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The dissipative property
of a cubic non-linear Schrodinger equation

P. I. Naumkin

Abstract. We study the large-time behaviour of solutions of the Cauchy
problem for a non-linear Schrodinger equation. We consider the interaction
between the resonance term and other types of non-linearity. We prove that
solutions exist globally in time and find a large-time asymptotic represen-
tation for them. We show that the decay of solutions in the far region has
the same order as in the linear case, while the solutions in the short-range
region acquire an additional logarithmic decay, which is slower than in the
case when there is no resonance term in the original equation.

Keywords: Schrédinger equation, cubic non-linearity, large-time asymp-
totics.

Dedicated to the blessed memory of my teacher
1’ya Andreevich Shishmarev

8 1. Introduction

This paper is devoted to studying the issues of global existence and large-time
asymptotic behaviour of solutions of the Cauchy problem for a cubic non-linear
Schrédinger equation in one space dimension:

1
iy + ~Ugr = N(u, ), reR, t>1,
2 (1)

u(l,x) = ugp(x), z €R,

where the non-linearity is of the following form:

3
N(u, ) = Z N T = Aua® + Aoful*u + Agu®

j=1

with coefficients Ay = b € [0,1), Aa = 1, A3 = iv/3pu, 0 < g < 1 —b. The more
general case A2 > 0 may be reduced by scaling to the present case Ay = 1. Changing
the variable by u — e, we arrive at the case when A\; = be=2% and A3 = iv/3ue?.
We are interested in the interaction between the resonance term |u|?u and other
types of non-linearity in the equation. The restriction |\;|+ |A3] < |[A2| means that
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The dissipative property of a Schrédinger equation 347

the resonance term Mo|u|?u in a certain sense dominates the other non-resonance
non-linearity types A\jui® and Azu® in the equation (1).

The non-linear Schrodinger equation (1) with A; = A3 = 0 was integrated by the
inverse scattering method, and the asymptotic behaviour of its solutions as t — oo
has been studied (see [1], [2]). However, an explicit integration of a partial differ-
ential equation is possible only in very rare cases. Computations for large values of
the time are quite difficult even for modern computers. Moreover, the asymptotic
properties of solutions suggest one or another type of non-linearity and motivate
the choice of models describing the physical processes.

The difficulties in the asymptotic study of solutions of the cubic non-linear
Schrodinger equation (1) can be visualized by comparing the orders of decay in
time of various terms in the equation. Starting with the familiar asymptotics as
t — oo of solutions of the linear Schrodinger equation (that is, (1) with M (u,w) =0)

ult, ) = \%ﬂg(f) Lo,

where M = exp(%)7 we assume that the solutions of (1) exhibit similar behaviour:

u(t,z) ~ \jyﬁw(t f)

for some new unknown function w. We then obtain that the linear part of the
equation is of the form 7u; + %um =~ %iwt, and the non-linearity behaves like
N (u, @) &~ Ayizt=3 M|w|?W+ Agi~ 2t~ 2 M|w|?w + Agi~ 2t~ 2 M3w?. Thus we arrive
at the following equation for w:

iwy = i)\lt_lﬁ2|w|2ﬁ + Aot HwPw — idst T M2 + o(t7h).

Notice that the cubic terms in the last equation have a critical decay and, there-
fore, cannot be omitted in the first approximation. From the mathematical point
of view, it would also be interesting to study the influence of various cubic non-
linearities on the large-time asymptotics. The following results in this direction are
currently known.

The non-existence of ordinary scattering states was proved in [3] for the non-
linear Schrédinger equation (1) with A; = A3 = 0, Ay # 0. Hence the solutions of
the non-linear Schrodinger equation cannot be approximated by those of the linear
Schrodinger equation (1) with A(u,u) = 0. The asymptotics of solutions of the
Cauchy problem for the equation (1) with Ay = A3 = 0, Ay # 0 was obtained
in [4]-[6] (see also [7] and the literature cited therein). In particular, the following
asymptotic representation of solutions was obtained:

? 1
logt> +0<\/£) (2)

= 2 3

as t — oo uniformly with respect to x € R, where W, € L*°. Thus the presence

of the resonance term Ao|u|?u in (1) modifies the asymptotics of solutions by intro-
ducing an additional logarithmic oscillation of the main term when compared to
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the linear case. We notice that the resonance perturbation As|u|?u is conservative
in the sense that iu; + %um = )\2|u|2u for the non-linear Schrédinger equation and
the norm ||u(t)||L2 of a solution is preserved in time.

The asymptotics of solutions of the Cauchy problem for the non-linear
Schrédinger equation with various cubic non-linearities including the derivative u,
of the solution as well as the resonance terms of the form |u|?u, |u|*u, |ul?u,
and others possessing the gauge property N (eu) = €N (u) for all § € R,
was studied in [8]-[14] (see the literature cited therein). It was proved that if
the non-resonance non-linearities contain at least one derivative u, of the solu-
tion, then the asymptotics is modified (as in (2)), but if there are no resonance
terms, then the asymptotics of solutions is of a quasi-linear nature:

u(t,z) = %m (f) + 0(\2) 3)

Various non-resonance cubic non-linearities (not containing u,) in the Schrédinger
equation were considered in [15]—[18]. It was shown that in the absence of resonance
non-linearities they lead to a dissipative effect. In particular, the asymptotics of
solutions of (1) with Ay = Ay =0, A3 =1 is of the form

o= M N P AN -3
BT =m0\ U311\ )| B a2

St t2 —i

as t — oo uniformly with respect to z € R, where v > 0 is small. The asymp-
totics (4) yields the following estimate for the decay:

sup |u(t,z)| < Cet™2(1+£2logt) 3.

lzl<vE
Hence the solution attains a faster decay in the short-range region |z| < v/t
when compared to the linear case. We notice that the resonance term As|u|?u
was excluded from consideration in the papers cited above. Thus we encounter
the following question. What is the interaction between the resonance and non-
resonance non-linearities in the one-dimensional Schrodinger equation (1)? The
modified asymptotics (2) for solutions of the Cauchy problem (1) with odd initial
perturbations ug was obtained in [19]. Note that the coefficients A; and A3 do not
occur in the main term of the asymptotic formula (2). Hence in the case of odd solu-
tions (or when the non-resonance non-linearities contain at least one derivative),
the nature of the main term of the asymptotics is determined by the resonance non-
linearity Ao|u|?u.

In this paper we get rid of the condition that the initial data are odd and clarify
the influence of the non-resonance non-linearities A\ju@? and Asu® on the asymp-
totics of solutions. We shall show that the solutions acquire an additional logarith-
mic decay in the region |z| < v/¢, but this decay is slower than in (4) (when there
are no resonance interactions). Thus the dissipative character is introduced by the
non-resonance non-linearities in the Schrodinger equation.
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We now state the main result. As usual, we denote the Lebesgue space by LP =
{s €S ||s]|lLr < o0} with the norm

oo = (1 as) " t<p<oe ol =l p=co
R z€R
We introduce the weighted Sobolev space
H™ = {s € §': [|sllggms = | (2)(i0) 5|12 < o0},
where m, k € R, (z) = /1 + 22. The direct Fourier transform is given by

—1£§

Fs=73(¢ dx.

