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Properties of functions in Orlicz spaces that
depend on the geometry of their spectra

Kha Zui Bang

Abstact. We investigate the geometry of the spectra (the supports of the Fourier
transforms) of functions belonging to the Orlicz space Lg(R™) and prove, in par-
ticular, that if f € Lp(R™), 1 < p < oo, and f(z) # 0, then for any point in
the spectrum of f there is a sequence of spectral points with non-zero components
that converges to that point. It is shown that the behaviour of the sequence of
Luxemburg norms of the derivatives of a function is completely characterized by its
spectrum. A new method is suggested for deriving the Nikol’skii inequalities in the
Luxemburg norm for functions with arbitrary spectra. The results are then applied
to establish Paley—Wiener—Schwartz type theorems for cases that are not necessar-
ily convex, and to study some questions in the theory of Sobolev—Orlicz spaces of
infinite order that has been developed in recent years by Dubinskii and his students.

Entire functions of exponential type that are bounded on the real space R™ have
some properties similar to those of trigonometric polynomials. Whereas the trigono-
metric polynomials are a suitable means for approximating periodic functions, the
entire functions of exponential type can serve as a good tool for approximating
non-periodic functions defined on n-dimensional space.

In this paper we study some properties of entire functions of exponential type
(which, as functions of a real variable, belong to the Orlicz space) that depend on
the geometry of their spectra (the supports of the Fourier transforms) and present
some of their applications.

Let f € L,(R™). Then its Fourier transform £(€) will in general be a distribution
(if p > 2), and therefore the geometry of its spectrum is completely opaque. In §1
we investigate the geometry of the spectra of functions in the Orlicz space Lg(R™)
and prove, in particular, that if f € L,(R™), 1 < p < oo, and f # 0, then for any
point of the spectrum of f there is a sequence of spectral points of f with non-
zero components that converges to that point. This investigation has applications
in subsequent sections. In §2 we study the behaviour of the sequence of norms
|ID“fll(®), a = 0, of the derivatives and show that it is completely determined
by the spectrum of f. In §3 a new method is applied to investigate the Nikol’skii
inequalities in the norm of the Orlicz space for functions with arbitrary spectra.
It should be noted that the Nikol’skii inequalities [1], [2], which play a significant
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part in the theory of functions and have extensive and important applications, have
been studied in many papers (for example, see [1]-[5] and the references in [6]). In
§4 we apply the results of the foregoing sections to derive Paley—Wiener—Schwartz
type theorems for cases that are not necessarily convex and to study some questions
in the theory of Sobolev—Orlicz spaces of infinite order that has been developed in
recent years by Dubinskii and his students.

The author would like to express his warmest gratitude to Correspondent Mem-
ber of the Russian Academy of Sciences O.V. Besov for indicating an inaccuracy
in an earlier proof of Theorem 1 of this paper.

§ 0. Preliminaries

Let ®(t): [0, +00) — [0, +00] be an arbitrary Young function, that is, ®(0) = 0,
®(t) =0, ®(t) £0, and ®(t) is convex.
The complementary function of ®(t) is defined as

2(t) = sup{ts — (s}

and is also a Young function. The definition of a Young function readily implies
that ®(t)/t does not decrease on [0, +00) and so neither does ®(t).

Furthermore, let G be a domain in R™ or a torus T”. We denote by Lg(G) the
set of all functions u(z) whose Luxemburg norms satisfy the inequality

ull (@) = inf{A >0 :/ P (@) de < 1} < 00
G

This defines L (G) as a Banach space. It is called an Orlicz space. The Luxemburg
norm is equivalent to the Orlicz norm || - ||¢, and we have

l[ull@) < llulle < 2[|ull(@)-

Recall that || - [|@) = || - |lp if 1 <p < oo and &(t) =P, and || - [[(a) = || - [|oo if
®(t) =0for 0 <t <1and ®(t) =00 for t > 1 (see [7]-[10] for example).

Lemma 1 [10]. Let u € Lg(R™) and v € L1(R™). Then

[uxvlle < [ullellv]l

Lemma 2 [10]. Let u € Ls(G) and v € Lz (G). Then

/|u 2)|dz < llulls|oll5.

Let @ be a domain in R™ and let m € Zy. We denote by W, 2(Q) the Sobolev
space, that is, the completion of C™(Q) with respect to the norm

1/2
Iflm,2=< > ID“fIiQ(Q)> :

laf<m

and by W), ,(Q) the completion of C§°(Q) with respect to this norm.
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We set

1/2
Ho={se 815l = ([ 0+ IFr@Pa)  <oof

R

for s € R. If k € Zy, then we have the topological relation Hy = Wy 2(R™)
(see [11]-[13] for example).

The following notation will be used: F' is the operator of Fourier transformation,
Sp(f) = Supprv AV = {5 € R™: |§j| < Vj, .] = 17"‘7”}7 D= (Dlv"‘vDTL)v
D; = —i%, v; 20, j=1,...,n, and D* = D{"* ... D%». We assume that % =1

and%:oofor)\>0.

§ 1. Spectrum geometry

In this section we study the spectrum geometry for functions belonging to the
Orlicz space Lg(R™).

Theorem 1. Let ®(t) > 0 fort >0, f € La(R™), f(z) Z0, and let £° € R™
be an arbitrary point. Then the support of the distribution F f cannot belong to the
hyperplanes £; = ?, ji=1...,n.

Proof. Let v > 0 be a vector such that £€° € A, and let $(¢) € C$°(R™) be a
function such that @ is equal to unity in a neigbourhood of A,. Then, by virtue of
Lemma 1, F~13 f= px f € Lg(R™). Consequently, it suffices to prove the theorem
only for functions with bounded spectra.

We set h(€) = f(& —£°). Then h(z) = eifomf(a:) belongs to Lg(R™) and has
bounded spectrum.

It remains to show that the support of the distribution A(£) cannot lie in the
hyperplanes §; = 0, j =1,...,n. We prove this by contradiction. Suppose that
the hyperplane §; =0, j=1,...,n, contains the support of the distribution fz(f)
Set

G ={¢er 640, ic\{j}}
foreach j =1,...,n, where I = {1,...,n}. It follows that G; is open. The support
of the distribution w(g)ﬁ(g) lies in the hyperplanes &; = 0 for every function ¢ (§)
belonging to C§°(G;) . Hence, in view of a remark on Theorem 2.3.5 mentioned
n [12], Example 5.1.2, we obtain

N
FHyh) () = g, 21,241, 2n) (—izy), (1)
=0

because suppiL is compact) and

where N is the order of h(¢) (N < oo
I < N, is a distribution with a compact

gl(glv'"7£j*17§j+17"'7§n)7 0 <
support.
Lemma 3 below implies that

CHF Wh)| o < |7 R gy = I1F " % hll@) < 20 F 1Al (@) < oo

for some C > 0. Thus, (1) can hold only if N = 0. Therefore the function
F~1(3h)(x) does not depend on z;.
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Next, by Lemma 1, we have F~1(¢h)(z) € Ls(R™). Consequently, by definition,

[P @)@/ do < oc @)
for some A > 0, whence it follows that

O(|F~1(yh)(x)|/2)) = 0. (3)

Indeed, let
B[P (Wh)(a)]/23) > 0

for a point 2°. Since ®(t) is non-decreasing and F~!(yh)(z) is continuous, we have
®(|F~ (ph)(2)]/2)) = 6

in a neighbourhood of z° for some & > 0. This contradicts (2) because F~(¢h)(z)
does not depend on z;.

From (3) and the assumption that ®(t) > 0, ¢ > 0, we readily see that
F~1(yh)(z) = 0. Whence, since (£) € C§°(G;) is arbitrary, we conclude that
the support of fz({) must lie in the planes & =&; =0, 4,5 €I, © # j.

We now set

Giyy={€eR":&#0, leI\{ij}}

for ¢, € I, i # j. It follows that G;; is open. Repeating the argument used in
the case of G; we can easily prove that (£ )h(€) is identically zero for any function
1 € C§°(Gij). Thus, we have shown that the support of B({) lies in the planes
&1:&2:&320, 11,12,13 € 1. .

Repeating the above argument a further k— 3 times we see that h(£) is supported
at the point & = --- =&, = 0, that is, h(z) is a polynomial, which is possible only
if h(x) = 0. This contradicts the hypotheses of the theorem. Theorem 1 is proved.

