
Math-Net.Ru
Общероссийский математический портал

S. L. Frenkel, D. Khankin, Непрерывные обновления маршрута в SDN с использо-
ванием проверки соответствия качеству обслуживания, Информ. и её примен.,
2018, том 12, выпуск 4, 52–62

DOI: 10.14357/19922264180408

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и

согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 3.143.254.151

9 октября 2024 г., 08:16:27



INFORMATICS AND APPLICATIONS 2018. Vol. 12. Iss. 4. P. 52�62

SEAMLESS ROUTE UPDATES IN SOFTWARE-DEFINED

NETWORKING VIA QUALITY OF SERVICE COMPLIANCE

VERIFICATION

S. L. Frenkel1 and D. Khankin2

Abstract: In software-defined networking (SDN), the control plane and the data plane are decoupled. This allows
high flexibility by providing abstractions for network management applications and being directly programmable.
However, reconfiguration and updates of a network are sometimes inevitable due to topology changes, maintenance,
or failures. In the scenario, a current route C and a set of possible new routes {Ni}, where one of the new routes is
required to replace the current route, are given. There is a chance that a new route Ni is longer than a different new
route Nj , but Ni is a more reliable one and it will update faster or perform better after the update in terms of quality
of service (QoS) demands. Taking into account the random nature of the network functioning, the present authors
supplement the recently proposed algorithm by Delaet et al. for route updates with a technique based on Markov
chains (MCs). As such, an enhanced algorithm for complying QoS demands during route updates is proposed in
a seamless fashion. First, an extension to the update algorithm of Delaet et al. that describes the transmission of
packets through a chosen route and compares the update process for all possible alternative routes is suggested.
Second, several methods for choosing a combination of preferred subparts of new routes, resulting in an optimal,
in the sense of QoS compliance, new route is provided.

Keywords: software-defined networking; Markov chains; quality of service

DOI: 10.14357/19922264180408

1 Introduction

Software-defined networking is an emerging network
paradigm, in which the control plane is decoupled from
the data plane enabling centralized control logic. Such
a dynamic network may require frequent modifications
and updates to the network topology and configuration.
Also, the network topology is available to the centralized
control entity, there, due to this flexibility, it is possible
to perform offline optimized calculations.

Network functions virtualization (NFV) allows re-
placing traditional network devices with software that
is running on commodity servers. This software imple-
ments the functionality that was previously provided by
dedicated hardware. Network functions virtualization
allows services to be composed of virtual network func-
tions (VNF) hosted on different data centers. Software-
defined networking, when applied to NFV, helps in
addressing challenges of dynamic resource management
and intelligent service orchestration [1]. Sometimes,
traffic is often required to pass through and be processed
by an ordered sequence of possibly remote VNFs [2]. For
example, traffic may be required to pass through intru-
sion detection system, proxy, load balancer, or a firewall.

Such concatenation of services is called service function

chaining (SFC).
Consider, for example, two communicating parties

in a network featuring complex network topology (e. g.,
Small-world network), and the communication flow is
passed over a series of VNFs. It may be the case that the
network operator is required to move the communicat-
ing flow to a different path due to QoS requirements or
other possible cost considerations. We are interested to
model the anticipated expected number of steps until the
update is complete given a possible new route following
the required QoS demands, e. g., delay, communication
rounds, cost, etc.

Let us consider a pair (C, {Ni}) where a current
route C from s to d is scheduled to be replaced by a new
route from the set {Ni}, each from s to d either. Let us
model each route as an ordered list of network elements,
such as VNFs (SFCs) or generally saying routers. Each
new route Ni is constructed during the update process,
and thus, certain delays may be introduced due to initial
packet processing or due to possible losses.

The design goals must be achieved by constructing
effective algorithms for efficient packet QoS routing in
NFV/SDN computer network. Depending on the QoS

1Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences,
44-2 Vavilov Str., Moscow 119333, Russian Federation, fsergei51@gmail.com

2Computer Science Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, danielkh@post.bgu.ac.il

52



Seamless route updates in software-defined networking via quality of service compliance verification

metric, the lower (e. g., for reliability) or upper (e. g., for
a delay) constraints represent the desired bounds that
the orchestration must meet. Since different configura-
tions could meet these bounds, the designer should also
optimize against a specific metric by using these both
ends of the extreme.

