1 6 l0 6 s. Moreover, (2.31) holds in
a neighbourhood of t = k∆ + t0 if there is a number l0 6= k, 1 6 l0 6 s, such that
x0(k∆ + t0 − l0∆) > 0.

Combining these observations, we conclude that the bound (2.31) when k=1 and
s> 2 holds in a neighbourhood of the point t=∆ + t0 since x0(∆ + t0− l∆)> 0
when l = 2. Furthermore, when 2 6 k 6 s − 1, this bound holds on the whole
closed interval [−σ0, T∗(ε) − σ0] since x0(k∆ − l∆) > 0 when l = k − 1 and
x0(k∆ + t0 − l∆) > 0 when l = k + 1. Finally, when k = s and s > 2, the
bound holds in a neighbourhood of t = s∆ since x0(s∆ − l∆) > 0 for l = s − 1.
This automatically yields the second inequality in (2.25), the bounds (2.26), and
the first inequality in (2.27).

To obtain the bounds in (2.25), (2.27) on the sets (2.28), we recall that the
inequalities (2.31) with k = 1 and k = s can be violated only in the neighbourhoods
of the points t = ∆ and t = s∆ + t0 respectively. Thus it suffices to consider only
the suspicious sets Σ1∩ [∆−σ1,∆+σ1] and Σ2∩ [s∆+ t0−σ1, s∆+ t0 +σ1], where
σ1 is any fixed number in the interval (0,min(t0, T0 − t0)). We now recall the finer
asymptotic properties (2.20), (2.21) of the function x∗(t, ε) and use them in (2.24).
As a result, we see that

|A1,∗(t, ε)| 6
M

ε
exp

−γ0
1 |x0(t−∆)|

ε
, t ∈ Σ1 ∩ [∆− σ1, ∆ + σ1];

|As,∗(t, ε)| 6
M

ε
exp

−γ0
s |x0(t− s∆)|

ε
, t ∈ Σ2 ∩ [s∆ + t0 − σ1, s∆ + t0 + σ1],

where M = const > 0. Since x0(0) = 0, ẋ0(0) > 0, x0(t0) = 0, ẋ0(t0) = −1 (see
(2.18)), the desired inequalities in (2.25), (2.27) follow in an obvious way.
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We now pass to the asymptotic formulae (2.29), (2.30). For example, let us prove
(2.29) (the case (2.30) is treated similarly). To do this, we introduce a new variable
τ on the interval ∆+ τ1−

√
ε 6 t 6 ∆+ τ1 +

√
ε by the formula τ = (t− τ1−∆)/ε.

Then x∗(t−∆, ε)/ε takes the form x∗(τ1+ετ, ε)/ε. Since x∗(τ1, ε) = 0, this function
can be written as

x∗(τ1 + ετ, ε)
ε

= ẋ∗(τ1 + ετ , ε)τ, (2.32)

where τ is such that |τ | 6 |τ |. Using in (2.32) the asymptotic formulae (2.20),
(2.21) and the obvious bound |τ | 6 1/

√
ε, we conclude that

x∗(τ1 + ετ, ε)
ε

= β(1 + (|τ |+ 1)O(ε))τ, (2.33)

where the remainder term is uniform with respect to τ .
At the final step, we substitute in (2.24) for k = 1 the relation (2.33) along with

the formulae

exp
γ0

l x∗(t− l∆, ε)
ε

= O

(
exp

−q
ε

)
, q = const > 0, l = 2, . . . , s,

which hold for the values of t in question. As a result, we see that∣∣∣∣εA1,∗(τ1 + ∆ + ετ, ε) +
αδ1γ

0
1 exp(−θ(∆)) exp(γ0

1βτ)
(1 + δ1 exp(γ0

1βτ))2

∣∣∣∣
6 Mε(|τ |+ 1)2 exp(−γ0

1β|τ |), − 1√
ε

6 τ 6
1√
ε
. (2.34)

We use the bound (2.34) directly to calculate the integrals in (2.29). Thus we get
the required asymptotic formulae∫ ∆+τ1(ε)+

√
ε

∆+τ1(ε)−
√

ε

A1,∗(t, ε) dt = −
∫ 1/

√
ε

−1/
√

ε

αδ1γ
0
1 exp(−θ(∆)) exp(γ0

1βτ)
(1 + δ1 exp(γ0

1βτ))2
dτ +O(ε)

= −α exp(−θ(∆))
β

+O(ε) = − 1 + 1/β
1 + β(1− exp(−∆))