Theorem 1 and its proof imply the following results.

Corollary 1. Let ®(¢t) >0, ¢t >0, and f € Ls(R"™). We assume that f(z) £0
and £° € sp(f). Then sp(f) contains a sequence of spectral points with non-zero
components that converges to £°.

Corollary 2. Let ®(t) >0 for t >0, f € Ls(R"?), f(x)#0, and let £° € sp(f)
be an arbitrary point. Then the hyperplanes §; = {?, j=1,....n, cannot contain

the support of the restriction of f({) to any neighbourhood of £°.

Remark 1. The assumption that ®(¢) > 0, ¢ > 0, in the assertion of Theorem 1
cannot be dropped because otherwise Lg(R™) contains all constant functions.

Remark 2. Let 1 < p < oo and let f(z) € L,(R™), f(z) # 0. We assume that
sp(f) is bounded. Then, by virtue of Theorem 1, the support of f (€) cannot belong
to the hyperplanes §; = ?, j =1,...,n, where £° is an arbitrary point. At the
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sin |z|
Tl

same time, f (&) can have a sphere as support. Indeed, let n = 3 and f(z) =
In this case it is known (see [14]) that

sp(f) = {€: ¢l =1},

and it can easily be proved that f(z) € L,(R™) for any p > 3.

Remark 3. Let ®(t) > 0 for t > 0, f € La(R"™), f(z) #0. Let £ € sp(f) be an
arbitrary point. Then an orthogonal transformation of coordinates can be applied
to prove that the support of the restriction of f (&) to an arbitrary neighbourhood
of €% cannot belong to any set of finitely many hyperplanes.

§ 2. Behaviour of the sequence of norms of the derivatives

Let K be a compact set in R” and let ®(¢) be an arbitrary Young function. We
assume that
Mre = {f(l‘) S L@(Rn) : suppr C K}

We begin by studying some properties of the spaces Mg .

Lemma 3. The following continuous embeddings hold:
M1 C Mre C Mioo, (4)

where
Mep = {f(x) € Ly(R") : supp Ff C K}, 1<p< oo

Proof. Let p € C§°(R™) and let & be equal to unity in a neighbourhood of K.
Assume that f € M. Then f = @f. By Lemma 1, this implies that

o+ 5@ = | [ o)1t~ ] < el o
for all x € R™. Consequently,

[fllso =l * flloo < lllzl flle)-

Thus, we have proved the right-hand embedding in (4), and it is possible to choose
the constant

My =inf{|l¢|l5: P € C°(R"), $=1 in aneighbourhood of K}.
Now let g € My and K C A,. Then the Nikol’skii inequality implies that

lglloo < 2" (w1 vm)lgll1-

. 1 |g||oo}
H = inf M>0:<I><—>< .
{ M lgll1

Set
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In this case we have

o) <o i)t

for any € > 0, because it is clear that ®(At) < A®(¢) if 0 < A < 1. It follows that

l9llco < Hlglc-

To prove that the embedding is continuous, we choose a function @ € C§°(R"™)
such that ® = 1 in a neighbourhood of K. Then the already proved right-hand
embedding in (4) implies that

gl = llg * @l < 2lglilglle < oo
Clearly, we have ||¢|le < co. Therefore, the embedding constant can be defined as
2inf{[|¢lle : @ € C§°(R™), =1 in a neighbourhood of K}.

Lemma 3 is proved.

Lemma 4. Let ®(t) > 0 fort > 0. Then

lim f(z)=0 (5)

|z|— o0
for all f € Mk

Proof. Let K C A,. We prove the lemma by contradiction. Assume that there is a
function f € M, 4, a constant ¢ > 0, and a sequence of points || — oco such that

[f(z™)] = 2c, m=1,2,.... (6)

We can suppose without loss of generality that

[ (@) do < oc (7)

and that |z7*| — 0o, m — co. From Lemma 1, the relation

Tl 8

fa@) = fem) = [ o

and the Bernshtein—Nikol’skii inequality [2] it follows that

[f(2) = f(2™)] < vl flloolr — 27" (®)

forallz € R™ and m > 1.
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We set r = ¢/v1|| f||oo; in this case (6) and (8) imply
|lf(z)| =2 c for |z —2*|<r and m>1. 9)
On the other hand, it can be assumed without loss of generality that

1
T+ —z* = m > 1.

Hence, from (7) and (9) we derive
oo>/ a( Z/ _ () de
" m=1Yz—z™|sr

i ®(c) mes B(x Z wr”
m=1

where B(x™,r) is a ball of radius r with centre at the point 2™, which is impossible.
Lemma 4 is proved.

Remark 4. Lemma 4 was proved by Plancherel and Pélya for ®(¢) =7, 1 < p < oo,
using a different method (see [2] for example). It does not hold if there is a point
to > 0 such that ®(¢g) = 0 because in this case Mk ¢ contains all constant functions.

The key result in this section is the solution of the following problem. Let
f € Ly(R™) and let sp(f) be bounded. Then, clearly, D*f(z) € Lg(R™) for all
a > 0. The question is how the sequence ||D®f||(s), a > 0, behaves. It turns out
that its properties are completely characterized by the spectrum of the function f.
Namely, the following theorem is true.

Theorem 2. Let ®(t) be an arbitrary Young function and let f(x) € Le(R™). We
assume that sp(f) is bounded. Then

1/l
i (10° o)/ swpe7l) =1 (10)
|00 sp(f)

Proof. We suppose that f(x) Z 0 and begin by proving that

lim (||Df(e)/1€%) " = 1 (11)

|| =00

for any point £ € sp(f).
Indeed, let £° € sp(f) and 5? #0, j=1,...,n. (By virtue of Theorem 1,

such points exist if ®(¢) > 0 for ¢ > 0.) For convenience, let f? >0, j=1,...,n.
Furthermore, fix an arbitrary number e > 0 such that 2e < f?, j=1,...,n,and a
domain G (£° € G) in the cube K = {£: €9 —e <& <& +e¢, j=1,...,n} and
choose functions 4(¢),5(€) € C5°(G) such that £° € supp(6f) and (6f, @) # 0.
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(FTH(evo©)f 5))’F(¢(§) )>
= (F7H(e"0()f(€), F (¢ @( )>
for any a > 0.
Therefore, by Lemmas 1 and 2,
0 < |(af, @) = {D*(v * [), F@a)| < 2l[v[1|D*f | (@) | FFall 5y, (12)

where Wy (§) = & *W(£), a > 0. We now prove that
IF@all g <CE—207°, a0, (13)

where C is a constant not depending on «, and €0 — 2¢ = (£ — 2¢,..., €0 — 2¢).
Indeed, we have

VBB ED (2) = (=8 [ pPe—ivée—ag _ B izt (¢—ag

(—i)P12P Fo, () <>/G £00(e) de /G<D€ )(€°0(6)) de
= (1) [ e=epd(eale) de

G

for any o, 8 € Z" and z € R". Hence, in view of the Leibniz formula and the
definition of the domain G, we obtain

sup |2° FQ, (z)]

xER™
{7 5 v w1 [l s e
~<B (’8 7)

<O —e)™ Z o H ak ... (ak +v —1) (14)

7<6

for |3] < 2n, where

Cy = max{/ €7D TG(E)|dE vy < v, |y < 2n} < 0.
G

It follows from (14) that

sup |mﬁ@a(1‘)| < Cg(fo —2€)¢
xeR?L

for all |3] < 2n and a > 0. This defines a constant C3 such that

setgn(l +23)... (1+x )|Fwa( ) < Cs(€0 —26)7 (15)

for all o« > 0.
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Next, let Ag, 0 < A\g < o0, be such that ®(C3/)\) < 7~". Then formula (15),
the monotonicity of ®(¢), and ®(\t) < A®(¢), 0 < A < 1, imply

[o(sesa=) =< 2 (marayavan) @
(%) [ wrm s

| F@all gy < Aol —2¢)7°

Therefore, by definition,

for all @ > 0. Thus, we have proved (13).
By combining (12) and (13), we derive

1< lim ((€°—26) Dl (a) /',

|| =00

Hence, since € > 0 is arbitrary and

(50 _ 26)70( 1/l - é-;)
(0 S S50 o
(€) 1<s<n € — 2
we readily obtain (11).