Methods based on integer linear programming (ILP)
were proposed in several works (see section 2). The diffi-
culty of using tools based on ILP in the operational work
of an administrator is that in view of the possible infea-
sibility of the resulting solution, it may take not a few
resources (time, efforts) until acceptable QoS values can
be ensured.

We consider the use of “design via verification”
approach, suggesting a method for complying QoS de-
mands. The method is based on augmenting the update
algorithm with a verification logic. Namely, we suggest
the use of Probabilistic real-time Computation Tree Logic

(PCTL) [3] for expressing real-time and probability in
systems. Using PCTL, we can express the probability
for a process to complete after a certain number of steps
along an execution path and verify the selected route for
the update.

Delaet et al. proposed a multicast-based scheme for
seamlessly updating a current route to a new one [4].
According to the multicast scheme, the controller in-
structs a router to temporarily have two (s, d) entries
in the routing table. When a router r 6= d receives
a packet from s to d, it sends the packet according to the
forwarding instructions of all of its (s, d) routing table
entries. When two identical copies of a packet that was
multicasted over the current and new portion of a route
arrive, the controller can dismantle the current route,
as the new route is ready. During the update process,
packets should not be lost, no cycles should be formed,
and communication should not be disrupted.

Our contribution is a model for a successful route
update, including its intermediate steps, as MC states,
each with a given probability. With our model, we are
able to characterize the quality of an update by expected
number of steps in the MC.

We suggest an enhanced update method for the net-
work administrator to augment his decision regarding
QoS demands in terms of various network parameters
and possible failure of the update process. Moreover, in
contrast to other works, we are able to provide a version
of an algorithm that can perform real-time QoS assess-
ment during a route update, for each subpart of a route.
At last, using our method, it is possible that the active
new route will be comprised of subparts of different new
routes, providing optimal route update service in regard
of required network QoS.

Extended abstract of this work appeared as a confer-
ence paper in [5] which presented preliminary results.
In this work, we describe in detail the system settings

and bring new results by providing two additional algo-
rithms.

In the following section, we overview the related
work. Next, we provide the required definitions and the
system settings and describe the MC characterization
of the network. Further, we describe different update
setting, accordingly accompanying algorithms and data
structures, used for QoS assessment during route up-
dates.

2 Related Work
Quality of service routing using multipath was proposed
in [6]. The routing algorithm, initially, eliminates all
links that do not meet the bandwidth requirements.
Then, it finds disjoint shortest paths based on the resid-
ual network graph in each iteration.

The work [7] proposed a QoS optimized routing over
multidomain OpenFlow networks managed by a dis-
tributed control plane, where each controller performs
optimal routing within its domain. The QoS routing
problem was posed as a constrained shortest path (CSP)
problem, and the proposed solution computes a near-
optimal route, based on LARAC (Lagrange relaxation
based aggregated cost) algorithm [8]. The proposed al-
gorithm is an approximation algorithm; it always gives
a suboptimal solution.

For traditional network architecture, a routing strat-
egy approach based on ILP was introduced in [9]. The
main disadvantage of using ILP is that the problem is
NP-hard. Additionally, ILP cannot be applied to prob-
abilistic values. Using linear programming (not limited
to integers) rounded to integer solutions will not yield
an optimal solution.

Route updates are extensively researched in
SDN [10], standing on the work by Reitblatt et al.

where requirements for SDN updates were examined.
This work focused on per-packet consistency property,
stating that packets have to be forwarded either using
the initial configuration or the final configuration but
never a mixture of them, throughout the update pro-
cess [11]. The authors proposed a 2-phase commit
technique which relies on packets tagging so that either
of the rules is applied. However, such technique wastes
critical network resources and complications are formed
due to packet tagging [10]. Further, Delaet et al. showed
in [4] that using a careful multicast during route updates
provides a better working solution.

Hogan and Esposito propose in [12] the use of
Bayesian networks for delay estimation as a traffic engi-
neering tool and model the path selection problem using
a risk minimization technique. However, the authors
state that the accuracy of their model is limited by its
ability to correctly identify dependencies in the data.
In our work, we suggest a general tool for probabilistic

INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4 53



S. L. Frenkel and D. Khankin

verification of any network parameter, which does not
depend on variance within the dataset.

