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Properties of functions in Orlicz spaces that

depend on the geometry of their spectra

Kha Zui Bang

Abstract. We investigate the geometry of the spectra (the supports of the Fourier
transforms) of functions belonging to the Orlicz space LΦ(Rn) and prove, in par-
ticular, that if f ∈ Lp(Rn), 1 ≤ p < ∞, and f(x) 6≡ 0, then for any point in
the spectrum of f there is a sequence of spectral points with non-zero components
that converges to that point. It is shown that the behaviour of the sequence of
Luxemburg norms of the derivatives of a function is completely characterized by its
spectrum. A new method is suggested for deriving the Nikol’skii inequalities in the
Luxemburg norm for functions with arbitrary spectra. The results are then applied
to establish Paley–Wiener–Schwartz type theorems for cases that are not necessar-
ily convex, and to study some questions in the theory of Sobolev–Orlicz spaces of
infinite order that has been developed in recent years by Dubinskii and his students.

Entire functions of exponential type that are bounded on the real space Rn have
some properties similar to those of trigonometric polynomials. Whereas the trigono-
metric polynomials are a suitable means for approximating periodic functions, the
entire functions of exponential type can serve as a good tool for approximating
non-periodic functions defined on n-dimensional space.

In this paper we study some properties of entire functions of exponential type
(which, as functions of a real variable, belong to the Orlicz space) that depend on
the geometry of their spectra (the supports of the Fourier transforms) and present
some of their applications.

Let f ∈ Lp(Rn). Then its Fourier transform f̂(ξ) will in general be a distribution
(if p > 2), and therefore the geometry of its spectrum is completely opaque. In § 1
we investigate the geometry of the spectra of functions in the Orlicz space LΦ(Rn)
and prove, in particular, that if f ∈ Lp(Rn), 1 6 p <∞, and f 6≡ 0, then for any
point of the spectrum of f there is a sequence of spectral points of f with non-
zero components that converges to that point. This investigation has applications
in subsequent sections. In § 2 we study the behaviour of the sequence of norms
‖Dαf‖(Φ), α > 0, of the derivatives and show that it is completely determined
by the spectrum of f . In § 3 a new method is applied to investigate the Nikol’skii
inequalities in the norm of the Orlicz space for functions with arbitrary spectra.
It should be noted that the Nikol’skii inequalities [1], [2], which play a significant
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part in the theory of functions and have extensive and important applications, have
been studied in many papers (for example, see [1]–[5] and the references in [6]). In
§ 4 we apply the results of the foregoing sections to derive Paley–Wiener–Schwartz
type theorems for cases that are not necessarily convex and to study some questions
in the theory of Sobolev–Orlicz spaces of infinite order that has been developed in
recent years by Dubinskii and his students.

The author would like to express his warmest gratitude to Correspondent Mem-
ber of the Russian Academy of Sciences O.V. Besov for indicating an inaccuracy
in an earlier proof of Theorem 1 of this paper.

§ 0. Preliminaries

Let Φ(t) : [0,+∞)→ [0,+∞] be an arbitrary Young function, that is, Φ(0) = 0,
Φ(t) > 0, Φ(t) 6≡ 0, and Φ(t) is convex.

The complementary function of Φ(t) is defined as

Φ(t) = sup
s>0

{
ts− Φ(s)

}
and is also a Young function. The definition of a Young function readily implies
that Φ(t)/t does not decrease on [0,+∞) and so neither does Φ(t).

Furthermore, let G be a domain in Rn or a torus Tn. We denote by LΦ(G) the
set of all functions u(x) whose Luxemburg norms satisfy the inequality

‖u‖(Φ) = inf

{
λ > 0 :

∫
G

Φ

(
|u(x)|
λ

)
dx 6 1

}
<∞.

This defines LΦ(G) as a Banach space. It is called an Orlicz space. The Luxemburg
norm is equivalent to the Orlicz norm ‖ · ‖Φ, and we have

‖u‖(Φ) 6 ‖u‖Φ 6 2‖u‖(Φ).

Recall that ‖ · ‖(Φ) = ‖ · ‖p if 1 6 p < ∞ and Φ(t) = tp, and ‖ · ‖(Φ) = ‖ · ‖∞ if
Φ(t) = 0 for 0 6 t 6 1 and Φ(t) =∞ for t > 1 (see [7]–[10] for example).

Lemma 1 [10]. Let u ∈ LΦ(Rn) and v ∈ L1(Rn). Then

‖u ∗ v‖Φ 6 ‖u‖Φ‖v‖1.

Lemma 2 [10]. Let u ∈ LΦ(G) and v ∈ LΦ (G). Then∫
G

|u(x)v(x)| dx 6 ‖u‖Φ‖v‖Φ.

Let Q be a domain in Rn and let m ∈ Z+. We denote by Wm,2(Q) the Sobolev
space, that is, the completion of Cm(Q) with respect to the norm

‖f‖m,2 =

( ∑
|α|6m

‖Dαf‖2L2(Q)

)1/2

,

and by W 0
m,2(Q) the completion of C∞0 (Q) with respect to this norm.
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We set

H(s) =

{
f ∈ S′ : ‖f‖(s) =

(∫
Rn

(
1 + |ξ|2

)s|Ff(ξ)|2 dξ
)1/2

<∞
}

for s ∈ R. If k ∈ Z+, then we have the topological relation H(k) = Wk,2(Rn)
(see [11]–[13] for example).

The following notation will be used: F is the operator of Fourier transformation,
sp(f) = suppFf , ∆ν =

{
ξ ∈ Rn : |ξj | 6 νj, j = 1, . . . , n

}
, D = (D1, . . . , Dn),

Dj = −i ∂
∂xj

, νj > 0, j = 1, . . . , n, and Dα = Dα1
1 . . . Dαn

n . We assume that 0
0 = 1

and λ
0 =∞ for λ > 0.

§ 1. Spectrum geometry

In this section we study the spectrum geometry for functions belonging to the
Orlicz space LΦ(Rn).

Theorem 1. Let Φ(t) > 0 for t > 0, f ∈ LΦ(Rn), f(x) 6≡ 0, and let ξ0 ∈ Rn
be an arbitrary point. Then the support of the distribution Ff cannot belong to the
hyperplanes ξj = ξ0

j , j = 1, . . . , n.

Proof. Let ν > 0 be a vector such that ξ0 ∈ ∆ν and let ϕ̂(ξ) ∈ C∞0 (Rn) be a
function such that ϕ̂ is equal to unity in a neigbourhood of ∆ν . Then, by virtue of
Lemma 1, F−1ϕ̂f̂ = ϕ∗f ∈ LΦ(Rn). Consequently, it suffices to prove the theorem
only for functions with bounded spectra.

We set ĥ(ξ) = f̂(ξ − ξ0). Then h(x) = eiξ
0xf(x) belongs to LΦ(Rn) and has

bounded spectrum.
It remains to show that the support of the distribution ĥ(ξ) cannot lie in the

hyperplanes ξj = 0, j = 1, . . . , n. We prove this by contradiction. Suppose that

the hyperplane ξj = 0, j = 1, . . . , n, contains the support of the distribution ĥ(ξ).
Set

Gj =
{
ξ ∈ Rn : ξi 6= 0, i ∈ I\{j}

}
for each j = 1, . . . , n, where I = {1, . . . , n}. It follows that Gj is open. The support

of the distribution ψ(ξ)ĥ(ξ) lies in the hyperplanes ξj = 0 for every function ψ(ξ)
belonging to C∞0 (Gj) . Hence, in view of a remark on Theorem 2.3.5 mentioned
in [12], Example 5.1.2, we obtain

F−1(ψĥ)(x) =
N∑
l=0

gl(x1, . . . , xj−1, xj+1, . . . , xn)(−ixj)l, (1)

where N is the order of ĥ(ξ) (N < ∞ because supp ĥ is compact) and
ĝl(ξ1, . . . , ξj−1, ξj+1, . . . , ξn), 0 6 l 6 N , is a distribution with a compact
support.

Lemma 3 below implies that

C−1
∥∥F−1(ψĥ)

∥∥
∞ 6

∥∥F−1(ψĥ)
∥∥

(Φ)
= ‖F−1ψ ∗ h‖(Φ) 6 2‖F−1ψ‖1‖h‖(Φ) <∞

for some C > 0. Thus, (1) can hold only if N = 0. Therefore the function

F−1(ψĥ)(x) does not depend on xj .
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Next, by Lemma 1, we have F−1(ψĥ)(x) ∈ LΦ(Rn). Consequently, by definition,∫
Rn

(
|F−1(ψĥ)(x)|

/
λ
)
dx <∞ (2)

for some λ > 0, whence it follows that

Φ
(
|F−1(ψĥ)(x)|

/
2λ
)
≡ 0. (3)

Indeed, let

Φ
(
|F−1(ψĥ)(x0)|

/
2λ
)
> 0

for a point x0. Since Φ(t) is non-decreasing and F−1(ψĥ)(x) is continuous, we have

Φ
(
|F−1(ψĥ)(x0)|

/
2λ
)
> δ

in a neighbourhood of x0 for some δ > 0. This contradicts (2) because F−1(ψĥ)(x)
does not depend on xj .

From (3) and the assumption that Φ(t) > 0, t > 0, we readily see that

F−1(ψĥ)(x) ≡ 0. Whence, since ψ(ξ) ∈ C∞0 (Gj) is arbitrary, we conclude that

the support of ĥ(ξ) must lie in the planes ξi = ξj = 0, i, j ∈ I, i 6= j.
We now set

Gij =
{
ξ ∈ Rn : ξl 6= 0, l ∈ I\{i, j}

}
for i, j ∈ I, i 6= j. It follows that Gij is open. Repeating the argument used in

the case of Gj we can easily prove that ψ(ξ)ĥ(ξ) is identically zero for any function

ψ ∈ C∞0 (Gij). Thus, we have shown that the support of ĥ(ξ) lies in the planes
ξi1 = ξi2 = ξi3 = 0, i1, i2, i3 ∈ I.

Repeating the above argument a further k−3 times we see that ĥ(ξ) is supported
at the point ξ1 = · · · = ξn = 0, that is, h(x) is a polynomial, which is possible only
if h(x) ≡ 0. This contradicts the hypotheses of the theorem. Theorem 1 is proved.

Theorem 1 and its proof imply the following results.

Corollary 1. Let Φ(t) > 0, t > 0, and f ∈ LΦ(Rn). We assume that f(x) 6≡ 0
and ξ0 ∈ sp(f). Then sp(f) contains a sequence of spectral points with non-zero
components that converges to ξ0.

Corollary 2. Let Φ(t) > 0 for t > 0, f ∈ LΦ(Rn), f(x) 6≡ 0, and let ξ0 ∈ sp(f)
be an arbitrary point. Then the hyperplanes ξj = ξ0

j , j = 1, . . . , n, cannot contain

the support of the restriction of f̂(ξ) to any neighbourhood of ξ0.