We now prove (11) for the “zero” points. Let £° € sp(f), €% #0, £0...£2 =0,
and, for convenience, let &) >0, j=1,....,k &, =---=£& =0 (1 <k <n).
We note that it suffices to prove (11) only for « such that axy; = -+ = o, = 0,
and in this case the proof is completely analogous to what was done above with
a single modification in the choice of €. Fix an arbitrary number ¢ > 0 such that
2e < mingjck &) and a domain G (£ € G) contained in the cube

K={¢:&—-e<&<+e j=1,...,n}
We next establish (10) for the case where ®(¢) > 0, ¢ > 0. First, let us prove by
contradiction that
1/]al
i (10"l / swp €)1 (16)
|at| =00 sp(f)

Assume that there is a subsequence I; such that

1/lal
1) i (10w / swe) <1, an)
|l =00 sp(f)

where (1) symbolizes that the limit is taken only for the multi-indices & € I;. Then

there is a subsequence I C I; and 8;, 0 < 3; <1, j=1,...,n,such that |5] =1
and o
(IQ) —]:/6']‘, jzl,...,n. (18)

|| =00 |O[|
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We now show that
tim, sup [€7] = sup [¢”) (19)
Bsp(f) sp(f)
if y e R} and v — 8.
Fix an h > 1. Then there is an € > 0 such that hy > § for y € R’ and |[y—3| < e
Furthermore, let |£] < M for all £ € sp(f). Then

€7 = €72/ 1€71" < MPO sup [P
sp(f)

for £ € sp(f) and v € R, |y — ] < e. Consequently,

Tim sup [€7] < MIBIA=1/R) qup |¢8|1/h,
7B sp(f) sp(f)

Letting h tend to 1 we derive the inequality

hm sup |£7]| < sup |§ﬁ|.
Bsp(f) sp(f)

To obtain (19) it remains to prove that

lim sup |€7] > sup |¢7]. (20)
y—Bsp(f) sp(f)

Let £ € sp(f) be a point such that [£*7] = supg, s [€°]. Then by virtue of
Theorem 1 the hyperplanes {; = 0, j = 1,...,n, cannot contain the support of

f(f) Hence, |¢*#| > 0. Next, the support of the restriction of f(f) to an arbitrary
neighbourhood of the point £* cannot lie in the hyperplanes {; =0, j=1,...,n,
either. Therefore, there is a sequence of points ,,& € sp(f), m > 1, such that
m& #0, 5=1,...,n, forany m > 1, and ,,§ = £* as m — oo. This implies

sup [£7] = [m&|
sp(f)

for any m > 1. It follows that

lim sup [£7] > m || = |[m€”].
~—Bsp(f) y—B

Letting m tend to co, we derive (20) and, consequently, (19).
Now let A > 1. Then there is a k > 1 such that A[z£?| > |¢*8|. Hence, (18), (19),
and (11) imply

/e
(I2) lim <||D“f|| w/ up ¢ I) = (L) lim [ D*f5" /1€

\a|~>oo || =00

: a a . o anl/la 1
> (L)y lim D fnéé‘) € = ()5 tim (1Dl /W) > 5

|a|—o0 |a] =00 )‘

This contradicts (17) as A — 1. We have thus proved (16).
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Finally, let us show that

lex|

o 1/lal
(107w swplel) <1 (21)
oo sp(f)

Fix a domain G D sp(f) and a function ¢ € C§°(G) such that ¥(€) is equal to
unity in a neighbourhood of sp(f). We set hq(£) = ¥(£)€%, a > 0. Then it follows
from Holder’s inequality that

P~ haly = / (ha(©)?)"/? de

<([hatora+ |£|2)Sd§)1/2< Jax §|2)5d5>1/2

for any s > n/2. Consequently,
[F ™ hally < C'lhall(s), (22)

where C' = C’(s) does not depend on hy,.
By combining (22) , the topological relation H ) = Wy, 2(R™), and

1D fll @y = [|[F~H (¥(€)€%) * fl| ) < 2/ F ()€Y [|,1f | )
we derive the inequality
ID%fll@) < Cllw(©)€ [, Ml f @), a>0, (23)

where k = [%] + 1 and C does not depend on f or a.
By the Leibniz formula we can find a constant C; = C1(¢, k) such that

[¥(€)€]|,, < Calal* sup {sgp iy <, il < k} . a0 (24)

On the other hand,

o] =

1]l
lim <sup {sup €277y <, < k}) /Sup gl =1 (25)
00 G G

We prove (25) by contradiction. Assume that there is a sequence I; and a number
0 > 1 such that

sup {sup |§°‘_“’|1/‘°‘| vy <a, |y < k} > dsup |§°‘|1/‘0‘|, o€ 1. (26)
G G
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Then there is a subsequence Iy C I, numbers 3;, 0 < §; <1, j=1,...,n,and a
multi-index 7%, [y°] < k, such that |3| = 1 and

0

a; — 5
(I,) lim 2

|a] =00 |Oé|

sup {Sup jeemMlel iy oy |yl < k} = sup |¢> " [Vl
el G

:/6]’ jzla"'7na

for all a € I. Therefore, arguing as in the proof of (19), we obtain
(I) lim sup|¢*™"[V1l = (I) lim sup|€*|"/1*] = sup |€°] > 0,
le|=o0 G la|—o0 G G
which contradicts (26). Relation (25) is proved.
Combining (23)—(25), we derive the inequality

Hm [ D*fllgy" / sup e[/l < 1. (27)
lae| =00 G
We now assume the contrary, namely, that (21) does not hold. Then there is a
subsequence J, A >1and 7, 0< 3; <1, j=1,...,n, such that || = 1 and

. 1/|a
() Jim D flg)" / sup j¢° 17 =X,
sp(f)

o

(J) ﬁj, j:l,...,n.

|| =00 m o
Since (19) remains true if sp(f) is replaced by the set G (this can be proved in a
similar way because G is open), it follows from (27) that

sup |¢7] / sup [¢”] > A
G sp(f)

for any domain G O sp(f), which is impossible because supg, ) |€P| > 0. The proof
of the first case is complete.

We next consider the other case, where ®(tg) = 0 for some ¢y > 0. This turns
out to be more complicated. We note that many of the facts that were used when
proving the former case are false here (for example, relation (19)).

First, we prove that if supg,s) |£¥] = 0, then D®f(z) = 0 (for the same a).
Indeed, it can be assumed without loss of generality that a; #0, j=1,...,k, and

Qg1 =+ =a, =0 (1 <k < n). Hence, the support of f(£) lies in the plane
& =0, je{l,...,k} =1I. It suffices to consider the case oy = --- = oy, = 1.

We show that if the support of £%4(¢)f(€) lies in the plane &, = --- = &, = 0
for some iy,...,i; € I and ¢ € C§°(R™), then D*F~1¢ % f(z) = 0. Indeed, the
support of £%(€)f(€) is in the plane & = --- = & = 0 (for brevity, assume that
ij =3, j=1,...,1). Therefore, taking into account a remark on Theorem 2.3.5

mentioned in [12], Example 5.1.2, we obtain

FHe (O f(©) (@) = Y gaa”) (=), (28)

IBISN
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where N is the order of the distribution f(f) (here N < oo because supp fis

compact), z’ = (z1,...,3;), = (2/,2"), B € Zﬂr, and §g(&1+1,---,&n), Bl <N,
is a distribution with compact support.
On the other hand, Lemmas 1 and 3 imply

[F1 (&) F(©) || = |F(€*0(©) * f]| , < |F~(€*¢(©) ||, I fllse < o0

Consequently, we obtain

FHe () (€)) (@) = D*F 'y x f(2) = go(a”)

from (28).
Let v1 =0, 2 =---=79 =1, and Y441 =:-- =7, =0. Then
Dy, DYF~ Y % f(z) = go(z").
Therefore,

DVF ™Y x f(z) = iz1go(a”) + t(za, . .., 22).

Hence, taking into account that DYF~1¢ % f € L, (which is obvious), we deduce
that go(z’) = 0, that is,
D*F~Y4 % f(x) = 0.