In [13], an update protocol proposed where packets
are sent to the controller during updates; such approach
adds a significant cost to the control plane bandwidth [4].
In [14], an algorithm to find a safe update sequence ex-
pressed as a logic circuit has been proposed. However,
the algorithm requires a dedicated protocol which is
not currently supported [10]. The authors of [15] pro-
pose to perform the 2-phase update scheme from [11]
incrementally, making the update longer.

Software-defined networking allows the involvement
of the network administrator into the network manage-
ment during route udpdates and, in particular, during
packet transmission. Thus, it would be highly desirable to
support the decision making process with the right tools.
Our novelty is exactly such tool, for augmenting online
decision making of the network administrator during
network management in a stochastic environment.

The work by Delaet et al. [4] introduced the
Make&Activate-Before-Break approach for seamless
route update in SDN. The authors described in a high-
level the multicasting-based update, which we employ
in this work. Also, they introduced a controller-based
method for verifying the correctness of a new route be-
fore the traffic redirection. Dinitz et al. [16] extended
the work [4] to the general case of several dependent (via
shared links) routes pairs. The routes update problem
was proved to be NP-hard [17]. The authors of [16]
suggested the use of artificial intelligence (AI) methods
for solving the problem. As a basis for AI-based solu-
tions, Dinitz et al. proposed a dependence graph model
describing the current state of the problem instance at
any replacement stage. In addition, route readiness ver-
ification similar to that in [4] was implemented in [16]
as a high-level network protocol.

In this work, we investigate a different problem; we
consider the route updates problem from a QoS per-
spective and describe in high-level both the prediction
and the update processes.

3 Preliminaries and Definitions

The basic system settings are as follows. For a (route)
sequence X, we denote by xi the ith element in it.
In a (directed) communication network, we are given
a route C from source s to destination d. Additionally,
we are given a set of different new routes Ni, each going
from s to d. We model each route as an ordered set of
network nodes connected by network links. We assume
that neither of the routes contains cycles. Each router in
a route matches a packet from s to d and forwards the
packet to the next router in order. After the update is
complete, each router in the new route should forward

the packets from s to d to the next router in order along
the new route.

In our work, we consider the route replacement prob-
lem as a sequence of subroutes replacements. The routes
replacement subsystem was in great detail described by
Dinitz et al. in [16]. We borrow from [16] the relevant
parts which we briefly describe here.

Definition 1. We define a subset from a ∈ X to b ∈ X
of an ordered set X, when a precedes b, as a subroute
from a to b, and denote such subroute by [a, b].

Subroutes. The current routeC subdivides each new
route to k common subroutes (a subroute may consist of
one router in the simplest case) and k − 1 noncommon
subroutes. For illustration, see Fig. 1. In Fig. 1 and
figures below, the current route is depicted in a light
grey color full nodes, connected with solid edges. The
new route is depicted in white colored nodes, connected
with dashed edges. The common nodes are depicted as
shaded. If there are several new routes, the nodes of each
route are filled with a designating pattern. Additionally,
for easier reading, when it is possible, we denote sub-
routes of some route X as X ′, X ′′, etc. In other cases,
a subroute j of a new (current) route i is denoted as
N i

j(C
j
i ). Similarly, routers of some route X are denoted

by r′, r′′, etc.

Figure 1 Route C with two possible new routes sharing a link

In the example in Fig. 1, noncommon new subroutes
of routeN1 are denoted byN11 = [s, r2] andN21 = [r2, d],
while the noncommon new subroutes of N2 are de-
noted by N12 = [s, r1], N

2
2 = [r1, r3], N

3
2 = [r3, r2],

and N42 = [r2, d].
Note that in general, the order of common subroutes

along C and along N can be different. See, for example,
the common subroutes of C and N2 in Fig. 1.

Definition 2. A new noncommon subroute of N from
router a to router b is legitimate for update only if a
precedes b on the route C.

Definition 2 guides us on which subroutes can be
launched without creating routing cycles in the network
system. (See [4] for details.)