\/ 2m /
Then F~1s = \ﬁ Jg €7 5(€) d€ is the inverse Fourier transform, and H™ = H™?

is the standard Sobolev space (we thus omit the superscript 0). Different positive
constants will be denoted by the same letter C.

We shall use the technique of factorization of the linear Schrédinger group
(see [20]),

Ut) = e2% = ME)DE)V(H)F,

where M(t,z) = ez™ | (D(t)s)(x) = ﬁs(%) is the dilation operator and

\/7 it 2
V(t) =FM@t)F* —2 (60 gy,
(t) (t) = o o y

Put .
D(t,€) = pe(t,6) +2i Y xjpjﬁ?’*jg(e’%af -1),
j=1,3
where a; = g?%;) X1 = b, X3 = M, p(t) = @(t70)7 @(t) = m<_t)u(t)

Theorem 1. Suppose that 0 < b <1, 0 < pu < 1—=b. Let the initial perturbation ug
be such that ||¢(1)||L~ < &1 and ||¢(1)||L: < €f, where e1 > 0 is sufficiently small.
Also assume that

lp(1)] = 6, ()
where § = ElJ”’ for a small v > 0. Then the Cauchy problem (1) has a unique
solution u € C([1,00); L?). Moreover, we have the decay estimates

C16t (1 +etlogt) 1 < sup |u(t,z)] < Coert 2 (1 + 6*logt) ™1,
lel<VE
sup |u(t,x)| < Ceit™2
|z| >Vt

for t > 1.
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Remark 1. The initial perturbation can be chosen, for example, using the formulae
up =U(1)FLp(1) and

. irg 52 dT

@(176) 1—|—6%2§2 ZX]/ ez % .

J#2

Remark 2. In the region |z| > /%, the solution decays at the same rate as in
the linear case. But in the short-range region |z| < v/t the solution acquires an
additional logarithmic decay, which is slower than in the case (4) when there is no
resonance term.

Remark 3. The hypothesis (5) in Theorem 1 excludes the case of odd initial per-
turbations considered in [19]. The assumption 0 < b < 1, 0 < p < 1 —b is essential
because otherwise we cannot guarantee that the solutions of the Cauchy problem (1)
exist globally in time for arbitrary (even small) initial data.

Theorem 1 describes a very interesting property of equation (1). Introducing
a new unknown function p(t) = FU(—t)u(t), we get the following ordinary differ-
ential equation for p(t) = ¢(t,0):

3
il =t x;p'p? T + Ra(t),

j=1

where x1 = b, x2 = 1, x3 = u, and R;(t) stands for the remainder. In the case
when R;(t) = 0, we can pass to the polar coordinates p = re~* and get the system

v = —t71r3(u — b) sin(26), 0" =t""r?(1+ (u+ b) cos(20)). (6)

The system (6) has a first integral 72(1 + (u + b) 008(29))7% = (. This means
that the solutions of (6) oscillate for |u+b| < 1 and can either grow or decay in time
in the case when |p + b > 1. Thus the higher-order terms in the remainder Ry (t)
have an essential influence on the stability of the solutions. In what follows we
distinguish the fifth-order terms in R (¢) and prove (in Lemma 3) that p(t) satisfies
the following ordinary differential equation:

ip =t~ 12)(;)/)‘3 Tt lzwzpl 5Lt Ra(t), (7)
where wy = =280, wy = —u(% +iln3), wy = —4bu(5 —iln3), wy = —27h,
= —6ip®In %, a; = %, and Ry (t) stands for the remainder. In Lemma 4

we show that the solutions p(t) of (7) decay logarithmically in time provided that
0<b<1l 0< pu<1—>b Wenote that in the non-resonance case Ao = 0 of
equation (1) we get an equation

il =t7" > X + Ralt),
j=1.3

which has decaying solutions. This explains why we had no need to study the
higher-order terms of Ry in [15]-[18]. We also note that our method is inapplicable
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in the case when ¢(t,0) = 0. Hence the existence of a global-in-time solution and
the calculation of its asymptotics remains an open question when 7g(0) = 0.

In [19] we used the change of function u(t,z) = t~2 Ev(t,£), where E = ¢3¢
and § = 7. The new function v = FMU(—t)u satisfies the equation

3

1 ) L
851) =7 Z E2J_4)\j0353_3.
j=1

0,
100 + o2

While estimating the derivative ve, we got the secular terms i(2j—4)£E2j—4)\j VvIg3I
for j # 2 because of the rapidly oscillating factor E?7*2. To exclude these terms,
we used a transformation similar to the normal form transformation of Shatah [21].
We introduced the operator

T(v) =ve — 266 Y A;EYN\005%7,
j=1,3

where A; = (1 + (24 — 3)ité?)~!. Since the solution was odd, we were able to
estimate the L?-norm of Z(v) in terms of [|v¢||rz. By contrast, in the present paper
we make the transformation p(t) = FU(—t)u(t) and write down the equation for
p(t) = ¢(t,0) with non-linear terms up to and including the fifth order. In Lemma 4
we prove that p(t) decays logarithmically in time. In §2 we get a bound for the
derivative Ogp(t,€) of the new function. Then in §3 we estimate the difference
o(t,€) — ¢(t,0) and write down the equation (7) for p(t) = ¢(¢,0). Solving this
equation, we prove the following two-sided bound in Lemma 4:

C16(1+etlogt) ™7 < |p(t)] < Caer (1 + 64 logt) 7.

Theorem 1 is proved in §3. In §4 we prove auxiliary identities and estimates.

§2. A bound for the derivative

As in [20], we use factorization for the free Schrédinger group

where M (t,z) = e3®" and (D(t)s)(z) = e~ % Sig“tﬁs(%) is the dilation operator,

i si t it
V(t) = fM(t)]—'_l — elz SlgntJ 6_7(5_@2 dy

7 )

)D(1), where E(t,€) = €%, Here we have

4
(3)M(t) = E(t)D(1). Then we obtain

We also have FU(—t) = iV(—t)E(
used the commutation relation D %

1
FMU(-t)| 0, + 282) = LFMU(—t),

where £ = i0; + 85 and

2t2

— 1 a—
FMU(—t)uPa® = iE(t)D()uﬁu“ =i pha LBy,
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Here v = FMU(—t)u = iED()u. Multiplying (1) by FMU(—t), we get

3
Lv=t"1 Z 2N EY i3, (8)

j=1

Acting by the operator V(—t) on equation (8), we find the equation

3
iy =t Y PPNV (=) (EF 0I5 ) (9)

j=1

for the new unknown function
o(0) = FU(-u(e) = V-tpo(0) = T L [ D 1)
Using the identity

V(-t)EP s = e tasient VY 1 / 5 (€ =2u8+y%0) s(y) dy

— et i - (sign p+sign(tp)—sign t)Elff (p)V(—t,O)S (10)

for p # 0, we obtain an equation for ¢:

3
idvp =11 " 0;ED(2j — 3)V((3 — 2j)t)v? v, (11)
j=1
where oj — Z~27j/\jei%(sign(Zj73)+sign((2j73)t)7sign t)’ aj = g; ;l
We now state the local existence theorem for solutions of the Cauchy problem
for equation (11) (see [7]).