We now claim that the support of the distribution £* f(§) belongs to the plane
& ==&, =0. Indeed, set

Gj={¢eR": & #0, iel\{j}}

for each j € I. Then G, is open. For every ¢ € C§°(G;) we choose a function (&)
belonging to C§°(G;) such that ¢ = 1 in a neighbourhood of supp . Hence, the

support of ¥(€) f (&) belongs to the hyperplane §; = 0, and it follows from what we
have proved that

(£3F(6),0(6)) = (€20 (€), (&) = (D*F 'y x £,§) = 0.
Thus, we have proved that the support of £* f (&) lies in the planes & = & = 0,
i,7 € 1.
Set
Gij = {féRn : fl 75 0, le I\{Z,j}}

for 4,7 € I. Then Gj; is open. By repeating the arguments used in the proof for
the case of G, it can readily be shown that

(€2f(©),0(8)) =0  Vp e C5°(Gy).

Hence, we have proved that the support of the distribution £* f(¢) lies in the planes
gil = giz = &3 = 07 i17i27i3 el
Repeating the above argument a further k£ — 3 times, we see that the support of

&> f(€) is contained in the plane & =--- =&, = 0.
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Let ¢ € C§°(R™) and ¢ = 1 in a neighbourhood of sp(f). Then we have

(D*f,3) = (€2 £(€), 0(€)) = (€29 (&) F(€), 0(€))
= (D°F~ Y f,3) = (0,3) = 0

for any ¢ € C5°(R™). On the other hand, it is known that F(C§°(R™)) is dense
in L1 (R™). Therefore, it follows from the above relations and D®f € Lo (R™) that
Def(z) =0.
What has been proved implies that it suffices to establish (10) only for multi-
indices o > 0 satisfying supy,( ¢y [§%| > 0. Denote by P the set of these multi-indices.
We now prove by contradiction that

1/l
) tim (10l / s e1) =1, (20)
|a|—o00 sp(f)

Suppose that there is a subsequence I C P, a number A\ < 1, and a vector 3 > 0,
|8 = 1, such that

1/l
0 Jim (10l / sup leel) < (30)
=0 sp(f)
I — = 0. 31
@) Jm =5 (31)
We note that
(I) lim sup [¢*["/1*l > 0. (32)

|ae]— 00 sP(f)

For otherwise there is a subsequence J C I such that

(J) lim sup ||Vl = 0. (33)

ol =00 sp(f)
Set
Tioip={a>0:0q; #0,...,05, #0 and a; =0 if j¢ {ir,...,ix}}
for an arbitrary k, 1 < k < n, and 41,...,ix € {1,...,n}. Then there is a k,

1< k<n,andiy,...,ix €{1,...,n} such that J;, ;,, = JNT; . ; is unbounded.
Consequently, it is clear that

(Jiy.ip) Um sup [V > (7, 4,) lim |p*[/1l > 0,

|| =00 sp(f) || =00

where 7 is an arbitrary point in sp(f) such that n;, #0,...,n;, # 0, which contra-
dicts (33). Inequality (32) is proved.
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Next, let o§ € sp(f) : o€ = supgp(py [€¥]. Then o&; # 0,...,4&;, # 0 for
any o € J;,. 4., and it can be assumed without loss of generality that there is a
subsequence such that

(Jil...ik)‘ llim =& (34)

for some point £* € sp(f). Now let us consider the following two cases for this
point £*.
If fz*, #0, j=1,...,k, then, obviously,

(i) il = |67 = (J ) tim_[€ /0

|a] =00

This together with £* € sp(f), (11), and (30) implies

1< (Jins) Tim (D% fll @y /l€%])"

lim
|a|—o0

1/]ef
a0t (ID%Flwy [ swple) <x <1,
|| =00 sp(f)

which is impossible.

In the other case we assume without loss of generality that £ =--- =& =
and & #0,...,& # 0 for some m, 1 <m < k.

It follows from (32) and (34) that £* # 0. Consequently, m < k. Furthermore, in
view of (31), (32), (34), the definition of &, and the hypothesis { =---=¢f =0,
we obtain 3;, =---3;,, = 0. The inequalities

: Xipy i, [V1el +Pim «Pi
(lezk) |o¢1\1£>noo ’O‘gier:rl agik k — é‘im+l+1 - gik k
o, gy, |1/ le
. * m—+1 e
= (lezk) \a1|1£>noo g1 .. é’lk k ,

which are obvious, imply that there is a v € J;,. ;, and an N > 0 such that
lai | < ATHLEL ], l=m+1,...,k, (35)

forall |a| > N, a € J;, ..
On the other hand, it follows from ,&;, #0, ..., ,&, # 0 and

(J’Lllk) llm afzJ :fz :0, j: 1,...,m,

o] =00
that there is an M > 0 such that

la&i; | < 1€, Jj=1...,m,
for all || > M, « € J;,.. i, . This together with (35) gives

lobi, | S ATMLE L, =1,k
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for all |a| > max{M,N}, a € J;, . ;.. Hence,

sup |§a|1/|a\ _ |a£a|1/|a\ < )\—1|V§a|1/\a|’
sp(f)

which together with (11) and (30) implies

1< (Jiay) lim (D% Fll @/l ])

|a] =00

1/]el
< (Jil...ik))\71 lim <|Daf||(q>)/ sup |§a|> < 1.
—00 sp(f)

lex|

Thus, we have arrived at a contradiction. Inequality (29) is proved.
Finally, to complete the proof of the theorem, it remains to show that

1/]el
) T (1071w / swle) " < (36)
lor| =00 sp(f)

We prove (36) by contradiction. Assume that there is a subsequence I C P, a
number h > 1, and a vector 8 > 0, |B| =1, such that

1/l
(I) |ozhi>noo<||Daf|(Cb)/sspl(l?) |§a|) > h, (37)
lim < = 3.
() o Tl B (38)

Using the notation introduced earlier, we can assert that thereisa k, 1 <k < n,
and i1,...,i; € {1,...,n} such that I, ; = INT;. ; is unbounded.
We now have to delete the “bad” points from sp(f). Set

Q={neR": 3{ng} Csp(f), m #0,

jG{il,...,ik}, m =1, lim mfzn}7

m— 00

Qs={z+y: z€Q, [yl <5}, §>0,

and H = R™"\Q. Then Q is closed and H and Qs are open.
Consequently, sp(f) C Qs U H(=R") implies

FE&) =os(OF©) +v()f(€), w5 €C(Qs), e C(H).

Arguing as above, we can prove that D®F~(¢f)(z) = 0 for all o € I, s, .
Hence, in view of (37), it follows that

1/]al
(Liy..i) lim (HDC“F—l(‘P&f)H(@)/SSpl(‘?) |§a|> > h (39)

|a|—o0

for any § > 0.
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On the other hand, repeating the argument used in the proof of (19), we derive
the equation
(Liy..i,) lim sup [¢*[/1%] = sup ¢7]. (40)
|a| =00 Qs Qs
Next, let ,,0 € Q1/m, that is, |m0P| = supg, .. |€P|, m > 1. Then there is a
subsequence {my} (to simplify the notation, we assume that my =k, k > 1) and
a point 6* € @ such that ,,0 — 0*, m — oco. Therefore

0 < sup|&?| < lim |,0°| = |6*7.
Q m—roo

Arguing as in the proof of (20) and taking (38) and the fact that * € Q into
account, we obtain
0% < (Liy...,) lim suple|V/1o], (41)
la]—oo @
Furthermore, noting that inequality (27) was proved for an arbitrary Young func-
tion, we conclude that

1/]al
(Iis) T (D F (orym)] @y / su0 €°1) <1 (42)
|a|—o0 Qi/m
for any m > 1.
We next fix an index m > 1 such that |,,0%| < h|6*4|. Combining (39)-(42), we
obtain

lee| o0 1/m

/e
1> (Illlk) m (HDO‘F_l(QOl/mf)H(q»/qup |§a|>

|a|—o0

> (L) T 7D P 1y |4y /1077

|| =00

_ R 1/]al
> (I 4,) lim A1 <||DC“F_1(<P1/mf)||(¢)/Sgp |§a|>

|a|—o0

|| =00

/el
= (Il lk) lim hil |‘DaF71((p1/mf)H P / sSup |£a| >1,
(@)
sp(f)
which is impossible. The proof of Theorem 2 is complete.

Remark 5. Relation (10) shows that if the spectral points lying “far” from the
origin are known, then it is possible to characterize the behaviour of the sequence
1D fll(®), o >0, without calculating any derivatives. It should be noted that no
constraint on the spectrum geometry is imposed here. The subtlty of these results
consists in the behaviour of the sequence of norms || D f||(s), |a| > 0, being studied
in terms of the support of the Fourier transform of the function f(x) itself, and,
generally, this can have an arbitrary geometry.