When an update of a subroute N ′ from router r to r′

is finished, the update flow goes along C from s to r,
continues alongN ′ up to r′, and finishes alongC from r′

to d. For illustration, see the result of launching N42 in
Fig. 2.

54 INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4



Seamless route updates in software-defined networking via quality of service compliance verification

Figure 2 N4
2 was launched

Note that launching a currently nonlegitimate new
subroute, for example, N32 in Fig. 1, is forbidden since
it will form a cycle resulting in packets circulating and
overwhelming the network.

Dynamics of the system. Dinitz et al. performed a de-
tailed analysis on the dynamics of a subroutes system.
After an update of a subroute is complete, the set of
current subroutes C and the set of new subroutes N are
recalculated. This may result in different system of sub-
routes. For example, see Fig. 2 where after the launch of
N42 from the example in Fig. 1, the sets of subroutes are
recalculated. As a result, we obtain different subroutes
(for clarity, the previous labels are kept). See also [16]
for details and extensive analysis.

3.1 Markov chain characterization
of the network states

We characterize execution of some (sub)route in the
network by a packet delay time between the (sub)route’s
common sender and common destination routers as well
the probability of a packet drop. Let us for now define our
network routing model (conceptual model) informally
in the following terms. Delay of a packet is obtained
using a physical delay and the total processing time in
the router. We consider that transmission of packets in
a network can have a random behavior, caused by the
random character of both, the input, and possible loss of
packets. There we are interested in a probabilistic model,
namely, a Markov model. In order to fully characterize
the network as an MC, the internal state of each router
(and, in particular, the buffer occupancies), as well as
the characteristics of all flows, need to be expressed as
states in the chain.

However, such approach would result in an enor-
mous and intractable number of states. Therefore, to
simplify these computations, let us characterize the de-
lay time as an abstract variable t. This abstract variable
can be interpreted in different ways, e. g., the current
processing queue length and a packet transmission rate
of the link, or possibly a fixed value, such as an interval
between the beginning of a packet transmission after
being processed in some node and the end of processing
at the next node.

We describe the functioning of the network in the
transmission of packets as transitions of a discrete-time
MC (DTMC). The state space corresponds to the set of
nodes such that the transmission of a packet from a node
that has finished processing the packet to the next node
corresponds to the transition of the chain to the next
state.

Discrete-time MC is defined as a tuple D
= (S, s0, P ). In the tuple, S is the finite set of
states, s0 ∈ S is the initial state, P : S × S → [0, 1]
is the transition probability matrix in which ∀s ∈ S,∑

s′∈S P (s, s
′) = 1. For any two states s, s′ ∈ S, if

P (s, s′) > 0, then s′ is the successor of s. For a subset
of states T ⊆ S, the probability of moving from a state s
to any state t ∈ T in a single step is denoted by P (s, T )
and is given by P (s, T ) =

∑
t∈T P (s, t).

3.2 Verification syntax

For implementation of our PCTL-based model, we use
PRISM — probabilistic model checker [18]. There, we
follow PRISM property specification language. Here,
we briefly describe the essential syntax while more details
can be found in [19].

Given a property ā, we say thatā is true with prob-
ability p and write that as Pp[ā]. If the probability p is
unknown, PRISM allows, for DTMC, writing proper-
ties queries of the form P=?[ā], meaning “what is the
probability that ā is true?”. Additionally, it is possible
to use a time bound and write properties queries such
as P=?[F≤Tā], meaning “what is the probability thatā
is true after less than T steps?”. At last, it is possible
to compute properties such as expected time or expect-
ed number of steps. For example, R=?[Fā], meaning
“what is the expected number of steps until ā is true?”.

4 Prediction of Preferred Update

The states of a DTMC describe the nodes in the new
route and the transition probabilities in the chain repre-
sent the possible delay or a packet loss in the routers along
the new route. The states are defined as {s1, . . . , sn}
where n is the number of nodes in the new route. The
network achieves the state si if a packet has reached the
ith node. For example, in Fig. 3, the self-transition
edge represents the probability for a delay due to packet
loss, rules installation at the router, or congestion on the
router-controller link, while the forward transition edge
represents the probability for a successful transition to
the next state. These probabilities can be estimated from
network statistics (see, for example, [12]). The labels on
edges are the probability values, when edge has no label
means probability 1.