+O(ε),∫ ∆+τ1(ε)+
√

ε

∆+τ1(ε)−
√

ε

|A1,∗(t, ε)| dt =
∫ 1/

√
ε

−1/
√

ε

αδ1γ
0
1 exp(−θ(∆)) exp(γ0

1βτ)
(1 + δ1 exp(γ0

1βτ))2
dτ +O(ε)

=
1 + 1/β

1 + β(1− exp(−∆))
+O(ε). �

Another auxiliary assertion concerns the asymptotic behaviour of the solution
h̃(t,κ, ε) of the equation (2.22) with an arbitrary κ-independent initial function
h0(t) in the space (over the field of complex numbers)

C0 =
{
h0(t) ∈ C[−s∆− σ0,−σ0] : h0(−σ0) = 0

}
. (2.35)

The norm in (2.35) is given by the formula

‖h0‖ = max
−s∆−σ06t6−σ0

|h0(t)|.
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Lemma 2.3. For every r > 0 one can find positive constants M = M(r), ε0 =
ε0(r), q = q(r) such that the following bound holds for all ε, 0 < ε 6 ε0, h0(t) ∈ C0

and κ ∈ B(r), where B(r) := {κ ∈ C : |κ| 6 r}:

max
−σ06t6T∗(ε)−σ0

(
|h̃(t,κ, ε)|+

∣∣∣∣ ∂h̃∂κ
(t,κ, ε)

∣∣∣∣) 6 M exp
−q
ε
‖h0‖. (2.36)

Proof. We first consider the interval −σ0 6 t 6 ∆ − σ0, on which the solution
h̃(t,κ, ε) is given by the explicit formula

h̃(t,κ, ε) =
∫ t

−σ0

exp
(∫ t

τ

A0,∗(σ, ε) dσ
)[ s∑

k=1

κkAk,∗(τ, ε)h0(τ − k∆)
]
dτ,

−σ0 6 t 6 ∆− σ0.

(2.37)

This formula yields that h̃(t,κ, ε) is analytic in κ ∈ B(r). Furthermore, by
(2.25)–(2.27), the coefficient A0,∗(t, ε) is bounded on this time interval and all the
coefficients Ak,∗(t, ε), k = 1, . . . , s, are exponentially small (they admit bounds of
the form (2.31)). Therefore we conclude that

max
t

(
|h̃|+

∣∣∣∣ ∂h̃∂κ

∣∣∣∣) 6 M exp
−q
ε
‖h0‖, (2.38)

where the maximum is taken over t ∈ [−σ0,∆ − σ0], and M, q > 0 are certain
universal constants.

We use the method of steps to extend the bound (2.38) to the interval [∆− σ0,
s∆ − σ0] of the variable t. Divide it into the intervals [l∆ − σ0, (l + 1)∆ − σ0],
l = 1, . . . , s−1, and assume that the required inequality holds for t ∈ [−σ0, l∆−σ0].
Then on the lth interval [l∆−σ0, (l+1)∆−σ0] we have the following explicit formula
for h̃(t,κ, ε) in analogy with (2.37):

h̃(t,κ, ε) = h̃(l∆− σ0,κ, ε) exp
(∫ t

l∆−σ0

A0,∗(σ, ε) dσ
)

+
∫ t

l∆−σ0

exp
(∫ t

τ

A0,∗(σ, ε) dσ
)[ l∑

k=1

κkAk,∗(τ, ε)h̃(τ − k∆,κ, ε)

+
s∑

k=l+1

κkAk,∗(τ, ε)h0(τ − k∆)
]
dτ, t ∈ [l∆− σ0, (l + 1)∆− σ0]. (2.39)

To analyze the right-hand side of (2.39), we take into account that the functions
h̃(t−k∆,κ, ε), k = 1, . . . , l, and their derivatives with respect to κ are exponentially
small on the interval t ∈ [−σ0, l∆− σ0] by our assumption (see (2.38)). Combining
all the properties (2.25)–(2.30), we obtain that the coefficients of the equation (2.22)
are integrally bounded:∫ T∗(ε)−σ0

−σ0

( s∑
k=0

|Ak,∗(t, ε)|
)
dt 6 M, M = const > 0. (2.40)
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The group of coefficients Ak,∗(t, ε), k = l + 1, . . . , s, satisfies bounds of the form
(2.31) for t ∈ [l∆− σ0, (l+ 1)∆− σ0]. Combining all the facts listed above, we see
that the required inequality (2.38) holds at the next step.