Remark 6. Theorem 2 is also true in the case of fractional derivatives. Relation (10)
is false if sp(f) is unbounded. At the same time, the following theorem holds.
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Theorem 3. Let ®(t) be an arbitrary Young function and let f(z) € Lo(R™).

Suppose that sp(f) is bounded with respect to the variables &1,...,& (1 <k <n).
Then DY f(x) € Ls(R™) for all v = (v1,...,1,0,...,0) € Z} and

1/1v|
lim | || D" fll(e)/ sup |£”] =1.
V|~>oo< ( )/sp(f)

In the one-dimensional case, we have a stronger result (see [15]), whose proof
differs substantially from the one in [16].

Theorem 4. Let 0 = ng < ny < --- be a sequence of integers and let ®(t) be an
arbitrary Young function. We assume that D™ f(z) € Lo(R), k=0,1,.... Then
the limit

_ . n 1/nk
dy = lim D" f](4)

always exists, and we have dy = oy = sup{|§| RS sp(f)},

Theorem 5. Let K be an arbitrary compact set in R™ and let (t) be an arbitrary
Young function. Then for any € > 0 there is a constant C, such that

1D flay < Colt + ) (sup e ) 1l
foralla >0 and f € Mks.
Proof. We construct a family

Ta(f) = D*f(2)/(1 + ) sup %, a=0,

of continuous linear operators in 9Mxe. Then, by virtue of Theorem 2, the set
{Ta (fl:az 0} is bounded in Mg for any function f € M. Consequently, by
the Banach—Steinhaus theorem, it is equicontinuous. Theorem 5 is proved.

We now consider the corresponding results for periodic functions.
Let T" be an n-dimensional torus. Denote by Lg(T™) the space of functions u
that are 2m-periodic with respect to each of the variables and such that

ulll (@) = inf{)\ >0: /n ®(Ju(z)|/A) dz < 1} < 0.

The following results can be proved by the method of expansion into Fourier
series.

Theorem 6. Let g € La(T"™) and g(x) £ 0. We assume that sp(g) is bounded.

Then
1/l
lim D~ sup |k =1,
|Ho<“' sllor/ sup | |>

€sp(g

where k € Z™.
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Theorem 7. Let I be an unbounded set of multi-indices and let ®(t) be an arbitrary
Young function. Suppose that the generalized derivatives D®f(x) of a function
f € La(T™) belong to Le(T™) for all « € I. Then

lim ([[|D° |l @/ k%) > 1

|| =00

for an arbitrary point k € sp(f). This inequality is ezact.

§ 3. Nikol’skii’s inequality in the Luxemburg norm

An important series of papers on classes of functions of several variables by
Nikol’skii and his students relates, in particular, to Nikol’skii’s inequality for trigono-
metric polynomials and entire functions of exponential type. This inequality makes
it possible to develop methods in the approximation theory of functions of several
variables with the aid of which relations can be established between the differential
properties of a function in one Lebesgue metric and those in another.

Now recall Nikol’skii’s inequality. Let 1 < p < ¢ < co. Then we have

n 1/p—1/q
wan < 2“( 11 mj) ™
j=1

for trigonometric polynomials of the form

[[£m]

p,27

tM(x> = Z Z C(jl,...,jn) exp(i(jlxl ++]nxn))

Ji=—m1 Jn=—"n

and
n 1/p—1/q
1l < 2“( 11 ) £,
j=1

for entire functions of an exponential type v.

These inequalities have attracted the attention of many mathematicians, for
example, Zygmund [17], Ibragimov [3]-[5], Nessel and Wilmes [18], [19], Triebel [20],
[21], Burenkov [6], and so on.

The Nikol’skii inequalities for symmetric spaces were considered in [22]-[24].

In this section we make an attempt to establish Nikol’skii’s inequality for Orlicz
norms. This is a complicated problem, if only because of the difficulty associated
with (explicitly) comparing Young functions. Note that, by our definition, Orlicz
spaces are not always symmetric.

Definition 1. A function A(t): [0, 4+00) — [0, 4+00] is said to be quasi-convez if
AM) A1),  0<A<IL, t>0. (43)
Clearly, all Young functions are quasi-convex.

A quasi-convex function A(t) is said to be trivial if A(t) = +o0 for all ¢t > 0. It
is obvious that lim;_,o A(t) = 0 if A(¢) is a non-trivial quasi-convex function.
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Definition 2. Let ®(¢) and ¥(¢) be Young functions. We say that ¥ (t) majorizes
®(t) if there is a non-trivial quasi-convex function A(t) such that

(1) < T(A®)), t>0. (44)

Example 1. Let 1 < p < ¢ < oo and let ®(¢) = ¢? and ¥(¢) =t* for ¢ > 0. Then
D(t) = (VPP = W(t1P),  t>0.

Consequently, ¥(t) majorizes ®(t) (here A(t) = t4/P).
Let Ck¢ be the exact constant in the inequality

[flo < Crallfll@  Vf€Mka.
Then we have the following theorem.
Theorem 8. Let ¥(t) majorize ®(t). Then

A(Ckas)
Cka

1fll@) < 1f1l ) (45)
for all f € Myw, where A(t) satisfies (44).

Proof. Let f € Mgy. First, we prove that

(a2 < o
for some M > 0.

To see this, take a sufficiently large M > 0 such that
CruA(Cru (I fllw) +1) /M) < 1.

Then (43) and the inequality |f(z)| < Cxwl| f||(w) imply

o(4(52) (45 )
|f ()] )A<CK¢(||f||<W> +1) ))

h (C’K\I/(||f||(\p)+1 M
f(@)] )

<Y ——.

s <|f|<@>+1

Whence, we conclude that f € Mise and then (46) holds because

/ wI’<|f||]251f)|+1> drst
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Fix an arbitrary A > 0 such that
Jr(a(57))

|f(z)| < Ckallfl(s) < ACke,

N
—_

Then A > [/ f[|(s). Since

it follows that

o((152) (o)) <o)

Therefore,

1lle) < inf{)\ 0 /m@(@)) iz < 1}

<int{n>0: [0y ar <1 = A8y,

The theorem is proved.

Remark 7. If it is only known that

[flle < Cllfll@)  Vf € Mxka,
then the proof of Theorem 8 implies

A(C
171 < 220510y (a7)
for all f € Myy. Hence, it follows from property (43) that
A(Ckas) o A(C)
Cks = C

Remark 8. Let us consider the case ®(t) =t?, ¥(t) =t?, 1 <p < q < co. Here,
according to results of Nikol’skii [1], [2] and Ibragimov [3]-[5], we have

1£lloe < 21 v) ) g

n 1/q
1< ((2) 7o) 151

for all f € M, where s is the smallest integer greater than or equal to ¢/2. Hence,
by (47), we obtain

1F e < (221 o)) P £ s (48)

171l < (((;))/)/m (49)

It turns out that the constant in (48) is less than the corresponding constant
in Nikol’skii’s inequality if ¢ < 2p, while the constant in (49) coincides with
Ibragimov’s constant [3]-[5].
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Definition 3. Let ®(¢) and ¥(¢) be Young functions and let C > 0. We say that
U(t) C-majorizes ®(t) if there is a non-trivial quasi-convex function A(¢) and a
number C* > C such that

®(t) < U(A()), 0<t<Cr.

The following stronger result holds.
Theorem 9. Let U(t) Crg-majorize ®(t). Then (45) holds.

Proof. Let f € Mgy. Repeating the first part of the proof of Theorem 8, we obtain
feMks.
Next, choose an €y > 0 such that

C*(IIf @) =€) = Cral fll(a)-

Then the definition of C'x¢ implies that

f@I<C(Ifl@ —¢), xR,

for all 0 < € < €. It follows that

() <)) e

for any 0 < € < ¢y. Therefore, since

/@(%) dr > 1,

which is implied by the definition of || f||(s), we obtain

o)

for any 0 < € < ¢y. Consequently,

£l (@) <inf{>\> 0/W<A<@)> dz < 1}.

The rest of the argument is as in Theorem 8. The theorem is proved.
The following more exact result can be established in like manner.