Remark 1. The assumption that Φ(t) > 0, t > 0, in the assertion of Theorem 1
cannot be dropped because otherwise LΦ(Rn) contains all constant functions.

Remark 2. Let 1 6 p < ∞ and let f(x) ∈ Lp(Rn), f(x) 6≡ 0. We assume that

sp(f) is bounded. Then, by virtue of Theorem 1, the support of f̂(ξ) cannot belong
to the hyperplanes ξj = ξ0

j , j = 1, . . . , n, where ξ0 is an arbitrary point. At the
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same time, f̂(ξ) can have a sphere as support. Indeed, let n = 3 and f(x) = sin |x|
|x| .

In this case it is known (see [14]) that

sp(f) =
{
ξ : |ξ| = 1

}
,

and it can easily be proved that f(x) ∈ Lp(Rn) for any p > 3.

Remark 3. Let Φ(t) > 0 for t > 0, f ∈ LΦ(Rn), f(x) 6≡ 0. Let ξ0 ∈ sp(f) be an
arbitrary point. Then an orthogonal transformation of coordinates can be applied
to prove that the support of the restriction of f̂(ξ) to an arbitrary neighbourhood
of ξ0 cannot belong to any set of finitely many hyperplanes.

§ 2. Behaviour of the sequence of norms of the derivatives

Let K be a compact set in Rn and let Φ(t) be an arbitrary Young function. We
assume that

MKΦ =
{
f(x) ∈ LΦ(Rn) : suppFf ⊂ K

}
.

We begin by studying some properties of the spaces MKΦ.

Lemma 3. The following continuous embeddings hold :

MK1 ⊂MKΦ ⊂MK∞, (4)

where
MKp =

{
f(x) ∈ Lp(Rn) : suppFf ⊂ K

}
, 1 6 p 6∞.

Proof. Let ϕ̂ ∈ C∞0 (Rn) and let ϕ̂ be equal to unity in a neighbourhood of K.

Assume that f ∈MKΦ. Then f̂ = ϕ̂f̂ . By Lemma 1, this implies that

|ϕ ∗ f(x)| =
∣∣∣∣ ∫ ϕ(y)f(x− y) dy

∣∣∣∣ 6 ‖ϕ‖Φ‖f‖(Φ)

for all x ∈ Rn. Consequently,

‖f‖∞ = ‖ϕ ∗ f‖∞ 6 ‖ϕ‖Φ‖f‖(Φ).

Thus, we have proved the right-hand embedding in (4), and it is possible to choose
the constant

M1 = inf
{
‖ϕ‖Φ : ϕ̂ ∈ C∞0 (Rn), ϕ̂ = 1 in a neighbourhood of K

}
.

Now let g ∈MK1 and K ⊂ ∆ν . Then the Nikol’skii inequality implies that

‖g‖∞ 6 2n(ν1 . . . νn)‖g‖1.

Set

H = inf

{
M > 0 : Φ

(
1

M

)
6 ‖g‖∞‖g‖1

}
.
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In this case we have∫
Φ

(
|g(x)|

‖g‖∞(H + ε)

)
dx 6 Φ

(
1

H + ε

)
‖g‖1
‖g‖∞

6 1

for any ε > 0, because it is clear that Φ(λt) 6 λΦ(t) if 0 6 λ 6 1. It follows that

‖g‖(Φ) 6 H‖g‖∞.

To prove that the embedding is continuous, we choose a function ϕ̂ ∈ C∞0 (Rn)
such that ϕ̂ = 1 in a neighbourhood of K. Then the already proved right-hand
embedding in (4) implies that

‖g‖(Φ) = ‖g ∗ ϕ‖(Φ) 6 2‖g‖1‖ϕ‖Φ <∞.

Clearly, we have ‖ϕ‖Φ <∞. Therefore, the embedding constant can be defined as

2 inf
{
‖ϕ‖Φ : ϕ̂ ∈ C∞0 (Rn), ϕ̂ = 1 in a neighbourhood of K

}
.

Lemma 3 is proved.

Lemma 4. Let Φ(t) > 0 for t > 0. Then

lim
|x|→∞

f(x) = 0 (5)

for all f ∈MKΦ.

Proof. Let K ⊂ ∆ν . We prove the lemma by contradiction. Assume that there is a
function f ∈MνΦ, a constant c > 0, and a sequence of points |xm| → ∞ such that

|f(xm)| > 2c, m = 1, 2, . . . . (6)

We can suppose without loss of generality that∫
Rn

Φ
(
|f(x)|

)
dx <∞ (7)

and that |xm1 | → ∞, m→∞. From Lemma 1, the relation

f(x)− f(xm) =

∫ x1

xm1

∂

∂t1
f(t) dt

and the Bernshtein–Nikol’skii inequality [2] it follows that

|f(x)− f(xm)| 6 ν1‖f‖∞|x1 − xm1 | (8)

for all x ∈ Rn and m > 1.
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We set r = c/ν1‖f‖∞; in this case (6) and (8) imply

|f(x)| > c for |x1 − xm1 | 6 r and m > 1. (9)

On the other hand, it can be assumed without loss of generality that

xm+1
1 − xm1 > r, m > 1.

Hence, from (7) and (9) we derive

∞ >

∫
Rn

Φ
(
|f(x)|

)
dx >

∞∑
m=1

∫
|x−xm|6r

Φ
(
|f(x)|

)
dx

>
∞∑
m=1

Φ(c)mesB(xm, r) =
∞∑
m=1

πrnΦ(c) =∞,

where B(xm, r) is a ball of radius r with centre at the point xm, which is impossible.
Lemma 4 is proved.

Remark 4. Lemma 4 was proved by Plancherel and Pólya for Φ(t) = tp, 1 6 p <∞,
using a different method (see [2] for example). It does not hold if there is a point
t0 > 0 such that Φ(t0) = 0 because in this caseMKΦ contains all constant functions.

The key result in this section is the solution of the following problem. Let
f ∈ LΦ(Rn) and let sp(f) be bounded. Then, clearly, Dαf(x) ∈ LΦ(Rn) for all
α > 0. The question is how the sequence ‖Dαf‖(Φ), α > 0, behaves. It turns out
that its properties are completely characterized by the spectrum of the function f .
Namely, the following theorem is true.

Theorem 2. Let Φ(t) be an arbitrary Young function and let f(x) ∈ LΦ(Rn). We
assume that sp(f) is bounded. Then

lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

= 1. (10)

Proof. We suppose that f(x) 6≡ 0 and begin by proving that

lim
|α|→∞

(
‖Dαf‖(Φ)/|ξα|

)1/|α| > 1 (11)

for any point ξ ∈ sp(f).
Indeed, let ξ0 ∈ sp(f) and ξ0

j 6= 0, j = 1, . . . , n. (By virtue of Theorem 1,

such points exist if Φ(t) > 0 for t > 0.) For convenience, let ξ0
j > 0, j = 1, . . . , n.

Furthermore, fix an arbitrary number ε > 0 such that 2ε < ξ0
j , j = 1, . . . , n, and a

domain G (ξ0 ∈ G) in the cube K = {ξ : ξ0
j − ε 6 ξj 6 ξ0

j + ε, j = 1, . . . , n} and

choose functions v̂(ξ), ω̂(ξ) ∈ C∞0 (G) such that ξ0 ∈ supp(v̂f̂) and 〈v̂f̂ , ŵ〉 6= 0.



406 Kha Zui Bang

Let ψ ∈ C∞0 (G) and ψ = 1 in a neighbourhood of supp ŵ. Then

〈v̂f̂ , ŵ〉 =
〈
ψ(ξ)ξ−αξαv̂(ξ)f̂(ξ), ŵ(ξ)

〉
=
〈
ξαv̂(ξ)f̂(ξ), ψ(ξ)ξ−αŵ(ξ)

〉
=
〈
F−1

(
ξαv̂(ξ)f̂(ξ)

)
, F
(
ψ(ξ)ξ−αŵ(ξ)

)〉
=
〈
F−1

(
ξαv̂(ξ)f̂(ξ)

)
, F
(
ξ−αŵ(ξ)

)〉
for any α > 0.

Therefore, by Lemmas 1 and 2,

0 < |〈v̂f̂ , ŵ〉| = |〈Dα(v ∗ f), F ŵα〉| 6 2‖v‖1‖Dαf‖(Φ)‖Fŵα‖( Φ ), (12)

where ŵα(ξ) = ξ−αŵ(ξ), α > 0. We now prove that

‖Fŵα‖( Φ ) 6 C(ξ0 − 2ε)−α, α > 0, (13)

where C is a constant not depending on α, and ξ0 − 2ε = (ξ0
1 − 2ε, . . . , ξ0

n − 2ε).
Indeed, we have

(−i)|β|xβFω̂α(x) = (−i)|β|
∫
G

xβe−ixξξ−αω̂(ξ) dξ =

∫
G

(Dβ
ξ e
−ixξ)

(
ξ−αω̂(ξ)

)
dξ

= (−1)|β|
∫
G

e−ixξDβ
(
ξ−αω̂(ξ)

)
dξ

for any α, β ∈ Zn+ and x ∈ Rn. Hence, in view of the Leibniz formula and the
definition of the domain G, we obtain

sup
x∈Rn

|xβFω̂α(x)|

6
∑
γ6β

{
β!

γ! (β − γ)!

n∏
k=1

αk . . . (αk + γk − 1)

∫
G

|ξ−(α+γ)Dβ−γω̂(ξ)| dξ
}

6 C1(ξ
0 − ε)−α

∑
γ6β

β!

γ! (β − γ)!

n∏
k=1

αk . . . (αk + γk − 1) (14)

for |β| 6 2n, where

C1 = max

{∫
G

|ξ−γDν−γω̂(ξ)| dξ : γ 6 ν, |ν| 6 2n

}
<∞.

It follows from (14) that

sup
x∈Rn

|xβω̂α(x)| 6 C2(ξ
0 − 2ε)−α

for all |β| 6 2n and α > 0. This defines a constant C3 such that

sup
x∈Rn

(1 + x2
1) . . . (1 + x2

n)|Fω̂α(x)| 6 C3(ξ
0 − 2ε)−α (15)

for all α > 0.
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Next, let λ0, 0 < λ0 < ∞, be such that Φ(C3/λ0) 6 π−n. Then formula (15),
the monotonicity of Φ(t), and Φ(λt) 6 λΦ(t), 0 6 λ 6 1, imply∫

Φ

(
|Fω̂α|

λ0(ξ0 − 2ε)−α

)
dx 6

∫
Φ

(
C3

λ0(1 + x2
1) . . . (1 + x2

n)

)
dx

6 Φ

(
C3

λ0

)∫
dx

(1 + x2
1) . . . (1 + x2

n)
6 1.