The initial probability distribution of states is given
by the vector P0 of size n. We can determine the prob-

INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4 55



S. L. Frenkel and D. Khankin

Figure 3 Probability as a function of number of steps to
update routes N1 (1) and N2 (2)

ability that a particular route delays the update process
by k, that is, the number of steps required for a successful
update is given by p(k) = P0P k. Using this characteris-
tic, which is, in fact, the probability distribution of the
number of steps P (k < x), one can calculate various
properties like average delay time for the new route,
maximum or minimum number of steps to update, etc.

Consider the example illustrated in Fig. 4. Figure 4a

illustrates the current route C and a candidate new
route N1. Figure 4b shows the same current route C
with another candidate new route N2. Figures 4c and 4d

show the MCs for new routes N1 and N2, accordingly,
with given transition probabilities.

During the update process, packets are sent along
the current and the new routes. Since the new route is

not operational yet, packets can be delayed due to con-
gestion on certain nodes or due to switch configurations.
For example, if routing rules have not yet been installed
in some switch, then an arriving packet is sent to the
controller [20]. The controller then decides reactively
on further actions whether to install an appropriate rule
for the packet. Also, the controller may be busy with
other work and not respond immediately. Those packet
processing actions may delay the update process. In the
case buffer becomes full, for example, if the network is
being congested, packets may be dropped. There, the
transition to the next state during the update process
depends on the likelihood of a delay or a loss of a packet
in the current state.

In the example, the number of steps required for
launching N2 is smaller than the number of steps re-
quired for launching N1. However, due to a higher
likelihood of delays along the route N2, it is possi-
ble that N1 is preferred having a higher probability for
a successful update. The network administrator may ask
which new route is recommended for the update pro-
cess, considering the expected number of steps required
for the update. That is, updating paths requires the
operator to decide on the possible choice of a subroute
for the next step. One should consider the possibility
of including a decision tool augmenting the controller
during route updates.

There were many attempts to use the LP/ILP ap-
proach, as it was already mentioned above (see, e. g., [8]),
but they have encountered the same difficulties, espe-
cially when taking into account online implementation.
We show that it is possible to describe the routing process

Figure 4 New routes N1 (a) and N2 (b) and MC states for N1 (c) and N2 (d)

56 INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4



Seamless route updates in software-defined networking via quality of service compliance verification

as DTMC. Thus, taking into consideration O(n3) worst
case computation complexity, we consider using the “de-
sign via verification” mentioned above based on PCTL
verification, similar to the one used in PRISM [18].

We have calculated the probability for a successful
update as a function of number of steps for routes N1
andN2 from the example in Fig. 4. See Fig. 3 where this
function is shown. Curve 1 represents the plot for N1
and curve 2 represents the plot for N2.

Observe that after 20 steps, both new routes will be
launched with probability 1 which can be written as

P1
[
F>20N1

]
= P1

[
F>20N2

]
= 1 .

The expected number of steps required for N1 is smaller
than the required for N2:

R [F N1] < R [F N2] .

However, the probability for successfully updating in less
than 15 steps is higher for route N2 (0.55± 0.040 for N1
and 0.717 ± 0.036 for N2, based on 99% confidence
level): P0.717±0.036

[
F≤15N2

]
.

5 Route Updates
per Quality of Service

In this section, we show algorithm that we propose for
various settings. First, we show an enhancement for
the sequential update algorithm from [4], which during
the update process decides on preferred subroute from
the set of possible subroutes as part of QoS require-
ments. In the multicast-based update, several methods
were proposed in [4] for eliminating duplicated packets.
In the case the common destination router is not able
to immediately eliminate duplicated packets, the algo-
rithm begins the update from the end, ensuring a correct
update process [4].

After that, we show an algorithm that chooses the
subroutes for update arbitrary, assuming that the com-
mon destination node will not leak duplicated packets.
However, the packets sending rate along the new sub-
route need to be temporarily limited [4].

At last, we present a supplementing algorithm that
suggests which subroutes can be updated in parallel.