Theorem 10. Let ¥(t) Cy¢-majorize ®(t). We assume that f € Ly(R™) and that

sp(f) is bounded. Then

A(Cy)
Cy

1fll(@) < 1f1l ey,

where Cg = || flloo /|1 || (2)-

To derive further Nikol’skii inequalities, we introduce the notion of the order of
a quasi-convex function A(t).
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Definition 4. Let C > 0. The C-order of a quasi-convex function A(t) is defined
as the supremum of all numbers p > 0 such that

AXC) < NPA(C)

for all 0 < A < 1, and is denoted ord A.
The fact that A(t) is quasi-convex implies ord A > 1. It is quite clear that we
have A(AC) < A\"4A(C) forall 0 < A < 1.

Theorem 11. Let ¥(t) Cjro-majorize ®(t). Assume that f € Ly(R™) and that
sp(f) is bounded. Then

Al/ordA(qu))

Cf@ C;fliilA_leH(\P% (5())

[FAIIESES

where Cra = | flloe/Ifliar: Crun = Ifloa/Iflcan)s Ta(t) = T(E"4), and ord A
is the C'to-order of A(t).

Proof. As was shown in the proof of Theorem 8, f € Lg(R™). On the other hand,
the assumption of the theorem implies that

®(t) < U(A(t)), 0<t<Cr, (51)

where C'te < C* is some number.
Furthermore, let us choose an ¢y > 0 such that

C*(IIf @) — €0) = Crallfll (@)

Then the definition of C'yg implies

f@I<C*(Ifl@ —¢), xR,

for all €, 0 < € < €. This together with (51) yields

() <)) o=

for any €, 0 < € < €y. Therefore, since
/@(M)d:ﬂ>l Ve > 0,
£ ) —e

o))

for every €, 0 < € < ¢g. It follows that

|f|(q>)<inf{A>o;/x11<A<|f(;>|)>dxg1}. (52)

we obtain
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We now fix an arbitrary A > 0 such that

[o(a(M0))ar
A
Then it follows from (52) that A > || f||(s). Consequently,
£ ()] £ ()] @)\
= < .
A( X A XCro Cra | < \Cra A(Cta)
Hence, taking (52) into account, we obtain
1l < inf{)\ >0 /m@(@)) dz < 1}
ord A
< inf )\>0:/\If 1 @)] A(Css) | dr <1
ACro

— inf{)\ >0: /@(('f(@'A;g:A(Cf‘I’))MdA) dz < 1}

AVeAC,) [ (@)
_C—félnf{)\>0./\:p1<T) dx < 1}7

because W1 (t) = ¥(t°"44) is a Young function and ||8f]|(w,) = |8] || f||(w,) for any 3.
Thus, we have proved that

Al/ord A(Cf(p)

<
Iflw < =

11l ws)-

Hence, on applying Theorem 10 for the pair of functions ¥, (¢) and ¥(¢), we obtain

Al/ ord A(qu)>

<
Il < =

Cre T o

The theorem is proved.

Let us consider the case ®(t) = ¢4, U(t) =t?, 1 < p < ¢ < co. Here we
have A(t) = t%/? and the C-order of A(t) is equal to g/p for all C > 0. In this
situation the constant in inequality (50) is equal to C’%p , because in this case we
have ¥ (£) = (1), where Cr, = [|floo /|| o

It should be noted that, in contrast to the well-known Nikol’skii inequalities,
the constants in Theorems 10 and 11 depend on the function itself (and not on its
class).

We next consider Nikol’skii’s inequality for trigonometric polynomials.

Let K be a compact subset in R™. Denote by Pxe the space of all functions
f € Ly(T™) such that sp(f) C K. In this case, it is easy to prove that there is
a continuous embedding Pxe C Proo, Where Pr o, is the space of all bounded
periodic functions with spectrum on K.

Arguing as above, we can easily establish the following results.
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Theorem 12. Let ¥(t) Cj4-majorize ®(t). Then

A(Cka)

1A lll@) < =7 lllw
@S g ()

for all f € Pxw, where Cl 4 is the exact constant in the inequality

1 flllee < ClIIfIl()-

Theorem 13. Let ¥U(t) C}y-majorize ®(t). Assume that f € Ly(T") and that
sp(f) is bounded. Then

A(CFs)
Cis

ey < [ ewys

where Cy = N oo /I Nl (@)-

Theorem 14. Let ¥(t) C}g-majorize ®(t) and let f € Ly (T"). We suppose that
sp(f) is bounded. Then

1/ord A

) oA
L2209 A1 £l oy

@) € —F——

where Cig = || fllloo /I ll@), Chay = Iflloo/Hfll(wyy, T1(t) = L1 (t"4), and
ord A is the Cg-order of A(t).

8 4. Some applications
Let 0 < Ay Soofor a€Z} andlet G{Aa} = 50{& € R" : [£%] < Ao}
Definition 5. We call G{\,} the set generated by the number sequence {Aq}.

Obviously, G{A.} is closed, (r1&1,...,mnén) € G{Aa} if £ € G{A\o} and |r;| < 1,
j=1,...,n, and we have

6oy =cf sw el

EeG{a}

The set G{\,} is compact if, for example, A\, < oo Va > 0.
We note that G{)\,} can be non-convex. For example, let n = 2 and

)\(i,j) = 2|,Lij‘ VZ,] c Z+.
The set

which is called the cross of the hyperbola, is non-convex.
Let K C R™. If we set g(K) = G {supg ||}, then K C g(K). We call g(K)
the g-hull of K.
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Definition 6. A set K is said to possess the g-property if K = g(K).

It is clear that any set G{\,} generated by a number sequence possesses the
g-property and, obviously, vice versa.

Lemma 5. Let I be a family of indices and let K; = g(K;), i € I. Then )

’LGI
also possesses the g-property.
Proof. Let x € g (ﬂzel 1) and let j € I. Then
|z%| < sup{|§a ¢e)Ki } sup{|¢®|: € € K}
el

for any o € Z'}. Hence, z € g(K;) = K;. Therefore z € (;.; K;

The following question arises: does every compact set K such that

z €K, -1< ) <1, i=1...,n =  (Miz1,...,\pzy) €K (53)

possess the g-property? The answer turns out to be negative. Indeed, let K be
a subset of G = {(z,y) € R? : |zy| < 1, |z| < 2, |yl < 2} such that K
possesses property (53), K # G, and K includes the points ( , ) and ( ) Such
sets K obviously exist, for example, K = {|z| <2, |y|<i}u{|z|< 3, |y| 2}.
It follows that

sup |z'y’| = 21791 = sup [2"y7 |

K G

for all integers 7,7 > 0. Consequently, K does not possess the g-property.

Lemma 6. Fvery symmetric convex compact set possesses the g-property.

Proof. Let K be a symmetric convex compact set in R™. It can easily be seen
that K satisfies (53). Furthermore, let y ¢ K. Then there is a vector a € R™ such
that
ay > sup ax, (54)
rzeK

where a€ = a1& + - - - + an&n, by the convexity of K. From (53), we have

sup az = sup (Jay@1| + -+ + |an®nl). (55)
zeK zeK
It also follows from (53) that y ¢ K if and only if (|y1,...,|yn|) ¢ K. Hence, it
suffices to consider only the case y > 0 for which, by virtue of (54) and (55), there
is a vector a such that a; >0 and a; =0ify; =0, j=1,...,n
For convenience, we assume that y; >0, j=1,...,n.

Let x € Ki ={z € K : x > 0}. In this case, a Well known classical inequality
implies

(%)ay — <a1y1$1/yl +---+ anynmn/yn>alyl+m+anyn
ay a1y1 + -+ GnYn

a1yi AnYn
I x
2 <_) o <_n) '
Y1 Yn
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Therefore, in view of (54), we obtain

a1y1 AnYn
T T

1> sup (—1) (—n) .
zeKy \ Y1 Yn

On approximating a;y; by rational numbers, we can write

p1/q1 Pn/dn
X X
1> sup (—1> (—n) ,
:EEK+ U1 Yn

where p; > 0 and ¢; > 0, j = 1,...,n, are integers. Consequently, it follows
from (53) that
y® > sup z® = sup |z%|,
ceEK zeK
where a; = q1...¢np;/q;, j=1,...,n. This means that y ¢ g(K) for any y ¢ K.
The proof is complete.