Therefore, by definition,

‖Fω̂α‖( Φ ) 6 λ0(ξ
0 − 2ε)−α

for all α > 0. Thus, we have proved (13).
By combining (12) and (13), we derive

1 6 lim
|α|→∞

(
(ξ0 − 2ε)−α‖Dαf‖(Φ)

)1/|α|
.

Hence, since ε > 0 is arbitrary and(
(ξ0 − 2ε)−α

(ξ0)−α

)1/|α|
6 max

16j6n
ξ0
j

ξ0
j − 2ε

,

we readily obtain (11).
We now prove (11) for the “zero” points. Let ξ0 ∈ sp(f), ξ0 6= 0, ξ0

1 . . . ξ
0
n = 0,

and, for convenience, let ξ0
j > 0, j = 1, . . . , k, ξ0

k+1 = · · · = ξ0
n = 0 (1 6 k < n).

We note that it suffices to prove (11) only for α such that αk+1 = · · · = αn = 0,
and in this case the proof is completely analogous to what was done above with
a single modification in the choice of ε. Fix an arbitrary number ε > 0 such that
2ε < min16j6k ξ0

j and a domain G (ξ0 ∈ G) contained in the cube

K = {ξ : ξ0
j − ε 6 ξj 6 ξ0

j + ε, j = 1, . . . , n}.

We next establish (10) for the case where Φ(t) > 0, t > 0. First, let us prove by
contradiction that

lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

> 1. (16)

Assume that there is a subsequence I1 such that

(I1) lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

< 1, (17)

where (I1) symbolizes that the limit is taken only for the multi-indices α ∈ I1. Then
there is a subsequence I2 ⊂ I1 and βj , 0 6 βj 6 1, j = 1, . . . , n, such that |β| = 1
and

(I2) lim
|α|→∞

αj

|α| = βj , j = 1, . . . , n. (18)
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We now show that
lim
γ→β

sup
sp(f)

|ξγ | = sup
sp(f)

|ξβ | (19)

if γ ∈ Rn+ and γ → β.
Fix an h > 1. Then there is an ε > 0 such that hγ > β for γ ∈ Rn+ and |γ−β| 6 ε.

Furthermore, let |ξ| 6M for all ξ ∈ sp(f). Then

|ξγ | = |ξγ−β/h| |ξβ|1/h 6M |γ−β/h| sup
sp(f)

|ξβ |1/h

for ξ ∈ sp(f) and γ ∈ Rn+, |γ − β| 6 ε. Consequently,

lim
γ→β

sup
sp(f)

|ξγ | 6M |β|(1−1/h) sup
sp(f)

|ξβ |1/h.

Letting h tend to 1 we derive the inequality

lim
γ→β

sup
sp(f)

|ξγ | 6 sup
sp(f)

|ξβ |.

To obtain (19) it remains to prove that

lim
γ→β

sup
sp(f)

|ξγ | > sup
sp(f)

|ξβ |. (20)

Let ξ∗ ∈ sp(f) be a point such that |ξ∗β | = supsp(f) |ξβ |. Then by virtue of
Theorem 1 the hyperplanes ξj = 0, j = 1, . . . , n, cannot contain the support of

f̂(ξ). Hence, |ξ∗β | > 0. Next, the support of the restriction of f̂(ξ) to an arbitrary
neighbourhood of the point ξ∗ cannot lie in the hyperplanes ξj = 0, j = 1, . . . , n,
either. Therefore, there is a sequence of points mξ ∈ sp(f), m > 1, such that

mξj 6= 0, j = 1, . . . , n, for any m > 1, and mξ → ξ∗ as m→∞. This implies

sup
sp(f)

|ξγ | > |mξγ |

for any m > 1. It follows that

lim
γ→β

sup
sp(f)

|ξγ | > lim
γ→β
|mξγ | = |mξβ |.

Letting m tend to ∞, we derive (20) and, consequently, (19).
Now let λ > 1. Then there is a k > 1 such that λ|kξβ | > |ξ∗β |. Hence, (18), (19),

and (11) imply

(I2) lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

= (I2) lim
|α|→∞

‖Dαf‖1/|α|(Φ)

/
|ξ∗β |

> (I2)
1

λ
lim
|α|→∞

‖Dαf‖1/|α|(Φ)

/
|kξβ | = (I2)

1

λ
lim
|α|→∞

(
‖Dαf‖(Φ)

/
|kξα|

)1/|α| > 1

λ
.

This contradicts (17) as λ→ 1. We have thus proved (16).
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Finally, let us show that

lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

6 1. (21)

Fix a domain G ⊃ sp(f) and a function ψ ∈ C∞0 (G) such that ψ(ξ) is equal to
unity in a neighbourhood of sp(f). We set hα(ξ) = ψ(ξ)ξα, α > 0. Then it follows
from Hölder’s inequality that

‖F−1hα‖1 =

∫ (
|ĥα(ξ)|2

)1/2
dξ

6
(∫

|ĥα(ξ)|2
(
1 + |ξ|2

)s
dξ

)1/2(∫ (
1 + |ξ|2

)−s
dξ

)1/2

for any s > n/2. Consequently,

‖F−1hα‖1 6 C′‖hα‖(s), (22)

where C′ = C′(s) does not depend on hα.
By combining (22) , the topological relation H(k) = Wk,2(Rn), and

‖Dαf‖(Φ) =
∥∥F−1

(
ψ(ξ)ξα

)
∗ f
∥∥

(Φ)
6 2
∥∥F−1

(
ψ(ξ)ξα

)∥∥
1
‖f‖(Φ),

we derive the inequality

‖Dαf‖(Φ) 6 C
∥∥ψ(ξ)ξα

∥∥
k,2
‖f‖(Φ), α > 0, (23)

where k =
[
n
2

]
+ 1 and C does not depend on f or α.

By the Leibniz formula we can find a constant C1 = C1(ψ, k) such that

∥∥ψ(ξ)ξα
∥∥
k,2
6 C1|α|k sup

{
sup
G
|ξα−γ | : γ 6 α, |γ| 6 k

}
, α > 0. (24)

On the other hand,

lim
|α|→∞

(
sup

{
sup
G
|ξα−γ | : γ 6 α, |γ| 6 k

})1/|α|/
sup
G
|ξα|1/|α| = 1. (25)

We prove (25) by contradiction. Assume that there is a sequence I1 and a number
δ > 1 such that

sup

{
sup
G
|ξα−γ |1/|α| : γ 6 α, |γ| 6 k

}
> δ sup

G
|ξα|1/|α|, α ∈ I1. (26)



410 Kha Zui Bang

Then there is a subsequence I2 ⊂ I1, numbers βj , 0 6 βj 6 1, j = 1, . . . , n, and a
multi-index γ0, |γ0| 6 k, such that |β| = 1 and

(I2) lim
|α|→∞

αj − γ0
j

|α| = βj , j = 1, . . . , n,

sup

{
sup
G
|ξα−γ |1/|α| : γ 6 α, |γ| 6 k

}
= sup

G
|ξα−γ0 |1/|α|

for all α ∈ I2. Therefore, arguing as in the proof of (19), we obtain

(I2) lim
|α|→∞

sup
G
|ξα−γ0 |1/|α| = (I2) lim

|α|→∞
sup
G
|ξα|1/|α| = sup

G
|ξβ | > 0,

which contradicts (26). Relation (25) is proved.
Combining (23)–(25), we derive the inequality

lim
|α|→∞

‖Dαf‖1/|α|(Φ)

/
sup
G
|ξα|1/|α| 6 1. (27)

We now assume the contrary, namely, that (21) does not hold. Then there is a
subsequence J , λ > 1 and βj , 0 6 βj 6 1, j = 1, . . . , n, such that |β| = 1 and

(J) lim
|α|→∞

‖Dαf‖1/|α|(Φ)

/
sup
sp(f)

|ξα|1/|α| = λ,

(J) lim
|α|→∞

αj

|α| = βj , j = 1, . . . , n.

Since (19) remains true if sp(f) is replaced by the set G (this can be proved in a
similar way because G is open), it follows from (27) that

sup
G
|ξβ |
/

sup
sp(f)

|ξβ | > λ

for any domain G ⊃ sp(f), which is impossible because supsp(f) |ξβ | > 0. The proof
of the first case is complete.

We next consider the other case, where Φ(t0) = 0 for some t0 > 0. This turns
out to be more complicated. We note that many of the facts that were used when
proving the former case are false here (for example, relation (19)).

First, we prove that if supsp(f) |ξα| = 0, then Dαf(x) ≡ 0 (for the same α).
Indeed, it can be assumed without loss of generality that αj 6= 0, j = 1, . . . , k, and

αk+1 = · · · = αn = 0 (1 6 k 6 n). Hence, the support of f̂(ξ) lies in the plane
ξj = 0, j ∈ {1, . . . , k} = I. It suffices to consider the case α1 = · · · = αk = 1.

We show that if the support of ξαψ(ξ)f̂ (ξ) lies in the plane ξi1 = · · · = ξil = 0
for some i1, . . . , il ∈ I and ψ ∈ C∞0 (Rn), then DαF−1ψ ∗ f(x) ≡ 0. Indeed, the

support of ξαψ(ξ)f̂(ξ) is in the plane ξ1 = · · · = ξl = 0 (for brevity, assume that
ij = j, j = 1, . . . , l). Therefore, taking into account a remark on Theorem 2.3.5
mentioned in [12], Example 5.1.2, we obtain

F−1
(
ξαψ(ξ)f̂(ξ)

)
(x) =

∑
|β|6N

gβ(x
′′)(−ix′)β , (28)
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where N is the order of the distribution f̂(ξ) (here N < ∞ because supp f̂ is
compact), x′ = (x1, . . . , xl), x = (x′, x′′), β ∈ Zl+, and ĝβ(ξl+1, . . . , ξn), |β| 6 N ,
is a distribution with compact support.

On the other hand, Lemmas 1 and 3 imply∥∥F−1
(
ξαψ(ξ)f̂(ξ)

)∥∥
∞ =

∥∥F−1
(
ξαψ(ξ)

)
∗ f
∥∥
∞ 6

∥∥F−1
(
ξαψ(ξ)

)∥∥
1
‖f‖∞ <∞.

Consequently, we obtain

F−1
(
ξαψ(ξ)f̂(ξ)

)
(x) = DαF−1ψ ∗ f(x) = g0(x

′′)

from (28).
Let γ1 = 0, γ2 = · · · = γk = 1, and γk+1 = · · · = γn = 0. Then

Dx1D
γF−1ψ ∗ f(x) = g0(x

′′).

Therefore,
DγF−1ψ ∗ f(x) = ix1g0(x

′′) + t(x2, . . . , xn).

Hence, taking into account that DγF−1ψ ∗ f ∈ L∞ (which is obvious), we deduce
that g0(x

′′) ≡ 0, that is,
DαF−1ψ ∗ f(x) ≡ 0.