For t ∈ [s∆−σ0, T∗(ε)−σ0] we consider the equation (2.22) with the completely
recycled initial condition h̃(t,κ, ε), −σ0 6 t 6 s∆ − σ0, satisfying the required
estimate (2.38). We use the method of steps to obtain this estimate on the remaining
interval of the variable t. To do this, we divide this interval into pieces of the form
[s∆ − σ0 + k∆, s∆ − σ0 + (k + 1)∆], k = 0, 1, . . . , k0, and [s∆ − σ0 + (k0 + 1)∆,
T∗(ε)−σ0], where k0 = bT∗(ε)/∆−s−1c and b · c is the integer part. Furthermore,
writing the analogue of (2.39) at the kth step, we first establish the analyticity
of h̃(t,κ, ε). Then, using the integral boundedness property (2.40), we extend the
required estimate (2.38) one step further. �

We now proceed directly to the asymptotic calculation of multipliers of the equa-
tion (2.22). Consider the monodromy operator U(κ, ε) of this equation. It acts on
the space C[−s∆− σ0,−σ0] (over the field of complex numbers) by the rule

U(κ, ε)h0 = h(t+ T∗(ε),κ, ε), −s∆− σ0 6 t 6 −σ0, (2.41)

where h(t,κ, ε), −σ0 6 t 6 T∗(ε) − σ0, is a solution of (2.22) with initial func-
tion h0(t), −s∆ − σ0 6 t 6 −σ0. Let νl(κ, ε), l ∈ N, be the eigenvalues of the
operator (2.41) indexed in decreasing order of absolute value.

Lemma 2.4. For every r > 0 there are constants ε0 = ε0(r) > 0, M = M(r) > 0,
q = q(r) > 0, such that for all ε, 0 < ε 6 ε0, and κ ∈ B(r) we have

sup
l>2

|νl(κ, ε)| 6 M exp
−q
ε
. (2.42)

As ε → 0, the multiplier ν1(κ, ε) admits the following asymptotic representation
uniformly in κ ∈ B(r):

ν1(κ, ε) = [(ω1 + 1)κ − ω1][(ω2 + 1)κ s − ω2] +O(ε), (2.43)

where

ω1 =
β exp(−∆)

1 + β(1− exp(−∆))
, ω2 =

exp(−s∆)
β + 1− exp(−s∆)

. (2.44)

Proof. We fix any positive r and assume that the parameter κ in (2.22) belongs
to the set B(r). Consider the finite-dimensional operator

V (κ, ε)h0 = h0(−σ0)h∗(t+ T∗(ε),κ, ε), −s∆− σ0 6 t 6 −σ0, (2.45)

where h∗(t,κ, ε) is a solution of (2.22) on the interval −σ0 6 t 6 T∗(ε) − σ0 with
the initial function h∗ ≡ 1, −s∆− σ0 6 t 6 −σ0.

To describe the relation between the operators (2.41) and (2.45), we consider the
function

h̃(t,κ, ε) = h(t,κ, ε)− h0(−σ0)h∗(t,κ, ε) (2.46)

and note that for t ∈ [−σ0, T∗(ε) − σ0] it is also a solution of (2.22). Since we
obviously have h̃(t,κ, ε) = h0(t) − h0(−σ0) ∈ C0 for −s∆ − σ0 6 t 6 −σ0, where
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C0 is the space (2.35), we can apply the bound (2.36) to (2.46). It follows from this
bound that the operator W (κ, ε) = U(κ, ε)− V (κ, ε) satisfies the inequality

‖W (κ, ε)‖C[−s∆−σ0,−σ0]→C[−s∆−σ0,−σ0]

+
∥∥∥∥ ∂

∂κ
W (κ, ε)

∥∥∥∥
C[−s∆−σ0,−σ0]→C[−s∆−σ0,−σ0]

6 M exp
−q
ε
, (2.47)

where the universal constants M, q > 0 depend only on the choice of r.
At the next step of the proof we study the spectral properties of the operator

(2.45). Note that its spectrum consists of two points: an eigenvalue ν = ν∗(κ, ε),
where ν∗(κ, ε) = h∗(T∗(ε)−σ0,κ, ε), and an eigenvalue ν = 0 of infinite multiplicity.
Below we shall prove the following asymptotic equalities (which hold uniformly
in κ ∈ B(r)) for ν∗(κ, ε) as ε→ 0:

ν∗(κ, ε) = [(ω1 + 1)κ − ω1][(ω2 + 1)κ s − ω2] +O(ε),
(2.48)