We now prove the non-convex version of the Paley—Wiener—Schwartz theorem
characterizing the relationship between the behaviour of the sequence of norms of
the derivatives of a function and the support of its Fourier transform.

It is clear that the set G{\,} generated by a number sequence does not change
under the replacement A,z — )‘? if there is an m > 1 and a 8 > 0 such that
MG < Amg. Hence, it can always be assumed in the definition of G{\.} that

A7 > Apa VYm=1, a0 (56)

Definition 7. A sequence {\,} is said to be regular if {\,} satisfies condition (56).
Theorem 15. Let ®(t) be an arbitrary Young function and let f € Lg(R™).

Assume that G{Aa} is bounded and that {\,} is a regular sequence. In this case
we have sp(f) C G{\.} if and only if the following condition holds:

— /el
m (IDfl@y/Ae) <1 (57)

m
|| =00

Proof. Let sp(f) C G{\o}. Then

WV
o

sup €% < Aq, o
sp(f)

Consequently, by Theorem 2, we obtain (57).

Conversely, let (57) hold. We note that inequality (11) also holds in the case
when sp(f) is unbounded. Therefore, (11), (57), and the fact that the sequence {\,}
is regular readily imply that sp(f) is bounded. Whence, in view of Theorem 2,

- 1/l
lim (sup |§°‘|/)\a) <L

la]=20 \sp(f)
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Consequently, given an arbitrary € > 0, there is an index N < co such that

sup [€7] < (1+€)*Na,  [a] = N.
sp(f)

On the other hand, since the sequence {)\,} is regular, we have

sup [€% < (1 + e)lo“)\a
sp(f)

for all a > 0. It follows that

sp(f) C (1+€)G{ )}
Letting € tend to 0, we obtain sp(f) C G{\,}. The theorem is proved.

We next apply the above results to the theory of Sobolev—Orlicz spaces of infinite
order to resolve some problems arising in the study of non-linear differential equa-
tions of infinite order with coefficients of arbitrary rate of growth. The theory of
spaces of infinite order was introduced by Dubinskii and studied by him and also
by Balashova, Chan Dyk Van, Klenina, Konyaev, Kobilov, Umarov, Agadzhanov,
Groshev, and the author of the present paper, among others. The following
questions have been considered: non-triviality, theory of traces, relationship with
boundary-value problems, geometric properties, and so on (for example,
see [25]-[27] and the references there). It should be noted that the theory of infinite-
order function spaces differs from that of finite-order spaces if only in the fact that
the question of the existence of a non-zero element (that is, the question of non-
triviality) is not at all simple in the former. The positive answer to this question
plays a key role in the theory of boundary-value problems for infinite-order differ-
ential equations. The problem of finding solutions to boundary-value problems for
infinite-order equation is meaningful if the corresponding energy spaces are non-
trivial (see [28]—[31] for example).

Let I be an unbounded set of integer indices @ = (a1, ..., ), ¢; > 0, where
j=1,...,n,and let ®,(t), « € I, be an arbitrary Young function. Then

WeL{®,,R"} = {f(x) €8 ID*fllwa) < oo}

acl

is called a Sobolev—Orlicz space of infinite order.

Let us derive a non-triviality condition for W L{®,,R"}. We assume that
0 € I and ®y(t) > 0, ¢ > 0, because otherwise W L{®,,R"} is non-trivial. An
application of Theorem 2 yields the following theorem [31].

Theorem 16. The space WX L{®,,R"} is non-trivial if and only if there exist
numbers C,q > 0 such that
Z ®,(Cql?) < 0. (58)

acl

We now describe the properties of functions belonging to W L{®,,R"}.
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Definition 8. Assume that condition (58) holds. Denote by Cg the union of all
points £ € R™ such that

> 2, (C5 sup |x°‘|> < o0 (59)

acl EGGg

for some domain G¢ > ¢ and a number C¢ > 0. Clearly, G is open, non-empty,
and symmetric with respect to the origin.

Theorem 17. Assume that condition (58) holds. Then
FC(Ge)] € WXL{®4,R"},

and W L{®,,R"} does not contain any function F~lg(z) if g € C°(R™) and
suppg N (R"\Gs) # @.

Proof. Let ¢(§) € C§°(Gg). Then for any point & € supp ¢ there is a bounded

domain G¢ > ¢ satisfying condition (59). Since supp ¢ is compact, we can find an
index M < oo, a number C' > 0, and bounded domains G; such that

M
supp ¢ C U G;

=1
and

Z@a<Csup|§a|) < 00, ji=1,...,M. (60)

acl G
Next, let us define

G*:{(tlfl,...,tn§n>IfEG, —1<t]‘<1, j:].,...,n}
for every domain G. Then G* is also a domain and

sup [€%] = sup €7 (61)
G G*

for all @ > 0. By virtue of the compactness of supp ¢, we have

M

suppp C A U G; (62)
j=1

for some A\, 0 < A < 1.

Let ¥(z) = (F~1p)(z). Then v € Mg1, where for brevity we set K = supp .
We assume for convenience that C' = 1.

We now prove that ¢ € W>*L{®,,R"}. First,

P D ()| < /K D% (£ (€)) | de

' n
< Z L._aﬂkl;[lak...(ak—7k+1)/K|£a—’YDB—'V(p(£)|d£

< 1B
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for any «, 8 > 0. Hence, taking

1 !
[T (=7 +1) < o, Z%:gm
k=1 v<p v

into account, we obtain
|2 DYy (z)| < 22"|a|*" Oy, max {sup €7 v <a, |y < 2n}
K
for all z € R", a >0, and |3| < 2n, where

Can = max{. [ D70l 57 <5, 9] <20},

On the other hand, (25) implies
1/]al
lim (max {sup €77y <, |y < 2n}> /sup gt/ el = 1,
o] =00 K K

Consequently, for any € > 0 there is a C¢ such that

(1+ad)... (L +2)|D*(x)] < 22" ConCelal™ (1 + )T sup €] (63)
K

forallz €e R® and a > 0.
From (62) and (63) we obtain

(1+ x%) L1+ mi)|D°‘1/)(ac)| < 22”02n06|a|2”(1 + e)‘o‘l)\lo“ sup |€%]
G*

for G* = UL, G7.
Let € > 0 satisfy (1 +¢)A <1 and let (1 + €)X = A1q, where 0 < A; and ¢ < 1.
Then
lim |o?"(1 + 6>\a|)\|1a\ =0

|a|—o0

implies that
D (@) < (L+af) .. (1+25) g sup €%

for all o] > Ny and = € R™. It follows that

DY@, = inf{v >0: / %(%) dz < 1}

ginf{'y>0:/ o, (q'o‘sup|§°‘|/’y(1+x%)...(1+xi)> dxgl}
R™ G*

n

< inf{'y >0: 9P, (qo‘l sup |§°‘|/7) / A4zt (1+22) tde < 1}
G* n
= inf {'y >0:7"®, (qlo‘ sup |§°‘|/7) < 1} (64)
G*

for |a] = Nj.
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On the other hand, (60) and (61) imply

Z@ (sup |£O‘> | ax, ¢’Q<Sé1p |£O‘) ZZ@ (sup |£O‘) 0.
acl 7T J

a€el j=lacl

Consequently, there is an index N3 < co such that
P, (sup |£a|> <7 " ol = Na.
G*

Therefore

T, (qa' sup |£“|/q°"> <1, |a| > N
This inequality and (64) imply that
1D |(@.) < g (65)

for all |a| > Ny = max{Ny, Na2}.

But inequality (63) clearly shows that D*¢(z) € Lg(R™) for any Young function
®(t) and for all & > 0. Hence, in view of (65), we have ¢(z) € W*L{®,,R"}.
The first part of Theorem 17 is proved.

We now prove the second part. Let g(§) € C§°(R™) be a function such that
suppg N (R"\G3) = @. Then, since R"\Gs is open, it follows that there is a point
£esuppyg, & #0, j=1,...,n, and a neighbourhood Ug C R™\Gg, ¢ € Us.