Theorem 2. Let @y € H! be the initial perturbation. Then for some T > 1 there
is a unique solution ¢ € C([1,T]; H') of the Cauchy problem for equation (11) with
the initial perturbation p(1) = pg.

We introduce the self-model variable 5 = &\/t. Define the norms

lellxz = sup (le(®)Le + QT (B)E) ()=,
te[1,T)
lellze = sup QIWIE) (@ —pllL=,  |[Ullve = sup 7 TQIE)[¢(1)]|r2,
te[1,7) te[1,T]

where Q(t) = 1+ 0*logt, 6 =11, e =] 7%, v > 0 is small so that § < &; < .
We also assume that v > 0 is small. Put p(t) = ¢(¢,0) and

V==Y ax;ipp’ ]é/ E% dr (12)
J#2

for x; = A \/%ei%(“gn(zj*g) D). By our choice of \y = b, Ay =1, A3 = iuV/3

we have xy1 =0, xo =1, x3 = pu.
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Lemma 1. Let the initial perturbation oo € H' be such that |pollLe~ < &1
and ||1ollL: < ef, where 1 > 0 is sufficiently small. Suppose that the solution
¢ € C([1,T);HY) of (11) satisfies the estimates |||z, < €3, ||lollx, < e. Then
[llyr < et

Proof. Assume that the inequality ||1||y, < €* does not hold. Since the solution
is continuous, there is a maximal T € (1,T] such that wlly, < e*. Differentiat-
ing (11), we get

Orpe = > 0;0;,6ED(25 = 3)V((3 = 2j)t)0’ 5%/ + Ry, (13)
J#2
where
3
Ry = —it™' Y 0;EYD(2j — 3)V((3 — 2j)t)0e (737,
j=1
We represent the first term on the right-hand side of (13) in the form
0;a;,6ED(25 — 3)V((3 — 24)t)v/v377
= ajx;p'p>IEEY + 0;a;,6 BV D(2] — 3)V((3 — 24)t)g;,

7’i% sign(2j—3)

V125 -3

the following way:

where y; = 6, and g; = v/9*77 — pip3~J. Write the equation (13) in

Drpe =Y ajx;p P> IEEY + Ry + Ry, (14)
i#2

where

Ry = Zejang%D(zj—za)V((zs 25)t Zujf/ Sig;(t,y) dy.

J#2 J#2

2 . 2 R .
Here Sj = aj% — %(2]%3 —y)2 = % _Ey_|_ 2i— 3y2 and v = 95a; ets sign(3—2j)

Rewrite the first term on the right-hand side of (14) in the form

> ajx;p’p*TIEEY = 0, (Z%X;P p 75/ B dr>
J#2

J#2 _ _
= ap (PP g | B dr.
J#2 0

Furthermore, using the identity e = H;(0;(te'%1) + S;,0,€5), where H; =
(1+4it(S; + S3,)) " and

1 ' ' 3 2 954
sj+S§,,=2<(4J—5)(2J—3)(y_ 2j3) ’ 2;3§2)

C(& +y?)
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for 7 = 0,1, 3, we find that

Ujf/ JgJ dy = 815 (Z yjf/ it S tH: gj dy)
J#2

J#2
-3 y]g/ %5 (t0,(VtH, ;) + V0, (S H;g5)) dy.
J#2
Then the equation (14) takes the form
= Ry + R3 + Ry,
where

w—saf*za]x]pp ]5/ E‘”dT*ZVjé/ e"SitH;g; dy,

J#2 J#2

Zajxj / E% dr,

J#2
Ry = ij/ “8s tat ViH gj)"‘\/iay(sijjgj)) dy.
J#2

Notice that for a > 0 we have

t Y _ ) 1 w B . 1 lii dz
V(t)f/o E d’rf(ft—zag)/o V(t)EY dz = (&t 185)/0 E 7\/m

1 ite2 _a
it¢2 _az 1 Céte2S T+a
= —ft/ e iz 20, T e 5 dz + g: &
0 (1 + 6 (1+a2)2)(1 + (lZ) 2 1 + 5 (1+a)2

= O(&HE) ).
To estimate R3, we use the bound |f0t Edr| < Ct(¢)~2 for a > 0. Then

t
¢ EYdr| <CiQTE®).
0

L2

[RsllLe < Ot~

Since ve = V(t)pe, we have
ve =V(thw+ anijﬁS*jV(t)ﬁ Ea] dr+Y vV / e"SitEH;g; dy.
J#2 J#2 R

Thus we must consider terms of the form V(t) [ €i"Si¢Hsdy and V(t) x
Iz e”SJijijs dy. We have

V(1) / ¢S EH s dy = / P&, 7)s(t, ) d,

where

s I E—T)+5(2i-3)T° g5

2e’i
) =— 0= - 2
i(60) =5 5=F s/R (7 — 229)7 + 2((5— 45)(2 — )72 — 3i)
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By Cauchy’s theorem, fR % = %emszm for x € R, Reb > 0. Therefore,

3

~ 2 i%i Do B _ _
P;(&,y) :—%Eeﬂ%—?ﬁyzage SHE-G)— L2 |E-7Q

where Q = /(5 — 45)(2 — j)y 2 — 3i. Hence we get the estimate
IPi(E,7)] < Ce—ClE=T1T)
It is also necessary to consider the kernel
V(t) /]R e”sjith’ijjs dy
=-V() /R "5 EHys dy + B /R (1, )0y (37 Py (€5)) dy
Since <§>%-le~—5|@> < @)“e‘c‘g_m@), we find the bounds
<cl@ [l eam g,

Ct 2 (€)* s e

o itS; ¢ .sd
Qv [ iy

L2

for oo € [0,1] and

HV(t) / et th’ijjs dy
R

L2
t,y)| d e
<on|| [ BVl o [l S0 ay| < Clste. )
R £2+72 |lL2 R L2
Then we get
IRullee < O ofPoellie < Ot ol [V(0)ew]le
t
+ Ot S P IE) ol | ()2 V(e / B dr
J#2 0 L2
+ O ) i €)YV )/eitijngjdy
J#2 R L2