∂ν∗
∂κ

(κ, ε) = (ω1 + 1)[(ω2 + 1)κ s − ω2] + (ω2 + 1)sκ s−1[(ω1 + 1)κ − ω1] +O(ε),

where ω1, ω2 are the constants in (2.44).
To justify the relations (2.48), we must know the asymptotic behaviour of the

solution h∗(t,κ, ε). Therefore we consider the equation (2.22) with initial condition
h ≡ 1, −s∆ − σ0 6 t 6 −σ0, and integrate it over the time interval −σ0 6
t 6 T∗(ε) − σ0 by the method of steps, taking into account that the coefficients
A1,∗(t, ε), As,∗(t, ε) form families of δ-function type (see (2.25)–(2.30), (2.34)) while
the coefficients Ak,∗(t, ε), k = 2, . . . , s− 1, are exponentially small (see (2.26)) and
A0,∗(t, ε) satisfies the following asymptotic formula (uniformly in t ∈ Σ1 ∩ Σ2)
because of (2.21), (2.23):

A0,∗(t, ε) = A0(t) +O(ε), ε→ 0,

where

A0(t) =

−α exp(−x0(t)) for t ∈ [−σ0,∆) ∪
(
s∆ + t0, T0 −

σ0

2

]
,

0 for t ∈ (∆, s∆ + t0).

As a result we obtain, first,

max
−σ06t6T∗(ε)−σ0

(
|h∗(t,κ, ε)|+

∣∣∣∣∂h∗∂κ
(t,κ, ε)

∣∣∣∣) 6 M, M = const > 0, (2.49)

and second, uniformly in t ∈ Σ1 ∩ Σ2 and κ ∈ B(r),

h∗(t,κ, ε) = h(t,κ) +O(ε),
∂h∗
∂κ

(t,κ, ε) =
∂h

∂κ
(t,κ) +O(ε), (2.50)

where Σ1, Σ2 are the sets (2.28) and h(t,κ), t > −σ0, is a solution of the impulsive
Cauchy problem

ḣ = A0(t)h, h|t=−σ0 = 1, (2.51)

h(∆ + 0)− h(∆− 0) = −κ
1 + 1/β

1 + β(1− exp(−∆))
h(0),

h(s∆ + t0 + 0)− h(s∆ + t0 − 0) = −κ s(β + 1) exp(s∆)h(t0).
(2.52)
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The properties (2.48) obviously follow from (2.50) and the equality h(T0−σ0,κ) =
[(ω1 + 1)κ − ω1][(ω2 + 1)κ s − ω2], which is verified by integration of the system
(2.51), (2.52) (we omit the corresponding obvious calculations).

We now consider the initial operator U and note from the equalities U = V +W
and (νI −U)−1 = (I − (νI −V )−1W )−1(νI −V )−1 that every ν ∈ C satisfying the
inequality

‖(νI − V )−1W‖C[−s∆−σ0,−σ0]→C[−s∆−σ0,−σ0] < 1 (2.53)

belongs to its resolvent set. We recall that W admits the bound (2.47). Concerning
the operator (νI − V )−1, we deduce from the equalities

(νI − V )−1h0 =
h0(t)
ν

+ c∗h∗(t+ T∗(ε),κ, ε), −s∆− σ0 6 t 6 −σ0,

c∗ =
h0(−σ0)

ν(ν − ν∗(κ, ε))

and the bound (2.49) that

‖(νI − V )−1‖C[−s∆−σ0,−σ0]→C[−s∆−σ0,−σ0] 6
M(1 + |ν|)

|ν||ν − ν∗(κ, ε)|

∀ ν ∈ C, ν 6= 0, ν∗(κ, ε),
(2.54)

where M = const > 0.
At the last step of the proof of Lemma 2.4 we combine the bounds (2.47), (2.54)

with the asymptotic representations (2.48). As a result, we see that every point
ν ∈ C in the set

C \ {O1 ∪O2}, (2.55)

where

O1 =
{
ν : |ν| < exp

−q1
ε

}
, O2 =

{
ν : |ν − ν∗(κ, ε)| < exp

−q2
ε

}
(2.56)

and the constants qj > 0, j = 1, 2, are appropriately small, satisfies the condi-
tion (2.53) and, therefore, is regular for the operator U(κ, ε). Hence the spectrum
of this operator lies in the complement of (2.55), that is, in the discs (2.56). The
required relations (2.42) and (2.43) follow from this and (2.48) in an obvious way. �

We make another useful observation. Let κk, k = 0, 1, . . . , s, be the roots of the
equation

[(ω1 + 1)κ − ω1][(ω2 + 1)κ s − ω2] = 0 (2.57)

and suppose that the parameter κ varies over the set

Bδ(r) = B(r) \
s⋃

k=0

{κ ∈ C : |κ − κk| < δ}, (2.58)
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where δ > 0. Then the multiplier ν1(κ, ε) of the equation (2.22) is simple. More-
over, it depends analytically on κ and, besides (2.43), admits the following asymp-
totic representation as ε→ 0:

∂ν1
∂κ

(κ, ε)

= (ω1 + 1)[(ω2 + 1)κ s − ω2] + (ω2 + 1)sκ s−1[(ω1 + 1)κ − ω1] +O(ε)
(2.59)

uniformly with respect to κ ∈ Bδ(r).
Indeed, when κ ∈ Bδ(r) the left-hand side of (2.57) is non-zero and, therefore

(see (2.48)), the eigenvalue ν = ν∗(κ, ε) of the operator (2.45) is simple. Under
the perturbation of V by the term W (which is analytic in κ) of order exp(−q/ε),
q = const > 0, the eigenvalue ν = ν∗(κ, ε) becomes a simple eigenvalue ν = ν1(κ, ε)
which depends analytically on κ and satisfies

ν1(κ, ε) = ν∗(κ, ε) +O

(
exp

−q
ε

)
,

∂ν1
∂κ

(κ, ε) =
∂ν∗
∂κ

(κ, ε) +O

(
exp

−q
ε

)
, ε→ 0.

The required asymptotic equality (2.59) follows from this and (2.48).
To complete our preparatory constructions, we state another assertion. Taking

into account (2.43) and a further analysis of equations of the form (1.19), we shall
use the following lemma.

Lemma 2.5. For every positive integer p satisfying the requirement

p <
m

s+ 1
(2.60)

and for all values of the parameters

ω1, ω2 : ωj > 0, j = 1, 2, ω1 + sω2 <
m

p
− s− 1, (2.61)

the equation

P (κ) := [(ω1 + 1)κ − ω1]p[(ω2 + 1)κ s − ω2]p − κ m = 0 (2.62)

has a simple root 1, and its other roots split into two sets : Γ1 ⊂ {κ ∈ C : |κ| < 1}
and Γ2 ⊂ {κ ∈ C : |κ| > 1}. The set Γ1 contains p(s + 1) elements. The set Γ2

consists of m− p(s+ 1)− 1 roots and is empty when m = p(s+ 1) + 1.

Proof. Fix an arbitrary positive integer p and real numbers ω1, ω2 satisfying the
requirements (2.60), (2.61). Consider the polynomial

Pµ(κ) = [(µω1 + 1)κ − µω1]p[(µω2 + 1)κ s − µω2]p − κ m, (2.63)

where µ ∈ (0, 1]. It is clear from the explicit formula for this polynomial that
Pµ(1) ≡ 0. Moreover, by (2.60), (2.61) we have

d

dκ
Pµ(κ)

∣∣∣
κ=1

= p(µω1 + 1) + ps(µω2 + 1)−m 6 p(ω1 + 1) + ps(ω2 + 1)−m < 0.

To study the other roots of (2.63), we begin with the case when µ� 1.
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Note that when µ � 1 the polynomial Pµ(κ) has exactly p(s + 1) roots tend-
ing to zero as µ → 0. The remaining roots (to be denoted by κl(µ), l = 1, . . .
. . . ,m− p(s+ 1)− 1), other than 1, become equal to exp(2πil/(m − p(s + 1))),
l = 1, . . . ,m− p(s+ 1)− 1, when µ = 0. We easily verify that

d

dµ
|κl(µ)|2

∣∣∣∣
µ=0

=
2p

m− p(s+ 1)

(
1− cos

2πl
m− p(s+ 1)

)
ω1

+
2p

m− p(s+ 1)

(
1− cos

2πls
m− p(s+ 1)

)
ω2 > 0.

This proves the lemma for the roots of (2.63) in the case when 0 < µ� 1.
We now suppose that the equation Pµ0(κ) = 0 with some µ0 ∈ (0, 1] admits

a root κ0 = exp(iψ0), ψ0 > 0. Then we necessarily have

1 = |κ0|2m = |(µ0ω1 + 1)κ0 − µ0ω1|2p|(µ0ω2 + 1)κs
0 − µ0ω2|2p

= [1 + 2µ0ω1(µ0ω1 + 1)(1− cosψ0)]p[1 + 2µ0ω2(µ0ω2 + 1)(1− cos(sψ0))]p.