We now claim that the support of the distribution ξαf̂(ξ) belongs to the plane
ξ1 = · · · = ξk = 0. Indeed, set

Gj =
{
ξ ∈ Rn : ξi 6= 0, i ∈ I\{j}

}
for each j ∈ I. Then Gj is open. For every ϕ ∈ C∞0 (Gj) we choose a function ψ(ξ)
belonging to C∞0 (Gj) such that ψ = 1 in a neighbourhood of suppϕ. Hence, the

support of ψ(ξ)f̂ (ξ) belongs to the hyperplane ξj = 0, and it follows from what we
have proved that〈

ξαf̂(ξ), ϕ(ξ)
〉

=
〈
ξαψ(ξ)f̂ (ξ), ϕ(ξ)

〉
= 〈DαF−1ψ ∗ f, ϕ̂〉 = 0.

Thus, we have proved that the support of ξαf̂(ξ) lies in the planes ξi = ξj = 0,
i, j ∈ I.

Set
Gij =

{
ξεRn : ξl 6= 0, l ∈ I\{i, j}

}
for i, j ∈ I. Then Gij is open. By repeating the arguments used in the proof for
the case of Gj , it can readily be shown that〈

ξαf̂(ξ), ϕ(ξ)
〉

= 0 ∀ϕ ∈ C∞0 (Gij).

Hence, we have proved that the support of the distribution ξαf̂(ξ) lies in the planes
ξi1 = ξi2 = ξi3 = 0, i1, i2, i3 ∈ I.

Repeating the above argument a further k− 3 times, we see that the support of
ξαf̂(ξ) is contained in the plane ξ1 = · · · = ξk = 0.
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Let ψ ∈ C∞0 (Rn) and ψ = 1 in a neighbourhood of sp(f). Then we have

〈Dαf, ϕ̂〉 =
〈
ξαf̂(ξ), ϕ(ξ)

〉
=
〈
ξαψ(ξ)f̂ (ξ), ϕ(ξ)

〉
= 〈DαF−1ψ ∗ f, ϕ̂〉 = 〈0, ϕ̂〉 = 0

for any ϕ ∈ C∞0 (Rn). On the other hand, it is known that F
(
C∞0 (Rn)

)
is dense

in L1(Rn). Therefore, it follows from the above relations and Dαf ∈ L∞(Rn) that
Dαf(x) ≡ 0.

What has been proved implies that it suffices to establish (10) only for multi-
indices α > 0 satisfying supsp(f) |ξα| > 0. Denote by P the set of these multi-indices.

We now prove by contradiction that

(P ) lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

> 1. (29)

Suppose that there is a subsequence I ⊂ P , a number λ < 1, and a vector β > 0,
|β| = 1, such that

(I) lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

< λ, (30)

(I) lim
|α|→∞

α

|α| = β. (31)

We note that

(I) lim
|α|→∞

sup
sp(f)

|ξα|1/|α| > 0. (32)

For otherwise there is a subsequence J ⊂ I such that

(J) lim
|α|→∞

sup
sp(f)

|ξα|1/|α| = 0. (33)

Set

Ti1...ik =
{
α > 0 : αi1 6= 0, . . . , αik 6= 0 and αj = 0 if j /∈ {i1, . . . , ik}

}
for an arbitrary k, 1 6 k 6 n, and i1, . . . , ik ∈ {1, . . . , n}. Then there is a k,
1 6 k 6 n, and i1, . . . , ik ∈ {1, . . . , n} such that Ji1...ik = J ∩ Ti1...ik is unbounded.
Consequently, it is clear that

(Ji1...ik) lim
|α|→∞

sup
sp(f)

|ξα|1/|α| > (Ji1...ik) lim
|α|→∞

|ηα|1/|α| > 0,

where η is an arbitrary point in sp(f) such that ηi1 6= 0, . . . , ηik 6= 0, which contra-
dicts (33). Inequality (32) is proved.
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Next, let αξ ∈ sp(f) : |αξα| = supsp(f) |ξα|. Then αξi1 6= 0, . . . , αξik 6= 0 for
any α ∈ Ji1...ik , and it can be assumed without loss of generality that there is a
subsequence such that

(Ji1...ik) lim
|α|→∞

αξ = ξ∗ (34)

for some point ξ∗ ∈ sp(f). Now let us consider the following two cases for this
point ξ∗.

If ξ∗ij 6= 0, j = 1, . . . , k, then, obviously,

(Ji1...ik) lim
|α|→∞

|αξα|1/|α| = |ξ∗β | = (Ji1...ik) lim
|α|→∞

|ξ∗α|1/|α|.

This together with ξ∗ ∈ sp(f), (11), and (30) implies

1 6 (Ji1...ik) lim
|α|→∞

(
‖Dαf‖(Φ)

/
|ξ∗α|

)1/|α|
= (Ji1...ik) lim

|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

< λ < 1,

which is impossible.
In the other case we assume without loss of generality that ξ∗i1 = · · · = ξ∗im = 0

and ξ∗im+1
6= 0, . . . , ξ∗ik 6= 0 for some m, 1 6 m 6 k.

It follows from (32) and (34) that ξ∗ 6= 0. Consequently, m < k. Furthermore, in
view of (31), (32), (34), the definition of αξ, and the hypothesis ξ∗i1 = · · · = ξ∗im = 0,
we obtain βi1 = · · ·βim = 0. The inequalities

(Ji1...ik) lim
|α|→∞

∣∣∣αξαim+1

im+1
. . . αξ

αik
ik

∣∣∣1/|α| = ∣∣∣ξ∗βim+1

im+1
. . . ξ∗

βik

ik

∣∣∣
= (Ji1...ik) lim

|α|→∞

∣∣∣ξ∗αim+1

im+1
. . . ξ∗

αik

ik

∣∣∣1/|α|,
which are obvious, imply that there is a ν ∈ Ji1...ik and an N > 0 such that

|αξil | 6 λ−1|νξil |, l = m+ 1, . . . , k, (35)

for all |α| > N , α ∈ Ji1...ik .
On the other hand, it follows from νξi1 6= 0, . . . , νξik 6= 0 and

(Ji1...ik) lim
|α|→∞

αξij = ξ∗ij = 0, j = 1, . . . ,m,

that there is an M > 0 such that

|αξij | 6 |νξij |, j = 1, . . . ,m,

for all |α| >M , α ∈ Ji1...ik . This together with (35) gives

|αξij | 6 λ−1|νξij |, j = 1, . . . , k,
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for all |α| > max{M,N}, α ∈ Ji1...ik . Hence,

sup
sp(f)

|ξα|1/|α| = |αξα|1/|α| 6 λ−1|νξα|1/|α|,

which together with (11) and (30) implies

1 6 (Ji1...ik) lim
|α|→∞

(
‖Dαf‖(Φ)

/
|νξα|

)1/|α|
6 (Ji1...ik)λ

−1 lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

< 1.

Thus, we have arrived at a contradiction. Inequality (29) is proved.
Finally, to complete the proof of the theorem, it remains to show that

(P ) lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

6 1. (36)

We prove (36) by contradiction. Assume that there is a subsequence I ⊂ P , a
number h > 1, and a vector β > 0, |β| = 1, such that

(I) lim
|α|→∞

(
‖Dαf‖(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

> h, (37)

(I) lim
|α|→∞

α

|α| = β. (38)

Using the notation introduced earlier, we can assert that there is a k, 1 6 k 6 n,
and i1, . . . , ik ∈ {1, . . . , n} such that Ii1...ik = I ∩ Ti1...ik is unbounded.

We now have to delete the “bad” points from sp(f). Set

Q =
{
η ∈ Rn : ∃{mξ} ⊂ sp(f), mξj 6= 0,

j ∈ {i1, . . . , ik}, m > 1, lim
m→∞mξ = η

}
,

Qδ =
{
x+ y : x ∈ Q, |y| < δ

}
, δ > 0,

and H = Rn\Q. Then Q is closed and H and Qδ are open.
Consequently, sp(f) ⊂ Qδ ∪H(= Rn) implies

f̂(ξ) = ϕδ(ξ)f̂(ξ) + ψ(ξ)f̂(ξ), ϕδ ∈ C∞0 (Qδ), ψ ∈ C∞0 (H).

Arguing as above, we can prove that DαF−1(ψf̂)(x) ≡ 0 for all α ∈ Ii1...ik .
Hence, in view of (37), it follows that

(Ii1...ik) lim
|α|→∞

(∥∥DαF−1(ϕδ f̂)
∥∥

(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

> h (39)

for any δ > 0.
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On the other hand, repeating the argument used in the proof of (19), we derive
the equation

(Ii1...ik) lim
|α|→∞

sup
Qδ

|ξα|1/|α| = sup
Qδ

|ξβ |. (40)

Next, let mθ ∈ Q1/m, that is, |mθβ | = supQ1/m
|ξβ |, m > 1. Then there is a

subsequence {mk} (to simplify the notation, we assume that mk = k, k > 1) and
a point θ∗ ∈ Q such that mθ → θ∗, m→∞. Therefore

0 < sup
Q
|ξβ | 6 lim

m→∞
|mθβ | = |θ∗β |.

Arguing as in the proof of (20) and taking (38) and the fact that θ∗ ∈ Q into
account, we obtain

|θ∗β | 6 (Ii1...ik) lim
|α|→∞

sup
Q
|ξα|1/|α|. (41)

Furthermore, noting that inequality (27) was proved for an arbitrary Young func-
tion, we conclude that

(Ii1...ik) lim
|α|→∞

(∥∥DαF−1(ϕ1/mf̂)
∥∥

(Φ)

/
sup
Q1/m

|ξα|
)1/|α|

6 1 (42)

for any m > 1.
We next fix an index m > 1 such that |mθβ | 6 h|θ∗β |. Combining (39)–(42), we

obtain

1 > (Ii1...ik) lim
|α|→∞

(∥∥DαF−1(ϕ1/mf̂)
∥∥

(Φ)

/
sup
Q1/m

|ξα|
)1/|α|

= (Ii1...ik) lim
|α|→∞

∥∥DαF−1(ϕ1/mf̂)
∥∥1/|α|

(Φ)

/
|mθβ |

> (Ii1...ik) lim
|α|→∞

h−1
∥∥DαF−1(ϕ1/mf̂)

∥∥1/|α|
(Φ)

/
|θ∗β |

> (Ii1...ik) lim
|α|→∞

h−1

(∥∥DαF−1(ϕ1/mf̂)
∥∥

(Φ)

/
sup
Q
|ξα|

)1/|α|

= (Ii1...ik) lim
|α|→∞

h−1

(∥∥DαF−1(ϕ1/mf̂)
∥∥

(Φ)

/
sup
sp(f)

|ξα|
)1/|α|

> 1,

which is impossible. The proof of Theorem 2 is complete.