< Ot ol 2 [l + 3 )1 (E) 02
+ O () M0l flo — llLe < CPEQTE(Y)
because
1Y 2gsllze < I1KE) IR0 (1o = @lle + I1€E)™ L= ll4€) " (¢ — o)),
lv = ¢llz = V() = Dgllee = [FM(E) - )F e
< Ot 5[z F |2 = Ot ||¢l|pz = C % |lug .
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We now consider R4. Using the equation v, = #v& — iLv and integrating by
parts in R4, we get

Ry = — Zng/ eitSj (\/iat(\/gHj) —+ ay(Sijj))gj dy
J#2 R
> ithg/ "SI H; (ol "' Lo — (3 — j)viv I Lv) dy
J#2 R
i~ s, g o
+ Z %ng/ eZtSJHj(](UJ 173 J)yvy _ (3 —])(U]UQ j)yvy) dy
J#2 R
- 2%%'5 /R "% (it Sy Hy + Hyy) (jo/ 0% vy, — (3 — j)v’ v 71y dy

J#2
- ’/jg/ ¢'"%1 8, H;0yg; dy + > ng/ e"SiH;t0,(p'p? ) dy.  (15)
J#2 R #2 R

For the first term we write
VIE [ €51 (VIOUVEH) + (S, ) d
R
7 ~ [ . ~ [ .
— (2]’ — 2>V(t)§/Re“Sjngj dy+V(t)§/Re”SfH§gj dy
— (4§ — B)itY(H)E /R €383 H?g; dy.
Here the first term can be estimated as follows:

<Ct 2 (&) gjllee,

HV(t)g/ eitSijgj dy
R L2

and the second term admits the bound

Hwt)é“ [ ez ay < O @) g e

< cH L&)+ @) lgldy

L2

We integrate by parts in the last term of (15):

itg/R 'S S?ijzgj dy

]

/R (E) + @) 3lg51 dy

L2 L2

J —
< Ot72|[(€)  gjllee + Ot Oeg; e
L2

Lot

/R (E) + @))210y051 dy

Hence,

HE/R "% (Vi (VEH;) + 0,(Sjy Hj))g; dy

L2
I _ 5,_3 ~_5
<Otz (&) gyllee + Ot |8egyllns < CPt71Q74(1).
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To estimate the second term in (15), we use the inequality

< Ct 2 |(€)* Ls(t, €|

L2

|<E>“va> [ sy

and deduce from (8) that

Htg/ ¢S H; (jo! T3 Lo — (3 — j)'v* T Lv) dy
R

L2
5

< CEIE) (1,8 e < CPIQTE().
Then we obtain from (15) that
[ Rallue < Ce®3Q% (1) + Cet™H ()~ lu el
+ CtH [oPvyllee + CtHpPIE) e < CEPTHQTIQ).
Thus we get 4 |lwl|g2 < Ce%t~3Q%(t). Integrating this with respect to time, we

have
4

5
lwlee < et +CPHQ7H (1) < S1Q (1)

NG

for t € [1,T]. We also have

I — w||Lz < CHg/ eitSthjgj dy
R

= C'tHV(t)/ eitsngjgj dy
L2 R

L2
<Otz (€)M lie (v = @l + 1) Ml (€)™ (¢ = p)ll=)
< CEPEQ1(t).

This contradicts the assumption made at the beginning of the proof. Hence the
estimate stated in the lemma holds for all ¢ € [1,7]. O

§ 3. Bounds in the uniform metric
We first estimate the difference ¢(t,&) — p(t).

Lemma 2. Let the initial perturbation po € H be such that ||po|lL~ < &1 and
Vol < €}, where e1 > 0 is sufficiently small. Suppose that the solution o €
C([1,T); HY) of (11) is such that |¢|lx, <& and ||¢||v, < e*. Then ||¢|lz, < 5.

Proof. We define a primitive for all £ # 0 by the formulae

—/Oof(f)df for €0,
/_ fe)d¢ for £<0.

We put

N i%signb@ —1 _%52
Go(§) = —e \/%85 e
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for b # 0. Since Gy(+0) — Gp(—0) = e'7sienb ‘/IF fR ~%2" 4z = 1, integration by
parts in the integral V(bt) yields that

v/ |bt] i, 2
V(bt)s 1 7 sign(bt) | / —%y t 5 y)

— s(t,6) - / Go(7)se (1, € — y) dy. (16)

In particular,

q(t7§) = U(t, 5) - U(t70) - /]R(Gfl(g - g) - G*l(_ﬂ))vy(ta y) dy (17)
For all z,y > 0 we get
]. v ib g2 -~

Gy(z) — G :/ezgd‘ng—.

Gula) = Gt = | = [ 4 | < clo—y)
On the other hand, for z > 0 we have

3] 7’]6%”2 e o] 7’]26%7]2

/x 8”<1 +ibn2>dn‘ e /x (1 +ibn?)? o

Hence we obtain that |G (z) — Gy (y)| < Clz —y|Y({(z)Y "L + (y)7~1) for all z,y > 0.
This yields the bound

I64(E ~7) ~ Gu(-ly < o /|~>|€~| G| - 7) - Gul-Par )

Go(2)] < C

< Clx)™t

vort([MieE-n - anra) <ortiEr. o
so that by (17) we find that
la(t,€) = (v(t,€) = v(t,0))] < CIG-1(€ = F) = G2 (=F) ez vy 2
< CHEPQie), (19)
We now rewrite the right-hand side of (11) using (16). This yields that

V((3 = 2j)t) 0’ = ip® I — /RG3—2j@)a£Uj537j(tvf —y)dy. (20)

Substituting (20) into (11), we get
i0q(t,€) = (R5(t, &) — R5(t,0)) — (Rs(t, &) — Re(t,0)), (21)

where
3

Rs(t,6) =" ;B D(2j — 3)0/v7 79 (t,€),

j=1

Ro(t,€) = 0,5 D(25 — 3 /G3 2 (7)0e0 7% (1,6 — y) dy

j=1
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Since |v(t,0)] < Q3 (t)||v]lx, < Q™7 (t), we have

3
|Rs(t,€) — Rs(£,0)| < Ct™" ) | D(2) — 357 (t,€) — /077 (£,0)|
=1
’ +CtY (B — D) nt T (3,0)
s J#2
<ot Z 1D(25 — 3)q(t, )| + C3HEP Q™ (1),
j=1

In view of (18) we obtain

|Re(t,€) — Rﬁ(t 0)]

(2j - 3) / (Gso0j (€ —F) — Gy (7)) 0,074 (1, y) dy

+COT Y |BY — 1"/ Gy() 0,070 (£, y) dy| < Ct|E]"Q ™ (1),
#2 R

Hence it follows from (21) that

3
Da(t, )] < C YT IDR] = 3)a(t. Ol + CETEP QD). (22)

j=1

We now prove the lemma by contradiction. Since ¢(t) is continuous, there is a max-
imal interval of time [1, 7], T € (1, T, such that |o(t, &) — p(t)| < C3|€ [7Q 1 (t) for

all t€[1,T], £ €R. Then we obtain from (22) that |9sq(t, )| < Ce3tz L¢P Q 1 (¢).
Integrating this with respect to time, we see that

t
la(t,€)| < la(1,€)| + cf-:3|g|v/1 A0 (r) dr
< aulél + Pt + ol < ety

for all ¢t € [1,T]. We arrive at a contradiction. [J

We introduce the notation
2
w1:f§b2, w2u<g+iln3),

2 3 5
w3:—4bu<g—iln3), w4:—£b, w5:—6m21n +\[.