Clearly, it follows that cosψ0 = 1 and κ0 = 1.
We write mj , j = 1, 2, for the number of roots of the equation Pµ(κ) = 0 in the

sets {κ ∈ C : |κ| < 1} and {κ ∈ C : |κ| > 1} respectively. The analysis above shows
that the numbers mj remain the same as µ varies. Thus when µ=1 they remain as
they were in the case 0 < µ� 1, that is, m1 = p(s+ 1), m2 = m− p(s+ 1)− 1. �

§ 3. Final results

3.1. The existence and stability theorems for travelling waves. In this
subsection we apply the auxiliary constructions of § 2 to study the initial sys-
tem (2.2). We recall that the problem of the existence of its travelling waves (1.13)
reduces to finding periodic solutions (with periods m∆/p, p ∈ N) of the auxiliary
equation (2.4). Therefore in what follows we denote the periodic solution of (2.4)
specified in Lemma 2.1 and its period by x∗(t, ε,∆) and T∗(ε,∆) respectively, to
stress their dependence on ∆. We similarly denote the period of the function (2.18)
by T0(∆).

We first study the problem of the existence of a periodic solution with period
T = m∆/p for the relay equation (2.7). To do this, we consider the equation

T0(∆) =
m∆
p

(3.1)

for the seeking the phase shift ∆ > 0, assuming that the positive integers m and p
are related by the conditions

m

s+ 1 + β + s/β
< p <

m

s+ 1
. (3.2)

Using the second formula in (2.16), we rewrite (3.1) in the equivalent form

Φ(∆) := exp
[(

m

p
− s− 1

)
∆

]
−

[
1+β(1− exp(−∆))

][
1+

1
β

(1− exp(−s∆))
]

= 0.

(3.3)



542 A. Yu. Kolesov, N. Kh. Rozov, and V. A. Sadovnichii

When the inequalities (3.2) hold, the equation (3.3) has the unique solution
∆ = ∆̂(p) on the semi-axis ∆ > 0, and we have

Φ′(∆)
∣∣
∆=b∆(p)

> 0. (3.4)

Indeed, the explicit formula for the function Φ(∆) shows that it is a solution of
a certain linear homogeneous fifth-order differential equation with constant coeffi-
cients in the variable ∆ ∈ R and the characteristic roots of this equation are real.
Therefore Φ(∆) admits at most four zeros on the whole axis ∆ ∈ R. Since the
following properties hold by (3.2):

Φ(0) = 0, Φ′(0) =
m

p
− s− 1− β − s

β
< 0,

lim
∆→+∞

Φ(∆) = +∞, lim
∆→−∞

Φ(∆) = −∞,

we see that the number of zeros is odd and each of the semi-axes ∆ > 0 and ∆ < 0
contains at least one of them. Hence the function Φ(∆) has exactly three zeros,
and the root ∆ = ∆̂(p) > 0 of (3.3) is uniquely determined and automatically
satisfies the required inequality (3.4).

Thus we have established that for ∆ = ∆̂(p) the periodic solution (2.18) of the
equation (2.7) has the desired period m∆̂(p)/p. Consider the periodic solution
x∗(t, ε,∆) of (2.4), along with the corresponding equation

T∗(ε,∆) =
m∆
p
. (3.5)

We recall from (2.21) that the period T∗(ε,∆) admits an asymptotic representation
T∗(ε,∆) = T0(∆) + O(ε) uniformly with respect to ∆ in any compact set K ⊂
(0,+∞). Since the root ∆ = ∆̂(p) of the equation (3.1) is simple, it follows that
the equation (3.5) has at least one root ∆ = ∆̂(p)(ε) such that

∆̂(p)(ε) = ∆̂(p) +O(ε). (3.6)

Summarizing the constructions above, we arrive at the following assertion.

Theorem 3.1. Let m, p be positive integers satisfying the conditions (3.2). Then
there is a sufficiently small ε0 > 0 such that for all ε, 0 < ε 6 ε0, the system
(2.2), (2.3) admits a cycle (a travelling wave)

Cp : xj = x̂(p)(t+ (j − 1)∆̂(p)(ε), ε), j = 1, 2, . . . ,m, (3.7)

where x̂(p)(t, ε) = x∗(t, ε,∆)|∆=b∆(p)(ε)
and ∆̂(p)(ε) is the root (3.6) of (3.5).

We now pass to the problem of the stability of the cycle (3.7).

Theorem 3.2. Under the hypotheses of the previous theorem, the cycle (3.7) with
a fixed number p is exponentially orbitally stable when m = p(s+1)+1 and unstable
otherwise.

Proof. We recall that all the multipliers ν of the cycle (3.7) are given by equations
of the form (1.19), (1.20), where νl(κ) = νl(κ, ε), l > 1, are the multipliers of
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the auxiliary linear equation (2.22) for ∆ = ∆̂(p)(ε). Hence we have the following
bound for the monodromy operator V (ε) of the system (1.16) corresponding to the
cycle (3.7):

‖V (ε)‖Rm→Rm 6 M, M = const > 0. (3.8)

This bound follows from the properties (2.25)–(2.30) of the coefficients (2.23),
(2.24). Therefore in the equation

[νl(κ, ε)]p = κ m, l ∈ N, (3.9)

using the obvious inequality |ν| 6 ‖V (ε)‖ and a relation of the form (1.20), we can
restrict ourselves to the values κ ∈ C with |κ| 6 r, where r = (M+1)p/m, M being
the constant in (3.8).