Remark 5. Relation (10) shows that if the spectral points lying “far” from the
origin are known, then it is possible to characterize the behaviour of the sequence
‖Dαf‖(Φ), α > 0, without calculating any derivatives. It should be noted that no
constraint on the spectrum geometry is imposed here. The subtlty of these results
consists in the behaviour of the sequence of norms ‖Dαf‖(Φ), |α| > 0, being studied
in terms of the support of the Fourier transform of the function f(x) itself, and,
generally, this can have an arbitrary geometry.

Remark 6. Theorem 2 is also true in the case of fractional derivatives. Relation (10)
is false if sp(f) is unbounded. At the same time, the following theorem holds.
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Theorem 3. Let Φ(t) be an arbitrary Young function and let f(x) ∈ LΦ(Rn).
Suppose that sp(f) is bounded with respect to the variables ξ1, . . . , ξk (1 6 k 6 n).
Then Dνf(x) ∈ LΦ(Rn) for all ν = (ν1, . . . , νk, 0, . . . , 0) ∈ Zn+ and

lim
|ν|→∞

(
‖Dνf‖(Φ)

/
sup
sp(f)

|ξν |
)1/|ν|

= 1.

In the one-dimensional case, we have a stronger result (see [15]), whose proof
differs substantially from the one in [16].

Theorem 4. Let 0 = n0 < n1 < · · · be a sequence of integers and let Φ(t) be an
arbitrary Young function. We assume that Dnkf(x) ∈ LΦ(R), k = 0, 1, . . . . Then
the limit

df = lim
k→∞

‖Dnkf‖1/nk(Φ)

always exists, and we have df = σf = sup
{
|ξ| : ξ ∈ sp(f)

}
.

Theorem 5. Let K be an arbitrary compact set in Rn and let Φ(t) be an arbitrary
Young function. Then for any ε > 0 there is a constant Cε such that

‖Dαf‖(Φ) 6 Cε(1 + ε)|α|
(

sup
K
|ξα|

)
‖f‖(Φ)

for all α > 0 and f ∈MKΦ.

Proof. We construct a family

Tα(f) = Dαf(x)/(1 + ε)|α| sup
K
|ξα|, α > 0,

of continuous linear operators in MKΦ. Then, by virtue of Theorem 2, the set{
Tα(f) : α > 0

}
is bounded in MKΦ for any function f ∈MKΦ. Consequently, by

the Banach–Steinhaus theorem, it is equicontinuous. Theorem 5 is proved.

We now consider the corresponding results for periodic functions.
Let Tn be an n-dimensional torus. Denote by LΦ(Tn) the space of functions u

that are 2π-periodic with respect to each of the variables and such that

‖|u|‖(Φ) = inf

{
λ > 0 :

∫
Tn

Φ
(
|u(x)|/λ

)
dx 6 1

}
<∞.

The following results can be proved by the method of expansion into Fourier
series.

Theorem 6. Let g ∈ LΦ(Tn) and g(x) 6≡ 0. We assume that sp(g) is bounded.
Then

lim
|α|→∞

(
‖|Dαg|‖(Φ)

/
sup

k∈sp(g)

|kα|
)1/|α|

= 1,

where k ∈ Zn.
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Theorem 7. Let I be an unbounded set of multi-indices and let Φ(t) be an arbitrary
Young function. Suppose that the generalized derivatives Dαf(x) of a function
f ∈ LΦ(Tn) belong to LΦ(Tn) for all α ∈ I. Then

lim
|α|→∞

(
‖|Dαf |‖(Φ)

/
|kα|

)1/|α| > 1

for an arbitrary point k ∈ sp(f). This inequality is exact.

§ 3. Nikol’skii’s inequality in the Luxemburg norm

An important series of papers on classes of functions of several variables by
Nikol’skii and his students relates, in particular, to Nikol’skii’s inequality for trigono-
metric polynomials and entire functions of exponential type. This inequality makes
it possible to develop methods in the approximation theory of functions of several
variables with the aid of which relations can be established between the differential
properties of a function in one Lebesgue metric and those in another.

Now recall Nikol’skii’s inequality. Let 1 6 p 6 q 6∞. Then we have

‖tm‖q,2π 6 2n
( n∏
j=1

mj

)1/p−1/q

‖tm‖p,2π

for trigonometric polynomials of the form

tm(x) =

m1∑
j1=−m1

· · ·
mn∑

jn=−mn

c(j1,...,jn) exp
(
i(j1x1 + · · ·+ jnxn)

)
and

‖f‖q 6 2n
( n∏
j=1

νj

)1/p−1/q

‖f‖p

for entire functions of an exponential type ν.
These inequalities have attracted the attention of many mathematicians, for

example, Zygmund [17], Ibragimov [3]–[5], Nessel and Wilmes [18], [19], Triebel [20],
[21], Burenkov [6], and so on.

The Nikol’skii inequalities for symmetric spaces were considered in [22]–[24].
In this section we make an attempt to establish Nikol’skii’s inequality for Orlicz

norms. This is a complicated problem, if only because of the difficulty associated
with (explicitly) comparing Young functions. Note that, by our definition, Orlicz
spaces are not always symmetric.

Definition 1. A function A(t) : [0,+∞)→ [0,+∞] is said to be quasi-convex if

A(λt) 6 λA(t), 0 6 λ 6 1, t > 0. (43)

Clearly, all Young functions are quasi-convex.
A quasi-convex function A(t) is said to be trivial if A(t) = +∞ for all t > 0. It

is obvious that limt→0A(t) = 0 if A(t) is a non-trivial quasi-convex function.
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Definition 2. Let Φ(t) and Ψ(t) be Young functions. We say that Ψ(t) majorizes
Φ(t) if there is a non-trivial quasi-convex function A(t) such that

Φ(t) 6 Ψ
(
A(t)

)
, t > 0. (44)

Example 1. Let 1 6 p 6 q <∞ and let Φ(t) = tq and Ψ(t) = tp for t > 0. Then

Φ(t) = (tq/p)p = Ψ(tq/p), t > 0.

Consequently, Ψ(t) majorizes Φ(t) (here A(t) = tq/p).
Let CKΦ be the exact constant in the inequality

‖f‖∞ 6 CKΦ‖f‖(Φ) ∀f ∈MKΦ.

Then we have the following theorem.

Theorem 8. Let Ψ(t) majorize Φ(t). Then

‖f‖(Φ) 6
A(CKΦ)

CKΦ
‖f‖(Ψ) (45)

for all f ∈MKΨ, where A(t) satisfies (44).

Proof. Let f ∈MKΨ. First, we prove that∫
Ψ

(
A

(
|f(x)|
M

))
dx 6 1 (46)

for some M > 0.
To see this, take a sufficiently large M > 0 such that

C−1
KΨA

(
CKΨ

(
‖f‖(Ψ) + 1

)/
M
)
6 1.

Then (43) and the inequality |f(x)| 6 CKΨ‖f‖(Ψ) imply

Ψ

(
A

(
|f(x)|
M

))
= Ψ

(
A

(
|f(x)|

CKΨ

(
‖f‖(Ψ) + 1

) CKΨ

(
‖f‖(Ψ) + 1

)
M

))
6 Ψ

(
|f(x)|

CKΨ

(
‖f‖(Ψ) + 1

)A(CKΨ

(
‖f‖(Ψ) + 1

)
M

))
6 Ψ

(
|f(x)|

‖f‖(Ψ) + 1

)
.

Whence, we conclude that f ∈MKΦ and then (46) holds because∫
Ψ

(
|f(x)|

‖f‖(Ψ) + 1

)
dx 6 1.
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Fix an arbitrary λ > 0 such that∫
Ψ

(
A

(
|f(x)|
λ

))
dx 6 1.

Then λ > ‖f‖(Φ). Since

|f(x)| 6 CKΦ‖f‖(Φ) 6 λCKΦ,

it follows that

Ψ

(
A

(
|f(x)|
λ

))
= Ψ

(
A

(
|f(x)|
λCKΦ

CKΦ

))
6 Ψ

(
|f(x)|
λCKΦ

A(CKΦ)

)
.

Therefore,

‖f‖(Φ) 6 inf

{
λ > 0 :

∫
Ψ

(
A

(
|f(x)|
λ

))
dx 6 1

}
6 inf

{
λ > 0 :

∫
Ψ

(
|f(x)|
λCKΦ

A(CKΦ)

)
dx 6 1

}
=
A(CKΦ)

CKΦ
‖f‖(Ψ).

The theorem is proved.

Remark 7. If it is only known that

‖f‖∞ 6 C‖f‖(Φ) ∀f ∈MKΦ,

then the proof of Theorem 8 implies

‖f‖(Φ) 6
A(C)

C
‖f‖(Ψ) (47)

for all f ∈MKΨ. Hence, it follows from property (43) that

A(CKΦ)

CKΦ
6 A(C)

C
.

Remark 8. Let us consider the case Φ(t) = tq, Ψ(t) = tp, 1 6 p < q < ∞. Here,
according to results of Nikol’skii [1], [2] and Ibragimov [3]–[5], we have

‖f‖∞ 6 2n(ν1 . . . νn)
1/q‖f‖q,

‖f‖∞ 6
((

s

π

)n
ν1 . . . νn

)1/q

‖f‖q

for all f ∈Mνp, where s is the smallest integer greater than or equal to q/2. Hence,
by (47), we obtain

‖f‖q 6
(
2n(ν1 . . . νn)

1/q
)q/p−1‖f‖p, (48)

‖f‖q 6
(((

s

π

)n
ν1 . . . νn

)1/q)q/p−1

‖f‖p. (49)

It turns out that the constant in (48) is less than the corresponding constant
in Nikol’skii’s inequality if q < 2p, while the constant in (49) coincides with
Ibragimov’s constant [3]–[5].
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Definition 3. Let Φ(t) and Ψ(t) be Young functions and let C > 0. We say that
Ψ(t) C-majorizes Φ(t) if there is a non-trivial quasi-convex function A(t) and a
number C∗ > C such that

Φ(t) 6 Ψ
(
A(t)

)
, 0 6 t < C∗.

The following stronger result holds.

Theorem 9. Let Ψ(t) CKΦ-majorize Φ(t). Then (45) holds.

Proof. Let f ∈MKΨ. Repeating the first part of the proof of Theorem 8, we obtain
f ∈MKΦ.

Next, choose an ε0 > 0 such that

C∗
(
‖f‖(Φ) − ε0

)
= CKΦ‖f‖(Φ).