3 6

Lemma 3. Let o € C([1,T];HY) be a solution of (11) such that ||o||x, < e and
1¥]lvy < e Then the function p(t) = p(t,0) satisfies the equation

ip =t prp“—tlzwpl“ O(t71e"Q™%) (23)

for all t € [1,T].
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Proof. By (16) we have

o6,0) = V(O =(0) + | Gi@)pelt. e, (24
R
Since itarE** = 0O (Eak _1) the change of variable 7 = tz in (12) yields that
k—3—k ayz dz
== ixeptpF o (E —1)— 4. (25)
k#2

Substituting (25) into (24), we have

v(t,0) = p(t) — Z Z‘Xk(I)akPkﬁBJC + Rz, (26)
k22

where ®, = [, G1(€)d¢ [} (E* — 1) % d¢ and Ry = [, G1(€)v(t,€) de. We see
from the definition that the function G4(7) decays at infinity as |g|~!. Hence the
remainder R; can be estimated as follows:

|Rr| < Cll(@) ez llvllee < Ce’Q74(1).
Taking £ = 0 in (11), we get

ip) =t IZXJ ((3 —2j)t)viw3I

£=0
for p(t) = ¢(t,0). Using (16), we obtain for the right-hand side of (27) that
V(3 = 2)t)0"0% |e—o = 0707 (£,0) +jp? 157 /R Gis (¥ Jvy dy
+(3—j)pp? /R G2y (§)Tydy + Rs  (28)
since Gy(—€) = —Gy(€), where
Ro = | Gaoay@)075% (1) = 0~ 5* vy dy
+6=1) [ Gons @)@ () = 7y .

In view of (19) we obtain that |v(t,&) — v(t,0)| < Ce3|¢["Q~4(t). Therefore,
using (26), we have

IRs| < C=1Q (1) / @)+ [Tyl dy < CETQE (1),

We also obtain from (26) that /5377 (¢,0) = pip>7 — Q; — Q3 + O(E"Q~ 1),
where Q; =373, 45 ixk®@a, P TF 15579 7F. Note that

th ib T2
VIl o286 _ gy,

G _ _ iy signb
b(g) € m ¢
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whence

[ Gaas(Eyrde = [ Ga-aamp @ve e
R R
Thus we find from (28) that

V(8= 2)t)7 5% | = pp* T — Q= Uy + W, + Wa; + O(7QH),

where W; = jp/~1p377 [ G3,2j(§~)vg d¢. In view of (25) we have

1
. _3_ oz dz
ve =Vlthoe = = S ixurp*H0v(0) [ (B2 = 1) F + (o,
hz2 0
Using the identity (10) with p = 1 — axz, we obtain that
ayz (1 Slgn(l ag Z))
Vg = prie
VIl —agz|
Therefore,
. i% (1-sign(1-ax2)) g
k—3—k k e <
IXkP"P 85/ (BT —1) + V().
]; zy/|1 — agz|
Hence ‘ _ i
Wi == ijxrTs_2ja, 1T+ O(7QTH),
k#2
where . 12 (1—sign(l—ox))
~ s 17 (1—sign(l—az)) 4
~ [Gupea [ (e = 3
R 0 zy/|1 — az|
Using (27) and (29), we thus get
3
ip =t prf>3 Tt YN XA gk
j=1k#2
2

SN e At IR L O ETQ ),

=1 k#2

where Aj,k = ink(q)ak + \P3—2j,ak)~ Note that

ZZXJ jkp”k 1-6—j5— k+ZZX3 ; Jkpﬁ i—hpith=1 szpp

G=1k#2 j=1 k#£2

where

E Xi+1—kAi+1—kk + E Xk41—3A6—k—1 k-
=1,3 k=1,3
l—2<kl 3—I<h<5—1

361

(31)

—1
)

Hence we get (23) with the coefficients w; being calculated in Lemma 7 below. O



362

We pass to the polar coordinates p = re=* in

3
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(23). Then
5

i) — =13 Zine(Q_j)m PRSI Ziwle(:a—l)m T H,

Jj=1

where H = O(t~1%Q~
’I"/ = t717‘3F1(9)

where

F0) = — Re( 3 ine(Zj)2i9)7

+t K (0) 4 rf1, 0

=1

%). Separating the real and imaginary parts, we get

=t 12 B (0) + 71 K5 (0) + fo,

Fy(0) = X2+ Im< Z ixje@j)?w),

J=13 =13
5 5
Ki(0) = Re Z iw e300 Ky(0) = — Imz w3020
=1 =1
1 1
flz;ReH, f2:—fImH.
We introduce a new function z = r2 exp(—2 Ik ?EZ ) d9’) Then 2’ =—22K3(0)0"+ F3,

where
K3(0)

-2 exp(

Fi(9)

) (50 Ho)

and F3 = 22(t 'Ky + f2) K3 + 2z(f1 ? f ). Hence we get a system

2 = —22K40" + F, 0" =t 12Fyexp (2/

By our choice of Ay = b, Ao =1 and A3 =

and Fy(0) = —(a — 2b) sm(29),

[ B0

Fy(0)

Thus we have

Fy(0)
F(6")
ip/3, we have x1 = b, xa =1, x3 = p
5(0) = 1+ acos(20), where a = b+ p. Hence,

d9l> + t_1T4K2 + fa.

R~ (1 - 3’) In(1 + a cos(26)).

2 = —22K30" + Fs, 0" =t7'z(1+ acos(29))2_% +t U Ky + fa, (32)
where
2K1(0) 2(a — 2b) sin(20) K2 (6)
K3(0) == 26 2% -
(1 +acos(20))« (1 + acos(20))+%
Here
K1(0) = =-b?sin(46) + 6> <ln 5 +6\/5) cos(40)
+ g(u — 2b) sin(20) + (In3)u cos(26) — 4bu1n 3,
Ky(0) = 2%1)2 cos(40) + 62 <ln 5 +6\/3> sin(46)
+ g(u + 2b) cos(20) — (In3)pusin(20) + 4?Wbu.
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In the following lemma we study the system of ordinary differential equations
(32) whose initial perturbation z(1) = |p(1)|2(1 + acos(20(1)))}~% satisfies the
inequalities %(1 +a)m " < 2(1) <221 —a) %

Lemma 4. Suppose that there is a solution z € CY([1,T]) of the system (32)
whose initial perturbation z(1) satisfies the inequalities %(1 +a) "% < 2(1) <
262(1 — a)'=%. Then there are constants Cy and Cy such that C1z(1)0~%(t) <
2(t) < Coz(1)O~2(t) for t € [1,T], where O(t) = 1+ 022(1)logt and the constant

o > 0 is defined in Lemma 8 below.