Thus, under the condition κ ∈ B(r), we substitute ∆ = ∆̂(p)(ε) in the equa-
tion (2.22) and use Lemma 2.4. It will be clear from the analysis below that the
complete set of multipliers of the cycle (3.7) can be constructed from the roots
of (3.9) with l = 1. Hence there is no need to consider other values of l.

Using the asymptotic representation (2.43), we conclude that when l = 1, the
equation in question can be written in the form

[(ω̂1 + 1)κ − ω̂1]p[(ω̂2 + 1)κ s − ω̂2]p = κ m +O(ε), (3.10)

where ω̂1, ω̂2 are the constants (2.44) for ∆ = ∆̂(p). Note that the quantities
m, p, ω̂1, ω̂2 satisfy the requirements (2.60), (2.61) by (3.2), (3.4). Using this and
Lemma 2.5, we conclude that when ε = 0 the equation (3.10) has a simple root
κ = 1, and the other roots (to be denoted by κ̂j , j = 1, . . . ,m − 1) do not lie on
the unit circle.

In the case when ε > 0 we consider the equation (3.10) for κ ∈ Bδ(r), where
Bδ(r) is the set (2.58) with κk, k = 0, 1, . . . , s, being the roots of the equation (2.57)
for ω1 = ω̂1, ω2 = ω̂2. The parameter δ > 0 is chosen small enough to guarantee
the inclusions κ = κ̂j ∈ Bδ(r), j = 1, . . . ,m − 1, κ = 1 ∈ Bδ(r). We emphasize
that for κ = κk, k = 0, 1, . . . , s, the left-hand side of (3.10) becomes equal to zero
while the right-hand side is certainly non-zero. Hence the equation (3.10) with
sufficiently small δ has no roots in any of the balls {κ ∈ C : |κ − κk| 6 δ} and,
therefore, we can discard these balls and consider only the set Bδ(r). On this set,
the multiplier ν1(κ, ε) is simple and depends analytically on κ and, besides (2.43),
satisfies the asymptotic equality (2.59).

We note that when ε > 0 the equation (3.10) still admits the solution κ = 1
since the equation (2.22) certainly has multiplier 1 for κ = 1, ∆ = ∆̂(p)(ε). In
this case it is the linearization of the equation (2.4) at the cycle x = x̂(p)(t, ε). By
the analyticity (mentioned above) of the function ν1(κ, ε), the equation (3.10) for
ω1 = ω̂1 and ω2 = ω̂2 differs from (2.62) by an analytic term of order ε (in the
C1-metric with respect to κ). Hence the number of its roots in Bδ(r) is equal to m,
as in the case ε = 0, and the root κ = 1 is simple. The remaining m − 1 roots of
this equation tend to the roots κ̂j , j = 1, . . . ,m−1, of the equation (2.62) as ε→ 0.

Let us summarize. It follows from the analysis above that all the multipliers
νj(ε), j = 1, . . . ,m − 1, of the cycle (3.7), except for the simple multiplier 1, tend
to the limits κ̂ m/k

j , j = 1, . . . ,m − 1, as ε → 0. Therefore (see Lemma 2.5) their
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absolute values are all smaller than 1 in the case when m = p(s + 1) + 1, and
there is at least one multiplier with absolute value larger than 1 in the case when
m 6= p(s+ 1) + 1. �

3.2. Conclusion. Note that the number of values of p satisfying the inequalities
(3.2) grows unrestrictedly as m → +∞. Hence so does the number of coexisting
cycles (3.7). But they are all unstable in the case when m 6= p0(s+1)+1 ∀ p0 ∈ N.
The only possible stable cycle is that with number p = p0 when m = p0(s+ 1) + 1.
This cycle always exists since the requirements (3.2) hold automatically for the pair
of numbers m = p0(s+ 1) + 1, p = p0.

Thus the theory developed above does not answer the question of the attractors
of the system (2.2) when m 6= p0(s + 1) + 1 ∀ p0 ∈ N. To clarify the situation in
this case, we use the results of a numerical experiment which was carried out for
the system

ẋj = −1 +
α exp(−xj)

1 + exp(γ1 xj−1) + exp(γ2 xj−2) + exp(γ3 xj−3)
,

j = 1, 2, . . . ,m,
(3.11)

where x0 = xm, x−1 = xm−1, x−2 = xm−2, with the values of the parameters
α = 5.5, γ1 = γ2 = γ3 = 100 and for 5 6 m 6 9.