Then the definition of CKΦ implies that

|f(x)| < C∗
(
‖f‖(Φ) − ε

)
, x ∈ Rn,

for all 0 < ε < ε0. It follows that

Φ

(
|f(x)|
‖f‖(Φ) − ε

)
6 Ψ

(
A

(
|f(x)|
‖f‖(Φ) − ε

))
, x ∈ Rn,

for any 0 < ε < ε0. Therefore, since∫
Φ

(
|f(x)|
‖f‖(Φ) − ε

)
dx > 1,

which is implied by the definition of ‖f‖(Φ), we obtain∫
Ψ

(
A

(
|f(x)|
‖f‖(Φ) − ε

))
dx > 1

for any 0 < ε < ε0. Consequently,

‖f‖(Φ) 6 inf

{
λ > 0 :

∫
Ψ

(
A

(
|f(x)|
λ

))
dx 6 1

}
.

The rest of the argument is as in Theorem 8. The theorem is proved.

The following more exact result can be established in like manner.

Theorem 10. Let Ψ(t) Cf -majorize Φ(t). We assume that f ∈ LΨ(Rn) and that
sp(f) is bounded. Then

‖f‖(Φ) 6
A(Cf )

Cf
‖f‖(Ψ),

where Cf = ‖f‖∞
/
‖f‖(Φ).

To derive further Nikol’skii inequalities, we introduce the notion of the order of
a quasi-convex function A(t).
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Definition 4. Let C > 0. The C-order of a quasi-convex function A(t) is defined
as the supremum of all numbers p > 0 such that

A(λC) 6 λpA(C)

for all 0 6 λ 6 1, and is denoted ordA.
The fact that A(t) is quasi-convex implies ordA > 1. It is quite clear that we

have A(λC) 6 λordAA(C) for all 0 6 λ 6 1.

Theorem 11. Let Ψ(t) CfΦ-majorize Φ(t). Assume that f ∈ LΨ(Rn) and that
sp(f) is bounded. Then

‖f‖(Φ) 6
A1/ ordA(CfΦ)

CfΦ
CordA−1
fΨ1

‖f‖(Ψ), (50)

where CfΦ = ‖f‖∞
/
‖f‖(Φ), CfΨ1 = ‖f‖∞

/
‖f‖(Ψ1), Ψ1(t) = Ψ(tordA), and ordA

is the CfΦ-order of A(t).

Proof. As was shown in the proof of Theorem 8, f ∈ LΦ(Rn). On the other hand,
the assumption of the theorem implies that

Φ(t) 6 Ψ
(
A(t)

)
, 0 6 t < C∗, (51)

where CfΦ < C∗ is some number.
Furthermore, let us choose an ε0 > 0 such that

C∗
(
‖f‖(Φ) − ε0

)
= CfΦ‖f‖(Φ).

Then the definition of CfΦ implies

|f(x)| < C∗
(
‖f‖(Φ) − ε

)
, x ∈ Rn,

for all ε, 0 < ε < ε0. This together with (51) yields

Φ

( |f(x)|
‖f‖(Φ) − ε

)
6 Ψ

(
A

( |f(x)|
‖f‖(Φ) − ε

))
, x ∈ Rn,

for any ε, 0 < ε < ε0. Therefore, since∫
Φ

(
|f(x)|
‖f‖(Φ) − ε

)
dx > 1 ∀ε > 0,

we obtain ∫
Ψ

(
A

(
|f(x)|
‖f‖(Φ) − ε

))
dx > 1

for every ε, 0 < ε < ε0. It follows that

‖f‖(Φ) 6 inf

{
λ > 0 :

∫
Ψ

(
A

(
|f(x)|
λ

))
dx 6 1

}
. (52)
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We now fix an arbitrary λ > 0 such that∫
Ψ

(
A

(
|f(x)|
λ

))
dx 6 1.

Then it follows from (52) that λ > ‖f‖(Φ). Consequently,

A

(
|f(x)|
λ

)
= A

(
|f(x)|
λCfΦ

CfΦ

)
6
(
|f(x)|
λCfΦ

)ordA

A(CfΦ).

Hence, taking (52) into account, we obtain

‖f‖(Φ) 6 inf

{
λ > 0 :

∫
Ψ

(
A

(
|f(x)|
λ

))
dx 6 1

}
6 inf

{
λ > 0 :

∫
Ψ

((
|f(x)|
λCfΦ

)ordA

A(CfΦ)

)
dx 6 1

}
= inf

{
λ > 0 :

∫
Ψ

((
|f(x)|A1/ ordA(CfΦ)

λCfΦ

)ordA)
dx 6 1

}
=
A1/ ordA(CfΦ)

CfΦ
inf

{
λ > 0 :

∫
Ψ1

(
|f(x)|
λ

)
dx 6 1

}
,

because Ψ1(t) = Ψ(tordA) is a Young function and ‖βf‖(Ψ1) = |β| ‖f‖(Ψ1) for any β.
Thus, we have proved that

‖f‖(Φ) 6
A1/ ordA(CfΦ)

CfΦ
‖f‖(Ψ1).

Hence, on applying Theorem 10 for the pair of functions Ψ1(t) and Ψ(t), we obtain

‖f‖(Φ) 6
A1/ ordA(CfΦ)

CfΦ
CordA−1
fΨ1

‖f‖(Ψ).

The theorem is proved.

Let us consider the case Φ(t) = tq, Ψ(t) = tp, 1 6 p < q < ∞. Here we
have A(t) = tq/p, and the C-order of A(t) is equal to q/p for all C > 0. In this

situation the constant in inequality (50) is equal to C
q/p
fq , because in this case we

have Ψ1(t) ≡ Φ(t), where Cfq = ‖f‖∞
/
‖f‖q.

It should be noted that, in contrast to the well-known Nikol’skii inequalities,
the constants in Theorems 10 and 11 depend on the function itself (and not on its
class).

We next consider Nikol’skii’s inequality for trigonometric polynomials.
Let K be a compact subset in Rn. Denote by PKΦ the space of all functions

f ∈ LΦ(Tn) such that sp(f) ⊂ K. In this case, it is easy to prove that there is
a continuous embedding PKΦ ⊂ PK∞, where PK∞ is the space of all bounded
periodic functions with spectrum on K.

Arguing as above, we can easily establish the following results.
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Theorem 12. Let Ψ(t) C∗KΦ-majorize Φ(t). Then

|‖f‖|(Φ) 6
A(C∗KΦ)

C∗KΦ

|‖f‖|(Ψ)

for all f ∈ PKΨ, where C∗KΦ is the exact constant in the inequality

|‖f‖|∞ 6 C|‖f‖|(Φ).

Theorem 13. Let Ψ(t) C∗fΦ-majorize Φ(t). Assume that f ∈ LΨ(Tn) and that

sp(f) is bounded. Then

|‖f‖|(Φ) 6
A(C∗fΦ)

C∗fΦ

|‖f‖|(Ψ),

where C∗fΦ = |‖f‖|∞
/
|‖f‖|(Φ).

Theorem 14. Let Ψ(t) C∗fΦ-majorize Φ(t) and let f ∈ LΨ(Tn). We suppose that

sp(f) is bounded. Then

|‖f‖|(Φ) 6
A1/ ordA(C∗fΦ)

C∗fΦ

CordA−1
fΨ1

|‖f‖|(Ψ),

where C∗fΦ = |‖f‖|∞
/
|‖f‖|(Φ), C∗fΨ1

= |‖f‖|∞
/
|‖f‖|(Ψ1), Ψ1(t) = Ψ1(t

ordA), and

ordA is the C∗fΦ-order of A(t).

§ 4. Some applications

Let 0 6 λα 6∞ for α ∈ Zn+ and let G{λα} =
⋂
α>0{ξ ∈ Rn : |ξα| 6 λα}.

Definition 5. We call G{λα} the set generated by the number sequence {λα}.
Obviously, G{λα} is closed, (r1ξ1, . . . , rnξn) ∈ G{λα} if ξ ∈ G{λα} and |rj | 6 1,

j = 1, . . . , n, and we have

G{λα} = G

{
sup

ξ∈G{λα}
|ξα|

}
.

The set G{λα} is compact if, for example, λα <∞ ∀α > 0.
We note that G{λα} can be non-convex. For example, let n = 2 and

λ(i,j) = 2|i−j| ∀i, j ∈ Z+.

The set
G{λ(i,j)} =

{
(x, y) ∈ R2 : |xy| 6 1, |x| 6 2, |y| 6 2

}
,

which is called the cross of the hyperbola, is non-convex.
Let K ⊂ Rn. If we set g(K) = G {supK |ξα|}, then K ⊂ g(K). We call g(K)

the g-hull of K.
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Definition 6. A set K is said to possess the g-property if K = g(K).

It is clear that any set G{λα} generated by a number sequence possesses the
g-property and, obviously, vice versa.

Lemma 5. Let I be a family of indices and let Ki = g(Ki), i ∈ I. Then
⋂
i∈I Ki

also possesses the g-property.

Proof. Let x ∈ g
(⋂

i∈I Ki

)
and let j ∈ I. Then

|xα| 6 sup

{
|ξα| : ξ ∈

⋂
i∈I

Ki

}
6 sup

{
|ξα| : ξ ∈ Kj

}
for any α ∈ Zn+. Hence, x ∈ g(Kj) = Kj . Therefore x ∈

⋂
i∈I Kj .

The following question arises: does every compact set K such that

x ∈ K, −1 6 λj 6 1, j = 1, . . . , n =⇒ (λ1x1, . . . , λnxn) ∈ K (53)

possess the g-property? The answer turns out to be negative. Indeed, let K be
a subset of G =

{
(x, y) ∈ R2 : |xy| 6 1, |x| 6 2, |y| 6 2

}
such that K

possesses property (53), K 6= G, and K includes the points
(

1
2 , 2
)

and
(
2, 1

2

)
. Such

sets K obviously exist, for example, K =
{
|x| 6 2, |y| 6 1

2

}
∪
{
|x| 6 1

2 , |y| 6 2
}
.

It follows that
sup
K
|xiyj | = 2|i−j| = sup

G
|xiyj|

for all integers i, j > 0. Consequently, K does not possess the g-property.

Lemma 6. Every symmetric convex compact set possesses the g-property.

Proof. Let K be a symmetric convex compact set in Rn. It can easily be seen
that K satisfies (53). Furthermore, let y /∈ K. Then there is a vector a ∈ Rn such
that

ay > sup
x∈K

ax, (54)

where aξ = a1ξ1 + · · ·+ anξn, by the convexity of K. From (53), we have

sup
x∈K

ax = sup
x∈K

(
|a1x1|+ · · ·+ |anxn|

)
. (55)

It also follows from (53) that y /∈ K if and only if
(
|y1|, . . . , |yn|

)
/∈ K. Hence, it

suffices to consider only the case y > 0 for which, by virtue of (54) and (55), there
is a vector a such that aj > 0 and aj = 0 if yj = 0, j = 1, . . . , n.

For convenience, we assume that yj > 0, j = 1, . . . , n.
Let x ∈ K+ = {x ∈ K : x > 0}. In this case, a well-known classical inequality

implies (
ax

ay

)ay
=

(
a1y1x1/y1 + · · ·+ anynxn/yn

a1y1 + · · ·+ anyn

)a1y1+···+anyn

>
(
x1

y1

)a1y1

. . .