Proof. The proof is by contradiction. Since the solution z(¢) is continuous, there is
a maximal interval of time [1,T], T > 1, such that

Cr2(1)07 2 (1) < 2(t) < Ca2(1)07 3 (¢) (33)

for all ¢ € [1,T). Dividing the first equation of the system (32) by 22 and integrating
with respect to ¢, we get flt ZZ—; dr = flt K30 dr — flt 2 2F5dr. Tt follows that

1 1 G(t) ( ) t 5
— = —— + Kg@d@—/z_ ngT.
2(t)  2(1)  Joy 1

Hence

2(t) = 2(1) (1 +2(1) ( " K3(0)do — /j 2R dT)>1. (34)

o(1)
By Lemma 8 (see §4 below) we have

o(t)
N K3(0)d = o(t) + Ks(t), (35)
6(1

where o > 0 and K5(t) = K4(0(t)) — 06(1) — K4(0(1)) is a bounded function.
Substituting (35) into (34), we find that

_ (1)
) = o0 + B (36)

where Fy = K;5(t) — flt 27 2F3dr. Substituting (36) into the second equation of the
system (32), we get
ﬁ + o

70 =t + Fs, 37
(1+ acos(20))2~% ° (37)

where F5 = L(t71r1Ky + fo)(1 — 2Fy)(1 + acos(20))% 2 — t712F,. Integrating
(37) with respect to t, we obtain

0(t) ﬁ + o6 t
/ df =logt + / Fs dr. (38)
o 1

2_2b

1) (1+acos(20))* %
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In view of (33) we have

t
/ 272F3 dr
1

t t
gcs;*/ efl(r)fldwrcsﬁafi”/ 01 (nQ ir tdr
1

< Ce¥z(1 /@_’

Ce? oz (1 logt .
= —/ (1+y)~ 3 dy < Ce” z(1)©72(t) logt.
z(1) Jo

Thus we can now estimate the remainder in (36):

t
|Fy| < |K5(t)] + ‘/ 2 2F3dr| < C+ Cs"z(l)@*%(t) logt.
1

Using (33), we can also estimate the remainder in (38):

/ F5d7'

t
+C2(1 )/ O 2 (r)(1+e"2(1)0 2 (1) log 7)r Ldr < Cs”/ 7~V dr < Ce¥logt.
1 1

C/ 7)+e%7201 (nQ 1) rdr

Therefore (38) yields the two-sided estimate

(1+ﬁ$l—if<ojw )+—;L74—00 ) logt+ /.f%dT
h(t)
2

2 z(1)
o 1
< (l_a) % <2h(t)+z(1)+09(1)>

for h(t) = 0(t) —0(1). Thus we have S; < $h*+ Bh < Sz, where B = (1) +06(1),
S =(1-a)?" % (1—Ce")logt and S5 = (14 a)2~ % (1+ Ce”)logt. We denote the
roots of the equation $h? + Bh = Si by hy = 1(—=B — /B? +2051) and hg =
%(—B + \/W) We also denote the roots of the equation %hQ + Bh = Sy
by hy = 1 (=B — VB2 4205, ) and hy = 2 (=B + /B%+20S5,). Since h3(1) =
h(1) = hya(1) = 0, we obtain by continuity that hs(t) < h(t) < ha(t). Furthermore,
estimating

2b 1

hy <3(1+a)> %0 2(t)z(1)logt,  hs > (1—a)®> %072 (t)z(1) logt,

we have
0(t) < O(1) +3(1+a)> “ 0~ 2(t)z(1)logt, (39)
0(t) = 0(1) + (1 — a)> =072 (t)2(1) log . (40)
In view of (39), (40) and (36) we then find that
(1) < -
1—Cz(1) + (1 — a)2 % — Cev)O~ 3 (t)oz2(1) logt
<2 et

(1-a)>2 —Cev
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and z(t) > %@’% () for t € [1,T]. We have arrived at a contradiction.
3(14a)“” a +Ce¥

Hence the estimates stated in the lemma hold for all ¢ € [1,7]. O
In the following lemma we estimate the Xp-norm of .

Lemma 5. Let the initial perturbation po € H be such that ||po|lL~ < &1 and
Vol < €}, where e1 > 0 is sufficiently small. Suppose that the solution ¢ €

C([1,T);HY) of (11) is such that |¢|lz, < &® and |||y, < e*. Then

lellxr <e. (41)

Proof. Assume that (41) does not hold. Since ¢ is continuous, there is a maximal
time T € (1, T] such that

lo(®) L= + QT (D)I(E) T o(t)|lL= < &

for all t € [1,7]. Using Lemma 2, we see that (£)~7|o(t, &) — p(t)| < 3Q~1(t) for
t € [1,T]. Then it follows from Lemma 4 that

() e, )] <) p(0)] + () [e(t,€) = p(t)] < Ce1QT7 (1) +°Q (1),

Thus ) B .
QTOIE) eI~ < Cer < (42)

for all t € [1,T]. As above, for |€| < (logt) we obtain that

P (6, )] < Ip(8)] + (£, €) = p(t)] < Cer + C(€) Q71 (1) < (43)

<
T
Thus, to prove the bound [[¢(t)|lL= < §, it suffices to consider the case when
t&? > (logt)?. By (16) we have

o(t,€) — v(t,6)| < C / (VA = m) e (t, )| di
L ovVi / (VEE — m)y (Vi) o (¢, m)] diy

< CQ R + OSQ (Vi / (VE(E — )M () Y dy,

where the second term admits the following estimate for all §~
Vi [ (Ve )
R

= [ g Cnraras [ @t mas o

Hence
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Using (20) and (11), we obtain for t£2 > (logt)? that

3
idp(t, &) =t~y 0, ED(2j — 307 (£, £) + R,
j=1

where
3 . .
Rg=t"'Y 0,E%D(2j - 3) / G3_0;(§)0c0/T379 (L, € — y) dy.
— R

Since |Gs_9;(€)| < C(€)~" and

oe [ (w5
0 24/ |1 — agz|

1—sign(l—agz))

we obtain from (30) that

|Rs| < Ct7HE) T pIPI(E) T 0(8) [ + CE T 0
< CeP Hlogt) TQ (1) + Ceft1Q (1)
for t£2 > (logt)?. Then, by (42) and (44), we have

3
i0pp(t, &) =t 1 ZG E%D(2] — 3)p’ > (t,€)

j=1
3

+ Ot logt)"1QE (1)) + 0571 Q5 (1)).
Multiplying this by e? It MMTT, we find that
g1 (1,€) =t~ NI N g, BUD(2) - 3)pI 50 (1,€)
j=1,3
+ O W logt) " 1Q (1) + Ot Q (1) (45)