5.1 Sequential update

Let us begin the update from the end, namely, from
the last alternative subroute of any new route. Provably,
this prevents the formation of cycles [4]. In order to
represent all possible choices of a path from a current
state of the update process to the end of the update
process, we propose to use a directed graph which nodes
are the new, legitimate for launching, subroutes of the

network. The edges of the graph represent a legal order of
launching new subroutes. Each path in this graph from
a current node to the last node in the path represents
a legal combination of chosen subroutes. The update
process is continued as long as there is a possible node
to transition to.

Let us examine the two possible new routes N1
and N2 that can replace the current route C from the
example depicted in Fig. 1. The new route N1 is com-
posed of N11 and N21 , while the new route N2 composed
of N12 , N22 , N32 , and N42 . Starting from the end, the
only new subroutes that are allowable to launch are N21
and N42 . Assume that based on the DTMC calculations
performed as described in section 4, the subroute N42
is chosen for update. After the update of the subroute
is complete, the current route C is composed of not
updated yet part of the old route and N42 . See Fig. 2
where the change in C is depicted.

After the subroute N42 is launched, we arrive at
a smaller problem in which less subroutes are left to
update. Due to dynamics of the system (see section 3),
some new subroutes can merge into a single new sub-
route. See Fig. 2 where after N42 was launched, the new
subroutes N32 and N22 are merged into a single subroute.
Now, one can launch either N11 or N22 merged with N32 .
Assume that we choose to launch N11 , which launch
finishes the update. The routeC updated toN11 andN42 .
See Fig. 5 illustrating that.

Figure 6 shows the directed graph that represents the
possible update sequences. Initially, the subroutes that
are legal for launch are N21 and N42 . As such, these are
the only subroutes that have in-degree 0. Launching N32
is forbidden; hence, there is no node in the graph G
that represents this subroute. After launching N42 , we

Figure 5 N1
1 was launched

Figure 6 Graph representation for possible update paths for
routes update example from Fig. 1

INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4 57



S. L. Frenkel and D. Khankin

Algorithm 1: Update per QoS Algorithm

1 directed graph G

/* A is a collection of nodes */

2 A← choose nodes from G with in-degree 0
3 repeat
4 foreach v ∈ A do
5 calculate R[F v]
6 end
7 N t

i ← argmaxv(R[F v])
8 launch N t

i

9 update C accordingly
10 merge any new and common subroutes as described in section 3
11 A← choose nodes neighboring to N t

i

12 until out-degree of node N t
i > 0;

can proceed by launching N11 or N22 . However, if N21
was launched first, it would be forbidden to launch N22
since it shares a common edge withN21 . This is reflected
in the graph G by not having a directed edge from the
node N21 to the node N22 . We finish the update process
by arriving either to N11 or to N12 . Notably, these nodes
have out-degree 0.

Algorithm 1 updates subroutes according to calcu-
lated QoS for each new subroute, by choosing at each
step the new subroute that maximizes QoS.

The algorithm starts by selecting the initial set of
subroute nodes. These are nodes with in-degree 0. The
algorithm continues traversing the graph up to arrival at a
node with out-degree 0 which would be the last subroute
to launch. The inner loop at lines 4–6 calculates the
QoS for each neighboring node. Afterward, at line 7, the
algorithm chooses the node that maximizes QoS. Then
launches this node and updates the routeC, accordingly
(see Figs. 1–5 for illustration). Afterward, the algorithm
selects the next neighboring nodes.

After execution of Algorithm 1, the resulting new
route maximally complies QoS requirements.

5.2 Arbitrary subroutes selection

In this subsection, we assume that immediate duplicate
packets elimination is possible. It may be that some of
the subroutes are not ready for an update yet. Thus,
meanwhile, the administrator may want to proceed with
the update process to other subroutes or see possible
variations of the update. For such scenario, we provide
an algorithm which can select a subroute for update
arbitrary and continue the update process from there.
We create a forest graph of all possible update combi-
nations from which the desired update sequence can be
chosen.

Figure 7 shows all possible combinations from ex-
ample in Fig. 1. Noticeable, as mentioned earlier, some

Figure 7 Forest graph representing execution combinations
for example from Fig. 1

combinations exhibit fewer steps, though possible that
its QoS compliance is worse than others.

Algorithm 2 starts by iterating over all roots of the
forest graph and calculating QoS using Algorithm 1 each
tree. Afterward, launch the update of the tree that
maximizes QoS.