(
xn

yn

)anyn
.
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Therefore, in view of (54), we obtain

1 > sup
x∈K+

(
x1

y1

)a1y1

. . .

(
xn

yn

)anyn
.

On approximating ajyj by rational numbers, we can write

1 > sup
x∈K+

(
x1

y1

)p1/q1

. . .

(
xn

yn

)pn/qn
,

where pj > 0 and qj > 0, j = 1, . . . , n, are integers. Consequently, it follows
from (53) that

yα > sup
x∈K+

xα = sup
x∈K
|xα|,

where αj = q1 . . . qnpj/qj, j = 1, . . . , n. This means that y /∈ g(K) for any y /∈ K.
The proof is complete.

We now prove the non-convex version of the Paley–Wiener–Schwartz theorem
characterizing the relationship between the behaviour of the sequence of norms of
the derivatives of a function and the support of its Fourier transform.

It is clear that the set G{λα} generated by a number sequence does not change
under the replacement λmβ → λmβ if there is an m > 1 and a β > 0 such that

λmβ < λmβ . Hence, it can always be assumed in the definition of G{λα} that

λmα > λmα ∀m > 1, α > 0. (56)

Definition 7. A sequence {λα} is said to be regular if {λα} satisfies condition (56).

Theorem 15. Let Φ(t) be an arbitrary Young function and let f ∈ LΦ(Rn).
Assume that G{λα} is bounded and that {λα} is a regular sequence. In this case
we have sp(f) ⊂ G{λα} if and only if the following condition holds :

lim
|α|→∞

(
‖Dαf‖(Φ)

/
λα

)1/|α|
6 1. (57)

Proof. Let sp(f) ⊂ G{λα}. Then

sup
sp(f)

|ξα| 6 λα, α > 0.

Consequently, by Theorem 2, we obtain (57).
Conversely, let (57) hold. We note that inequality (11) also holds in the case

when sp(f) is unbounded. Therefore, (11), (57), and the fact that the sequence {λα}
is regular readily imply that sp(f) is bounded. Whence, in view of Theorem 2,

lim
|α|→∞

(
sup
sp(f)

|ξα|
/
λα

)1/|α|
6 1.
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Consequently, given an arbitrary ε > 0, there is an index N <∞ such that

sup
sp(f)

|ξα| 6 (1 + ε)|α|λα, |α| > N.

On the other hand, since the sequence {λα} is regular, we have

sup
sp(f)

|ξα| 6 (1 + ε)|α|λα

for all α > 0. It follows that

sp(f) ⊂ (1 + ε)G{λα}.

Letting ε tend to 0, we obtain sp(f) ⊂ G{λα}. The theorem is proved.

We next apply the above results to the theory of Sobolev–Orlicz spaces of infinite
order to resolve some problems arising in the study of non-linear differential equa-
tions of infinite order with coefficients of arbitrary rate of growth. The theory of
spaces of infinite order was introduced by Dubinskii and studied by him and also
by Balashova, Chan Dyk Van, Klenina, Konyaev, Kobilov, Umarov, Agadzhanov,
Groshev, and the author of the present paper, among others. The following
questions have been considered: non-triviality, theory of traces, relationship with
boundary-value problems, geometric properties, and so on (for example,
see [25]–[27] and the references there). It should be noted that the theory of infinite-
order function spaces differs from that of finite-order spaces if only in the fact that
the question of the existence of a non-zero element (that is, the question of non-
triviality) is not at all simple in the former. The positive answer to this question
plays a key role in the theory of boundary-value problems for infinite-order differ-
ential equations. The problem of finding solutions to boundary-value problems for
infinite-order equation is meaningful if the corresponding energy spaces are non-
trivial (see [28]–[31] for example).

Let I be an unbounded set of integer indices α = (α1, . . . , αn), αj > 0, where
j = 1, . . . , n, and let Φα(t), α ∈ I, be an arbitrary Young function. Then

W∞L{Φα,Rn} =

{
f(x) ∈ S′ :

∑
α∈I
‖Dαf‖(Φα) <∞

}
is called a Sobolev–Orlicz space of infinite order.

Let us derive a non-triviality condition for W∞L{Φα,Rn}. We assume that
0 ∈ I and Φ0(t) > 0, t > 0, because otherwise W∞L{Φα,Rn} is non-trivial. An
application of Theorem 2 yields the following theorem [31].

Theorem 16. The space W∞L{Φα,Rn} is non-trivial if and only if there exist
numbers C, q > 0 such that ∑

α∈I
Φα(Cq|α|) <∞. (58)

We now describe the properties of functions belonging to W∞L{Φα,Rn}.



Properties of functions in Orlicz spaces 427

Definition 8. Assume that condition (58) holds. Denote by CΦ the union of all
points ξ ∈ Rn such that ∑

α∈I
Φα

(
Cξ sup

x∈Gξ
|xα|

)
<∞ (59)

for some domain Gξ 3 ξ and a number Cξ > 0. Clearly, GΦ is open, non-empty,
and symmetric with respect to the origin.

Theorem 17. Assume that condition (58) holds. Then

F−1
[
C∞0 (GΦ)

]
⊂W∞L{Φα,Rn},

and W∞L{Φα,Rn} does not contain any function F−1g(x) if g ∈ C∞0 (Rn) and
supp g ∩ (Rn\GΦ) 6= ∅.

Proof. Let ϕ(ξ) ∈ C∞0 (GΦ). Then for any point ξ ∈ suppϕ there is a bounded
domain Gξ 3 ξ satisfying condition (59). Since suppϕ is compact, we can find an
index M <∞, a number C > 0, and bounded domains Gj such that

suppϕ ⊂
M⋃
j=1

Gj

and ∑
α∈I

Φα

(
C sup

Gj

|ξα|
)
<∞, j = 1, . . . ,M. (60)

Next, let us define

G∗ =
{
(t1ξ1, . . . , tnξn) : ξ ∈ G, −1 6 tj 6 1, j = 1, . . . , n

}
for every domain G. Then G∗ is also a domain and

sup
G
|ξα| = sup

G∗
|ξα| (61)

for all α > 0. By virtue of the compactness of suppϕ, we have

suppϕ ⊂ λ
M⋃
j=1

G∗j (62)

for some λ, 0 < λ < 1.
Let ψ(x) = (F−1ϕ)(x). Then ψ ∈ MK1, where for brevity we set K = suppϕ.

We assume for convenience that C = 1.
We now prove that ψ ∈W∞L{Φα,Rn}. First,

|xβDαψ(x)| 6
∫
K

|Dβ
(
ξαϕ(ξ)

)
| dξ

6
∑
γ6β,α

β!

γ! (β − α)!

n∏
k=1

αk . . . (αk − γk + 1)

∫
K

|ξα−γDβ−γϕ(ξ)| dξ
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for any α, β > 0. Hence, taking

n∏
k=1

αk . . . (αk − γk + 1) 6 |α||γ|,
∑
γ6β

β!

γ! (β − γ)! = 2|β|

into account, we obtain

|xβDαψ(x)| 6 22n|α|2nC2nmax

{
sup
K
|ξα−γ | : γ 6 α, |γ| 6 2n

}
for all x ∈ Rn, α > 0, and |β| 6 2n, where

C2n = max

{∫
K

|Dβ−γϕ(ξ)| dξ : γ 6 β, |β| 6 2n

}
.

On the other hand, (25) implies

lim
|α|→∞

(
max

{
sup
K
|ξα−γ | : γ 6 α, |γ| 6 2n

})1/|α|/
sup
K
|ξα|1/|α| = 1.

Consequently, for any ε > 0 there is a Cε such that

(1 + x2
1) . . . (1 + x2

n)|Dαψ(x)| 6 22nC2nCε|α|2n(1 + ε)|α| sup
K
|ξα| (63)

for all x ∈ Rn and α > 0.
From (62) and (63) we obtain

(1 + x2
1) . . . (1 + x2

n)|Dαψ(x)| 6 22nC2nCε|α|2n(1 + ε)|α|λ|α| sup
G∗
|ξα|

for G∗ =
⋃M
j=1 G

∗
j .

Let ε > 0 satisfy (1 + ε)λ < 1 and let (1 + ε)λ = λ1q, where 0 < λ1 and q < 1.
Then

lim
|α|→∞

|α|2n(1 + ε)|α|λ
|α|
1 = 0

implies that
|Dαψ(x)| 6 (1 + x2

1)
−1 . . . (1 + x2

n)
−1q|α| sup

G∗
|ξα|

for all |α| > N1 and x ∈ Rn. It follows that

‖Dαψ‖(Φα) = inf

{
γ > 0 :

∫
Rn

Φα

(
|Dαψ(x)|

γ

)
dx 6 1

}
6 inf

{
γ > 0 :

∫
Rn

Φα

(
q|α| sup

G∗
|ξα|

/
γ(1 + x2

1) . . . (1 + x2
n)

)
dx 6 1

}
6 inf

{
γ > 0 : Φα

(
q|α| sup

G∗
|ξα|

/
γ

)∫
Rn

(1 + x2
1)
−1 . . . (1 + x2

n)−1 dx 6 1

}
= inf

{
γ > 0 : πnΦα

(
q|α| sup

G∗
|ξα|

/
γ

)
6 1

}
(64)

for |α| > N1.
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On the other hand, (60) and (61) imply

∑
α∈I

Φα

(
sup
G∗
|ξα|

)
6
∑
α∈I

max
16j6M

Φα

(
sup
Gj

|ξα|
)
6

M∑
j=1

∑
α∈I

Φα

(
sup
Gj

|ξα|
)
<∞.

Consequently, there is an index N2 <∞ such that

Φα

(
sup
G∗
|ξα|

)
6 π−n, |α| > N2.

Therefore

πnΦα

(
q|α| sup

G∗
|ξα|

/
q|α|
)
6 1, |α| > N2.

This inequality and (64) imply that

‖Dαψ‖(Φα) 6 q|α| (65)

for all |α| > N0 = max{N1, N2}.
But inequality (63) clearly shows that Dαψ(x) ∈ LΦ(Rn) for any Young function

Φ(t) and for all α > 0. Hence, in view of (65), we have ψ(x) ∈ W∞L{Φα,Rn}.
The first part of Theorem 17 is proved.

We now prove the second part. Let g(ξ) ∈ C∞0 (Rn) be a function such that
supp g ∩ (Rn\GΦ) = ∅. Then, since Rn\GΦ is open, it follows that there is a point
ξ ∈ supp g, ξj 6= 0, j = 1, . . . , n, and a neighbourhood Uξ ⊂ Rn\GΦ, ξ ∈ Uξ.