2dr

for the new unknown function ¢ (¢, &) = € [ el ©(t,&). We consider the equa-

tion (45) for t > t, where t; = max(1,ty) and t, is such that <lo,c§72tz>2 = 5% Using
the identity E% = @ 152 0:FE% , we find that
L TP N 0, B D(2) - 3)p B (1,€)
7j=1,3
= —id, (z‘tle”'f“"'zf S 2 pup(e) - 3)pgt i, 5)) + Ry, (46)
j=1.3 CLji 2 ’

where

Ry — Z 20, E% 9, (tfleiffwzg D(25 — 3) [ J(t £))-

ey ajzg



The dissipative property of a Schrédinger equation 367

Since |Ry| < Ce3t'(logt)~ % + CeSt1Q~%(t) in the region t€2 > (logt)?, an
application of (46) to (45) yields the equation

iBrpa = O(3t Wlogt)~1) + O(5t Q1 (1)) (47)
for the new function
. ’L t 2 dar 26 a: . 24
Pa(t,€) = r(t,€) + it e L IPTE N T = BUD (25 - 3)p % (8, €).
1.3 ajzf

Integrating (47) over ¢ > t1, we obtain from (43) and (44) that

5
lp2(t)] < Jipalts)| + Ce'™ < Cey + Ce't < 1
for all ¢ € [1,T]. Hence |p(t,€)| < £ for t& > (logt)?. Thus |l¢(t)||lL~ < 5. This
contradicts our assumption. Thus the bound (41) holds for all ¢ € [1,7]. O

Proof of Theorem 1. Lemma 1 establishes that a priori estimates for the norms
lellzr and ||¢|lx, imply an estimate for ||¢||y,. In its turn, Lemma 2 yields
an estimate for ||¢||z, provided that we know estimates for ||¢|x, and ||¢|v,-
Finally, it is proved in Lemma 5 that estimates for |||z, and ||¢|v, yield an
a priori estimate for ||¢|/x,. Thus, using the standard bootstrap, we obtain from
the local existence of solutions (which was established in Theorem 2) that there is
a global-in-time solution ¢ € C([1,00); H') of the Cauchy problem for the equa-
tion (9), and this solution satisfies the bound ||¢||x.. + ||#|lv.. < 2e. To prove the
decay estimate for the solution, we use the formula u(t, z) = t_%Ev(t,E), £E=7,
whence sup, <z |u(t)| = t2 sup¢ <1,z | BVt §)]. Then we see from (44) that

sup [u(t)] — 72 |p(t)|| < Ct™% sup [o(t, &) — @(t,€)] + Ct2|p(t, €) — p(t)]
|z|<VE lel< &

< CEQTE(1)

as t — co. By Lemma 5 this proves the first bound in the theorem. The second
bound is obtained as follows:

lu(t,z)| =t 2|Ev(t, &) <t 2|jv||lp= < Cet™2. O

§4. Appendix

We start with an explicit calculation of the integrals

-~ 1 az dZ
v, = [ Gi@ac [ (-1 T
R 0 N
i (1—sign(1—az2)) 4,

z4/|1 — az|

Uy, =/RGZ,(E)95/OI(E1“; )

for a >0, |b| > 1.



368 P. I. Naumkin

Lemma 6. The following equalities hold:

—2ln<1+21a) for 0<a<1,

o, =
—ln% + 2iarctanva—1 for a>1,

and ¥y, , = Oy — O, where h = b"’Tla, a>0, b >1

Proof. By the identity
o i V 2 ST QYo
/ 675520, df _ m e~ t7 signa (48)
0

lal

we obtain that

. 1 i 5 (1—sign(1— z))
0= [ &0 [ (-0 Tae= [0 ( 1)
R 0 VIT=2] z

We have
1n(1_1_2> for 0<z<1,
/7 - 1+V1—2
VA 2arctany/z—1 for z> 1.
Therefore

—21In for 0<a<1,

(1—|—\/1—a>
o, = 2
—ln%+2iarctan\/a—1 for a>1.

In view of (48) we get

. 1 s ei%(l—sign(l—az)) dz
Gu©; [ (B - 1) 4= Ao — 0,
R 0 zy/|1 — az|
A B /1 (eiz(l—sign(l—az)—&-sign b+sign(122- —b)) 1) dz
b,a 0 /—|1 — hz\ P
We have
A /h(eiz(l—sign(l—gz)—signb(sign(l—z)(l—gz)—l)) 1> dz
b,a = - >
0 VI1— 2| z
where g = # = b+1 Notice that A_; , = 0. To prove the second equality in the
lemma, we use the following identity:
1 —sign(1 — gz) — sign b(sign(l — z)(1 — gz) — 1) = 1 —sign(1 — 2) (49)

for 0 < z < h. Then

h 1% (1—sign(1—gz)—sign b(sign(1—=2)(1—gz)—1))
Ab,a - / (6 : — 1) %
0 |1 — 2| z

h 1% (1—sign(1—=z))
[ ey,
0 V|1 — 2| z
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‘We now calculate the coefficients

Z Xir1-kArpiokr+ D Xkti-3A6—k—1ks

1,3 )
- 2< <l 3—1<k<5—1

ez%(&gn(?j 3)— 1) a; = 2j—4

[2j—3] 2;—3"

where Aj i = ijxp(Pa, + Vs-2ja,), Xj = A

Lemma 7. The following equalities hold:
2
w1:—§b2, wg——u<g+iln3>,

2 3 5
w3 = —4bu(73T — iln3), wg = —%b, ws = —6iu2 In %ﬁ

Proof. By Lemma 6 we have ®,, + Wy, 4, =Py, ,, where h; ;= %iak, bj=3—-25.
J

3, wehave hiy =4, hiz =73, ha =0, hg1 =3, h3z = §.
Moreover, x1 = A1, X2 = A2, X3 = —%)\3. Therefore we find by Lemma 6 that
Dy, =& Dy =Dy, =3+ T Py, =20 3+f, ®,, = 0. We thus
get Ao = 0, Ay = =M, Ag = Jgha(l3+ 5), Agy = 3idi(In3 + %),

Azz = 2v/3)s1n ﬁ7 whence

Since a; = 2 and a3z =

N 2
w1 = x141,1 +x1d23 = —?Ai

- —( 1 i
wa = X2421 + x241,3 = A3 ( In3 — ),

V3 3v3
ws = x3431 + x1413+ x1421 = i)q)\s (lnS + m)7
, , 1= 3
wy = x2423+ x2A11 = —21)\71%2, ws = x3433 = —2iAjIn L
o= ’ V5

By our choice of \; = b, Ay =1, A3 = iu/3 we have xy1 = b, x2 = 1, x3 = p.
Thus we arrive at the result of the lemma. []

In the following lemma we consider
2K:(0) 2(a — 2b) sin(26) K5 (0)

o = o reos@)® (1t acos2) 2

)
where

0s(40)

K1(0) = %%2 sin(46) + 62 <1n 3+6\/5> c

+ g(u — 2b)sin(20) + (In 3)p cos(20) — 4buln3,

K> (0) = 23 b? cos(46) + 6 ( 3+\[) sin(46)

+ — (4 2b) cos(20) — (In3)psin(26) + %Tbu.

w3
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Lemma 8. Suppose that p > 0, b > 0 and p+ b < 1. Then there is a constant

o > 0 such that
(1)

Kg(@l) do’ = o6 + K4(9),
(1)

where K4(0) is a bounded function.