Figure 3

Figure 4

When m = 5, according to our theory, the cycle (3.7) of the system (3.11) with
number p = 1 is stable. It seems to be the only attractor (we were not able to
find any others). The projection of this cycle to the subspace (x1, x2, x3) is shown
in Fig. 3, and the graph of its component x1 as a function on t is shown in Fig. 4.
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When m = 6 the stable cycles are not travelling waves. There are several such
cycles, all obtained from one another by cyclic permutations of the coordinates xj ,
j = 1, . . . , 6. The projection of one such cycle to the subspace (x1, x2, x3) is shown
in Fig. 5.

Figure 5

The most interesting situation is realized for m = 7. Then the system (3.11)
admits a stable cycle which is a travelling wave but not a cycle (3.7). Note that only
the simplest travelling waves of the system (2.2) were constructed above. These
waves correspond to a cycle x0(t) of the relay equation (2.7) such that x0(t) < 0
on the time interval −s∆ − σ0 6 t 6 −σ0 of length s∆. However, equation (2.7)
also admits cycles with several sign changes on any interval of length s∆. These
cycles generate more complicated travelling waves of the system (2.2). One such
wave was detected numerically for the system (3.11) with m = 7. Its projection to
the subspace (x1, x2, x3) is shown in Fig. 6, and the graph of the component x1 is
shown in Fig. 7.

Figure 6

The situation in the remaining cases m = 8 and m = 9 is as follows. When
m = 8 the attractors of (3.11) turn out to be equilibrium states passing to each
other under cyclic permutations of the coordinates. When m = 9, the cycle (3.7)
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Figure 7

with number p = 2 is stable. We note that no new phenomena occur under the
further growth of m: all types of attractors described above reappear one by one.
For example, when m = 10, the stable cycles are not travelling waves. When
m = 11, the attractor is a more complicated wave similar to the one shown in
Figs. 6, 7, and so on.

The following system deserves separate study:

ẋj = −1 +
α exp(−xj)

1 + exp(γ xj−1)
, j = 1, 2, . . . ,m, x0 = xm. (3.12)

It is obtained by the change of variables (2.1) from the multidimensional repressi-
lator

u̇j = −uj +
α

1 + uγ
j−1

, j = 1, 2, . . . ,m, u0 = um. (3.13)

Note that the system (1.3) mentioned above is a particular case of (3.13).
It follows from our theoretical constructions that if α > 1, γ � 1 andm = 2p0+1,

then the system (3.12) admits a stable travelling wave (3.7) with number p = p0.
But if m = 2p0, then numerical analysis shows that its attractors are equilibrium
states.

To conclude, we note that all the results obtained above for the system (1.4)
hold without change for the system (1.5). Indeed, under the conditions (1.9) it is
transformed by the changes (2.1) to a system of the form (2.2), where the function
Ω(y1, . . . , ys, ε) is given by the following analogue of (2.3):

Ω(y1, . . . , ys, ε) =
s∏

k=1

(
1 + δk exp

γ0
kyk

ε

)
. (3.14)

The relations (2.5), (2.6) are easily seen to hold for (3.14) and, therefore, we are
still dealing with the same relay equation (2.7).

The situation for the system (1.6) is somewhat more complicated. Here, under
the conditions (1.9), (2.1) we obtain a system (2.2) with the function

Ω(y1, . . . , ys, ε) = 1 + exp
( s∑

k=1

γ0
kyk

ε

)
,

and the corresponding delay relay equation is of the form

ẋ = −1 + α exp(−x)R(y), y =
s∑

k=1

γ0
kx(t− k∆), (3.15)

where R(y) is the function in (2.6).
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We now consider the system (1.7) and note that on account of the relations (1.9),
(2.1) it passes to the system

ẋj = −1 +
s∑

k=1

αk exp(−xj)
1 + δk exp(γ0

k xj−k/ε)
, j = 1, 2, . . . ,m,

where x−k = xm−k, k = 0, 1, . . . , s − 1. The delay relay equation can now be
written in the form

ẋ = −1 +
s∑

k=1

αk exp(−x)R(yk)
∣∣
yk=x(t−k∆)

. (3.16)

The problem of travelling waves for the systems (1.6), (1.7) is related, first of
all, to finding periodic solutions of the relay equations (3.15), (3.16). The study
of these equations is a separate and still-unsolved problem. Another open problem
is to find periodic solutions of (2.7) with several sign changes on any interval of
length s∆. We recall that the existence of such solutions is confirmed by numerical
analysis.
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