But ¢ ¢ G implies that there is an » < 1 such that

> 2, <Cr|°‘ sup |a;°‘|> (66)

acl

for any C < oo and any domain G¢ 3 &, because otherwise Vr <1 3C,, 3G¢ 3 &

Zq) ( ro‘lsup|xo‘|> < 00,

acl

that is,
Z D, (C,« sup |z!*! |> < 0.
acl rGe

We note that £ € rG¢ for some r < 1. Fix such an r and set @) = rG¢. Then we

obtain
Z(I) (C sup|ma|> < o0,

acl

and therefore £ € G, which is impossible. Relation (66) is proved.
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We next prove by contradiction that f = F~1g ¢ W>*L{®,,R"}. Assume that
[ € WeL{®,,R"} and also that ) ., |D*fll(s,) < 1, which does not restrict
the generality. Set

ool
_ flx+1t)dt, h>0.
mes B(0, h) B(0,h) ( )

Jensen’s inequality implies that

fu(z) =

1 «@
m/}g(w D, (|D f(z +1)]) dt.

On the other hand, it can be assumed that all the functions @,(t), « € I, are
continuous on the left. For if some ®(t) is not continuous on the left, then there is
a point ty > 0 such that

o (|D7 fu(x)]) <

lim ®(t) < ®(tg) < 00, O(t) =00 for t>t.

t—to—

We set
B(t), t £ to,
w(t) = _( ) # to
llmt*)t()i @(t), t= to.

Then ¥(¢) is a Young function continuous on the left, and we have

I llewy = II - l)-

Hence, ®(t) can be replaced by ¥(t).

Therefore
/ B (D" f(z)]) dx < ||D° f oy
implies
1
o, (| D —————,
> 01D hil) < g T (67)

acl

because || D fl|(3.,) < 1 (see [7]-]9]). It is clear from the corresponding definition
that f(z) converges weakly in S’ (f, — f as h — 0). This implies the weak
convergence of g5 in S" (G — f ). It follows that the point £ defined above belongs
to supp fh for sufficiently small A > 0, because £ € supp f = suppg.

Fix a sufficiently small & > 0 such that & € supp f,. Then (11) implies

lim (| D falloo/I6%) 1! 2 1.

|| =00
Hence, for any € > 0 there is a C. > 0 such that

ID*fulloe > Ce(L —)Me?],  ael (68)



Properties of functions in Orlicz spaces 431

On the other hand, {; # 0, j = 1,...,n, implies that for any A > 1 there is a
neighbourhood G of £ such that

sup 27| < Al*l[¢?| (69)
zeG

for all « > 0.
Let us choose a A > 1 and an € > 0 such that A=!(1 — €) > r. Then (67)—(69)

imply

Z(I,a (CJ“' Sgp|§a ) Z(I, (C A |oc\ )Ioc\ Sgp |£a|)

acl acl

1
<Y @ (C1- o) < 3 2 I\D"fhlloo)\m’

acl acl

which is impossible by virtue of (66). The theorem is proved.

Theorem 18. Assume that condition (58) holds. The space W L{®,,R"} con-
tains all functions f € L1(R™) with sp(f) C Go, but does not contain any function
g € Li(R") with sp(g) N (R"\Cs) # @. Moreover, if ®,(t) > 0, t > 0, for an
a €I, then sp(g)N(R™"\Cs) = @ for any g € WX L{®,,R"}. Otherwise the latter
fact is not true.

Proof. Let f € L1(R™) and sp(f) C Gg. Choose a function g(§) € C§°(Gg) such
that @(£) is equal to unity in a neighbourhood of sp(f). Then the inequalities

1D fll(@.) = I F* D¥¢ll@.) < 2[ D% ¢ll(@n), @€l

and Theorem 17 readily imply f € W L{®,,R"}, because ¢ € W>*L{®,,R"}.

The proof that W L{®,,R"} does not contain any function g € L;(R™) with
sp(g9) N (R"\Cs) # @ is perfectly analogous to the argument in the proof of the
second part of Theorem 17 (by Corollary 1, if £ € sp(g) is an arbitrary point, then
sp(g) contains a sequence of points with non-zero components that converges to &).

Furthermore, let ®5(t) >0, ¢t > 0, for a 8 € I, and g(z) € W*L{®,,R"}. It
suffices to consider only the case g(z) Z 0, when the inequalities || D? gll(@,) < 00,
ll9]l(®4) < 00, and Theorem 1 imply the following:

if DPg(x) = 0, then sp(g) C {0}, whence sp(g) N (R"\Cg) =

if DBg(z) # 0, then the support of the restriction of §(£) to an arbitrary neigh-
bourhood of any point belonging to sp(g) does not lie in the hyperplanes &; = 0,
j=1...,n

Hence, the desired assertion can be proved by analogy with the proof of the
second part of Theorem 17.

We conclude by constructing a counterexample. Let n > 2 and

n
I, = m,...,m,mQ,m,...,m):m}O}, I = I
() U

i1 =1



432 Kha Zui Bang

We assume that ®,(t) = 0for 0 <t < 1and ®4(¢t) =occfort>1landalla €]
(that is, for || - [[@.) = |l - o). Then it can easily be seen that G = M, where
M = {f eER": | <1, j= 1,...,n}. For if x ¢ M, then there is an index j,
1 < j < n, such that |z;| > 1. We consider a neighbourhood U, and an arbitrary
number C, 0 < C < oco. It follows that there is a § > 0 such that

sup |£%| > 9(”_1)m|mj|m2, o= (m, oomomZm, ... ,m>
ccU, T
for all @ € I;,. Hence, since 6" !z;|™ — oo as m — oo, we obtain
B, (Csupgcy, 1€%]) = oo for sufficiently large o, « € I;. This means that = ¢ Gg.

Moreover, the inequality |x;| > 1 implies that there is a neighbourhood V' of x
such that |y;| > 1 for any point y € V. Consequently, V N Go = @. Therefore,
r ¢ Gy. We have thus proved that

GoCM={{cR":|§]| <1, j=1,...,n}.

On the other hand, the choice of the functions @, (t) implies that M C Gg. Hence,
Gs = M because G is always open.
Finally, note that any function

p(x) = gz, 2n1) = FT3),  B(€) € C(R™),

belongs to W L{®,,R"}, because D%p(z) =0 for all @ € I, |a| > 0. This means
that the relation sp(g) N (R"\Cs) = & is false. The theorem is proved.

Remark 9. We have shown that the relation sp(g) N (R"\Cg) = @ can be false for
n > 2 if for any a € T there is a t, > 0 such that ®,(¢t,) = 0. A stronger result
holds for n = 1.

Theorem 19. Suppose that the corresponding condition (58) holds. Then we have
sp(9) N (R'\Cs) = @ for any g € WL{®,,,R'}.

Proof. We prove the theorem by contradiction. Assume that there is a function
g(z) € W*L{®,,,R'} and a point ¢ € sp(g) such that ¢ € R'\Gg. Then we have
Gg = (—b,b), 0 <b< o0, and [¢] > b.

Define

1 h
gn(z) = E/o g(x +1t)dt, h > 0.

Then, as was shown in the proof of Theorem 17, we have

1
Z (I)m(”Dmthoo) < E < 00,

mel

because it can be assumed that ) ; [|[D™g||(s,,) < 1. Next, the weak convergence
Jn — ¢ in S’ implies that £ € supp gy for sufficiently small A > 0. Fix such an
h > 0. Then (11) implies

lim || D™ gu||50™ = [€].

m—r oo
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For the sake of definiteness, assume that £ > 0. Then we can find € and C' with
0 <e¢, C < oo such that £ —e > b and

D™ ghlloc = C(§ =€),  m=0.

Therefore,

Z P, (C(€—€)™) < oo,

mel

which is impossible, because £ — € > b and G = (—b,b). The theorem is proved.
Theorem 20. Assume that condition (58) holds. Then

Go CU{sp(g) : g € W¥L{®,,R"}}.

Proof. Theorem 17 implies
Go C U{sp(g) : g € W*L{®,,R"}}.

Furthermore, let £ € G3\Gg. Then there is a subsequence {¢¥} C Gg such that
& - €% as k — oo and € # €', k # 1. Suppose that €, > 0 and k > 1 are
such that B(¢*,ex) N B(¢',¢) = @ and B(¢F,€e;) C Go, k > 1. Choose functions
Pr(€) € C5°(B(&*, €r)) and numbers y; > 0 such that 5 (€¥) #0, k> 1, and

(o]
Z%|||<Pk||\ < oo.

k=1

Then ¢(z) = Y po; Yeor(z) € WPL{®,,R"} and £° € sp(¢p). The theorem is
proved.
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