But ξ /∈ GΦ implies that there is an r < 1 such that

∑
α∈I

Φα

(
Cr|α| sup

Gξ

|xα|
)

=∞ (66)

for any C <∞ and any domain Gξ 3 ξ, because otherwise ∀r < 1 ∃Cr, ∃Gξ 3 ξ

∑
α∈I

Φα

(
Crr

|α| sup
Gξ

|xα|
)
<∞,

that is, ∑
α∈I

Φα

(
Cr sup

rGξ

|x|α||
)
<∞.

We note that ξ ∈ rGξ for some r < 1. Fix such an r and set Q = rGξ. Then we
obtain ∑

α∈I
Φα

(
Cr sup

Q
|xα|

)
<∞,

and therefore ξ ∈ GΦ, which is impossible. Relation (66) is proved.
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We next prove by contradiction that f = F−1g /∈W∞L{Φα,Rn}. Assume that
f ∈ W∞L{Φα,Rn} and also that

∑
α∈I ‖Dαf‖(Φα) 6 1, which does not restrict

the generality. Set

fh(x) =
1

mesB(0, h)

∫
B(0,h)

f(x+ t) dt, h > 0.

Jensen’s inequality implies that

Φα
(
|Dαfh(x)|

)
6 1

mesB(0, h)

∫
B(0,h)

Φα
(
|Dαf(x+ t)|

)
dt.

On the other hand, it can be assumed that all the functions Φα(t), α ∈ I, are
continuous on the left. For if some Φ(t) is not continuous on the left, then there is
a point t0 > 0 such that

lim
t→t0−

Φ(t) < Φ(t0) 6∞, Φ(t) =∞ for t > t0.

We set

Ψ(t) =

{
Φ(t), t 6= t0,

limt→t0− Φ(t), t = t0.

Then Ψ(t) is a Young function continuous on the left, and we have

‖ · ‖(Ψ) = ‖ · ‖(Φ).

Hence, Φ(t) can be replaced by Ψ(t).
Therefore ∫

Φα
(
|Dαf(x)|

)
dx 6 ‖Dαf‖(Φα)

implies ∑
α∈I

Φα
(
‖Dαfh‖∞

)
6 1

mesB(0, h)
, (67)

because ‖Dαf‖(Φα) 6 1 (see [7]–[9]). It is clear from the corresponding definition
that fh(x) converges weakly in S′ (fh → f as h → 0). This implies the weak

convergence of ĝh in S′ (ĝh → f̂). It follows that the point ξ defined above belongs

to supp f̂h for sufficiently small h > 0, because ξ ∈ supp f̂ = supp g.

Fix a sufficiently small h > 0 such that ξ ∈ supp f̂h. Then (11) implies

lim
|α|→∞

(
‖Dαfh‖∞

/
|ξα|

)1/|α| > 1.

Hence, for any ε > 0 there is a Cε > 0 such that

‖Dαfh‖∞ > Cε(1− ε)|α||ξα|, α ∈ I. (68)
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On the other hand, ξj 6= 0, j = 1, . . . , n, implies that for any λ > 1 there is a
neighbourhood G of ξ such that

sup
x∈G
|xα| 6 λ|α||ξα| (69)

for all α > 0.
Let us choose a λ > 1 and an ε > 0 such that λ−1(1 − ε) > r. Then (67)–(69)

imply

∑
α∈I

Φα

(
Cεr
|α| sup

G
|ξα|

)
6
∑
α∈I

Φα

(
Cελ

−|α|(1− ε)|α| sup
G
|ξα|

)
6
∑
α∈I

Φα
(
Cε(1− ε)|α||ξα|

)
6
∑
α∈I

Φα
(
‖Dαfh‖∞

)
6 1

mesB(0, h)
,

which is impossible by virtue of (66). The theorem is proved.

Theorem 18. Assume that condition (58) holds. The space W∞L{Φα,Rn} con-
tains all functions f ∈ L1(Rn) with sp(f) ⊂ GΦ, but does not contain any function
g ∈ L1(Rn) with sp(g) ∩ (Rn\CΦ) 6= ∅. Moreover, if Φα(t) > 0, t > 0, for an
α ∈ I, then sp(g)∩ (Rn\CΦ) = ∅ for any g ∈W∞L{Φα,Rn}. Otherwise the latter
fact is not true.

Proof. Let f ∈ L1(Rn) and sp(f) ⊂ GΦ. Choose a function ϕ̂(ξ) ∈ C∞0 (GΦ) such
that ϕ̂(ξ) is equal to unity in a neighbourhood of sp(f). Then the inequalities

‖Dαf‖(Φα) = ‖f ∗Dαϕ‖(Φα) 6 2‖f‖1‖Dαϕ‖(Φα), α ∈ I,

and Theorem 17 readily imply f ∈W∞L{Φα,Rn}, because ϕ ∈W∞L{Φα,Rn}.
The proof that W∞L{Φα,Rn} does not contain any function g ∈ L1(Rn) with

sp(g) ∩ (Rn\CΦ) 6= ∅ is perfectly analogous to the argument in the proof of the
second part of Theorem 17 (by Corollary 1, if ξ ∈ sp(g) is an arbitrary point, then
sp(g) contains a sequence of points with non-zero components that converges to ξ).

Furthermore, let Φβ(t) > 0, t > 0, for a β ∈ I, and g(x) ∈ W∞L{Φα,Rn}. It
suffices to consider only the case g(x) 6≡ 0, when the inequalities ‖Dβg‖(Φβ) < ∞,
‖g‖(Φ0) <∞, and Theorem 1 imply the following:

if Dβg(x) ≡ 0, then sp(g) ⊂ {0}, whence sp(g) ∩ (Rn\CΦ) = ∅;
if Dβg(x) 6≡ 0, then the support of the restriction of ĝ(ξ) to an arbitrary neigh-

bourhood of any point belonging to sp(g) does not lie in the hyperplanes ξj = 0,
j = 1, . . . , n.

Hence, the desired assertion can be proved by analogy with the proof of the
second part of Theorem 17.

We conclude by constructing a counterexample. Let n > 2 and

Ij =

{(
m, . . . ,m︸ ︷︷ ︸

j−1

,m2,m, . . . ,m

)
: m > 0

}
, I =

n⋃
j=1

Ij .
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We assume that Φα(t) = 0 for 0 6 t 6 1 and Φα(t) = ∞ for t > 1 and all α ∈ I
(that is, for ‖ · ‖(Φα) = ‖ · ‖∞). Then it can easily be seen that GΦ = M , where

M =
{
ξ ∈ Rn : |ξj | < 1, j = 1, . . . , n

}
. For if x /∈ M , then there is an index j,

1 6 j 6 n, such that |xj | > 1. We consider a neighbourhood Ux and an arbitrary
number C, 0 < C <∞. It follows that there is a θ > 0 such that

sup
ξ∈Ux

|ξα| > θ(n−1)m|xj |m
2

, α =

(
m, . . . ,m︸ ︷︷ ︸

j−1

,m2,m, . . . ,m

)

for all α ∈ Ij . Hence, since θn−1|xj |m → ∞ as m → ∞, we obtain
Φα
(
C supξ∈Ux |ξα|

)
=∞ for sufficiently large |α|, α ∈ Ij . This means that x /∈ GΦ.

Moreover, the inequality |xj | > 1 implies that there is a neighbourhood V of x
such that |yj | > 1 for any point y ∈ V . Consequently, V ∩ GΦ = ∅. Therefore,

x /∈ GΦ. We have thus proved that

GΦ ⊂M =
{
ξ ∈ Rn : |ξj | 6 1, j = 1, . . . , n

}
.

On the other hand, the choice of the functions Φα(t) implies that M ⊂ GΦ. Hence,
GΦ = M because GΦ is always open.

Finally, note that any function

ϕ(x) = ϕ(x1, . . . , xn−1) = F−1ϕ̂(ξ), ϕ̂(ξ) ∈ C∞0 (Rn−1),

belongs to W∞L{Φα,Rn}, because Dαϕ(x) ≡ 0 for all α ∈ I, |α| > 0. This means
that the relation sp(g) ∩ (Rn\CΦ) = ∅ is false. The theorem is proved.

Remark 9. We have shown that the relation sp(g) ∩ (Rn\CΦ) = ∅ can be false for
n > 2 if for any α ∈ I there is a tα > 0 such that Φα(tα) = 0. A stronger result
holds for n = 1.

Theorem 19. Suppose that the corresponding condition (58) holds. Then we have
sp(g) ∩ (R1\CΦ) = ∅ for any g ∈W∞L{Φm,R1}.

Proof. We prove the theorem by contradiction. Assume that there is a function
g(x) ∈ W∞L{Φm,R1} and a point ξ ∈ sp(g) such that ξ ∈ R1\GΦ. Then we have
GΦ = (−b, b), 0 < b <∞, and |ξ| > b.

Define

gh(x) =
1

h

∫ h

0

g(x+ t) dt, h > 0.

Then, as was shown in the proof of Theorem 17, we have∑
m∈I

Φm
(
‖Dmgh‖∞

)
6 1

h
<∞,

because it can be assumed that
∑
m∈I ‖Dmg‖(Φm) 6 1. Next, the weak convergence

ĝh → ĝ in S′ implies that ξ ∈ supp ĝh for sufficiently small h > 0. Fix such an
h > 0. Then (11) implies

lim
m→∞

‖Dmgh‖1/m∞ > |ξ|.
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For the sake of definiteness, assume that ξ > 0. Then we can find ε and C with
0 < ε, C <∞ such that ξ − ε > b and

‖Dmgh‖∞ > C(ξ − ε)m, m > 0.

Therefore, ∑
m∈I

Φm
(
C(ξ − ε)m

)
<∞,

which is impossible, because ξ − ε > b and GΦ = (−b, b). The theorem is proved.

Theorem 20. Assume that condition (58) holds. Then

GΦ ⊂ ∪
{
sp(g) : g ∈W∞L{Φα,Rn}

}
.

Proof. Theorem 17 implies

GΦ ⊂ ∪
{
sp(g) : g ∈W∞L{Φα,Rn}

}
.

Furthermore, let ξ0 ∈ GΦ\GΦ. Then there is a subsequence {ξk} ⊂ GΦ such that
ξk → ξ0 as k → ∞ and ξk 6= ξl, k 6= l. Suppose that εk > 0 and k > 1 are
such that B(ξk, εk) ∩ B(ξl, εl) = ∅ and B(ξk, εk) ⊂ GΦ, k > 1. Choose functions
ϕ̂k(ξ) ∈ C∞0

(
B(ξk, εk)

)
and numbers γk > 0 such that ϕ̂k(ξ

k) 6= 0, k > 1, and

∞∑
k=1

γk‖|ϕk|‖ <∞.

Then ψ(x) =
∑∞
k=1 γkϕk(x) ∈ W∞L{Φα,Rn} and ξ0 ∈ sp(ψ). The theorem is

proved.
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