Proof. We write K3(0) = 21K, (0) + K,.(0), where

6p(—1In 3"'\[) cos(40) + (In3)(— cos(260)) + 4b1n 3

Kom(6) = (1 + acos(20))P—1
N (—b)(In3 + 12p(—In ‘Hf) cos(26)) sin®(20)
(1 + acos(20))? ’
K,(0) = 2(27b% sin(46) + % (u — 2b) sin(26))
" (14 acos(20))P-1
2(a — 2b) sin(26) (3% cos(46) + F (u + 2b) cos(26) + 2T bu)
(14 acos(26))? '
Here a = b+ p, B =1+ 2. It is easily seen that f /2 ~(0)do = ﬂ/z K.(0)do
and fﬂ m(0)df = W/2 K (0)df. Hence [ K,.(0)d§ = 0. We shall now show

that [ 7r/ 2 K(0)do = 1,0 > 0. This will prove the lemma with some bounded
function K4(9) since the function K3(0) is periodic with period 7. In the case
when b > u > 0, we write

/2 3+5 T cos(2x)
2 K,,(0)do = —1 d
/0 ©) 6”( "6 ) /0 (1+acosz)P-1 v

+12M(bﬂ)<ln3+\[)/o sin? 2(— cosx)dm

6 (14 acosz)?

T (In3)(—cosx) +4bln3 ™ (b— p)(In3)sin®x
+ dx — d
0 (14 acosz)P-1 0 (14 acosz)?

whence by the identity (1 — 2 cosz)(1 + acosz) — sinz = 1_(1“2

/2 3+V5 g cos(2x)
2 K (0)do = -1 ————d
/o (©) 6”( G )/0 (14 acosz)B-1 v

+12M(b#)(1 3+\[)/0 sin? 2(— cosx)dm

6 (1+acosz)?

—1—25(1113)/077( (—cos:c)dacﬁ +(3b+,u)(ln3)/oﬂ( dx

1+ acosxz)B—1 1+ acosz)P-1

+(b—u)(1n3)1_aa2 /Oﬂ( (Ceosa) 0o,

1+ acosx)s
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Consider the case when 1 > > b > 0. We use the inequality

sin’ 1—cos?zx

- <1
2(14acosz) 2(1+acosz)

Then

/2 ™ 6p(—In 3+\[) cos(2x) + (In3)(— cosx)
2/0 Km(e)d9>/ dx

(14 acosz)f-1

dzx

T (u=b)((1+ f—fb) In3+ p(—121n 3+T\/g) cosz) sin® z
Jr/o (1+ acosz)?

)

3+\/5> /’T (g+cosx)sin2xd
6 0

(1 + acosz)?

> (p— b)u<—12ln

— a _ In3 7"/2
Whereg—mq, Q—W Ifg 1 thean

it remains to consider the case when g <1, that is, b < (u — )% < (u —b)4

m(0)df > 0. Hence

2q ’
which implies that b < M%Z < %,u < ia and, therefore, 8 < % We have

/2
2/ Ko (6) 6 = 61 (— 3t */5)11 + (In3)I5 + 4b(In 3) I3
0

6
3 )
+ u = 6)(03) 1~ 12000~ )~ +6f)15,
where
" cos(2x) T (—cosz)
L = —_ I, = R S
! /0 (1+acosz)?-1 dz, 2 /0 (1+acosz)P-1 de,
T dzx T sin? 2
I3 = —_ I, = i —
8 /0 (1 4+ acosz)P-1’ : /0 (14 acosz)? dz,
T (_ . a2
I :/ (= cosz) sin ; da
o (14 acosz)
By Taylor’s theorem we find that
(1—at)!=? — (1 +at)t=?
= 23— et + C- D21 — )01 - (1460)77Y) > 2(5 - D

for g > 1, t >0, 0 <a < 1. By making the change of variable ¢t = cosz, we get

(" cos(2x) MM =at) P — (14 at) P (262 - 1)
L 7/0 (1+acosz)P-1 d /0 V1-¢2 dt
bet? -1t 2

>2(5—1)a/0 St =SB 1a>0,
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We similarly have

[ _eosm) o (M (A=at) TP A+ at) )
12_/0 mdm—/o Vi dt

1 9 (3 —
22(6—1)(1/0 \/lt_jdt: (521)“.

Again by Taylor’s theorem we have
(1+at)? + (1 — at)?
=2+ B(8—1)a*t? + wa%@((
>2(1—t2) + (24 B(8 — 1)a®)t?

for 6 € (1,2). Therefore,

7 _/7T dx _/1 (1+at)' P+ (1 —at)!=" it
*7 Jo (I+acosz)i—1 — J; JVi_f2

1+&)P73 - (1- &)%)

L2 4 B(8 — 1)a?t?
> dt >,
/0 V1 —1t2 m
T sinfxdr L (1—¢2)3 Y VAR
_ smwrar oo [ UZP)E _1 Al
I /0 (1 +acosz)? 2/0 (1 —azzyp &+ 2+ 50 )“)/0 (1= a2
3 o [ V1 =122
> - VIZEE g
> Srt (2408 - 1)a )/O A

Finally, by Taylor’s theorem, we obtain

BB —1)
2

(1+at)? — (1 —at)? = 2Bat — A ((1—6)°7% — (14 &)%) < 2Bat

for 6 € (1,2). Hence we have
™ (—cosx)sin’®x /1 5 gy V1—t
Is = - dr = 1 ) — (1 —at)’)——55=dt
° /0 (1+acosz)? * 0 ((L+a)”— (1 —at) )(1—a2t2)5

1 2
1— %t
casa [ T
0

dt.
(1— a22)P

Thus for 1 > p > b > 0 we get

/2 92 3
2/ Kpn(0)d0 > (In3) (3ka 57+ (- b))
0

1 — 1242
+ 20— b)(In3)(1 + Bba — pBak) /0 (17% dt,

where
—121n 345

In3
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Using the bound

1 2 1 -1
V1—t%t t 1 /3

/Wdtg/ 1dt<2(—ﬂ) ;
o (1—a%?) o (1—a?t2)P—2 202 \ 2

we find that

/2 2 (n—b)In3 3
(p—0)In3 - 3
+ =) (ﬁ(1+k)+5w2 ba—4—2k>b>0

since b < £. 0

In conclusion I express my gratitude to the anonymous referee for valuable
remarks and suggestions.
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