5.3 Parallel update

In certain cases, it is possible to update in parallel several
subroutes and, as such, decrease update time. However,
launching subroutes in parallel is not always possible
since subroute may share a link and, thus, leads to con-
gestion during the update process, close a cycle, or lead
to an inconsistent state of the system. In [4], it was
shown that two new subroutes N ′ from a to b and N ′′

from c to d can be launched in parallel only if c succeeds b
or a succeeds d.

58 INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4



Seamless route updates in software-defined networking via quality of service compliance verification

Algorithm 2: Arbitrary Selection Update

1 directed graph G
2 A0 ← choose nodes from G with in-degree 0
3 Q← {}

/* iterate over all roots of trees in the forest G */

4 foreach vr ∈ A0 do
5 q ← get the expected QoS using Algorithm 1 for vr

6 Q← Q ∪ {q → root}

7 end

8 qmax ← maxQoS(Q)
9 launch maximizing QoS update order in root = Q[qmax]

We create a supplementary graph GS , in which
nodes are the new legitimate for launching subroutes,
and edges represent restrictions on parallel launching of
subroutes. See Fig. 8 for illustration, depicting subroutes
from example in Fig. 1 and their parallel restrictions. For
example, N42 and N12 can be launched in parallel since
there is no edge connecting them.

Clearly, any independent set of subroutes from the
supplementary graph contains subroutes that can be
launched in parallel. This can be further enhanced by
setting QoS calculated values as weights on nodes of the
graph and finding the subroutes that can be launched
in parallel by finding a maximum-weight independent
set of the graph GS . Since GS has few number of
nodes (several tens), it is possible to find the maximum-
weight independent set even by enumerating all possible
independent sets [21] and comparing their total weights.

Figure 8 Supplementary graph of the example in Fig. 1,
showing which subroutes cannot be run in parallel

Important, the parallel method should not be
launched on its own. For example, assume that at
the first iteration of Algorithm 3, the independent sets
of nodes areA1 andA2. Let us assume thatA1 complies
better to QoS demands than A2 and, thus, A1 will be
selected. Also, let us assume that B1 is the next inde-
pendent set in the graph if A1 was selected and B2 if A2
was selected. Also, let us assume that B1 is the next
independent set in the graph if A1 was selected and B2
ifA2 was selected. It is possible that due to the dynamics
of the system (see section 3), we could obtain overall
higher QoS results if we initially launched the subroutes
from the setsA2 andB2 afterwards than from the setsA1
and B1.

Therefore, the graph that we create in this section
for parallelization constraints is a supplementary graph
which must be used in conjunction with the graphs
from previous sections. Optimal results will be obtained
when used in conjunction with the forest graph from
subsection 5.2.

It is also important to note that, in the worst case,
when there are no disjoint subroutes, the parallel method
is reduced to the sequential method thought with a higher
running time.

6 Implementation

We implemented the update algorithms from [4] as ser-
vices for our QoS verification module. The update

Algorithm 3: Parallel Update

1 weighted graph GS

2 while there are still current subroutes to update do
3 A← find maximum-weight independent set in GS

/* do in parallel */

4 foreach N t
i ∈ A do

5 launch N t
i

6 end
7 end

INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4 59



S. L. Frenkel and D. Khankin

algorithm itself was not modified. In other words, we
treated the update itself as an atomic action. The route
updates algorithms are implemented as applications in-
teracting with the northbound interface of an SDN
controller. We used POX [22] as a platform for controller
development and Mininet [23] for network topology
emulation. Figure 9 depicts the schematic arrangement
of the functional elements.

We created networks with topology of random graph
and small-world features. During each simulation trial,
a pair of common source and destination nodes (s, d)
were selected. A path connecting s and d was selected
as a current route and a set of 4 new routes connecting
(s, d), to replace the current route, were selected, possi-
bly with shared links among themselves and the current
route.

We considered latency due to the formed congestion
as QoS demands for the update, implemented by form-
ing congestion on randomly selected subroutes. Route
update was executed by the update algorithm from [4]
for each pair of current and new routes. Further, one
of the enhanced versions was executed, updating to the
preferred combination of subroutes, by identifying the
congested subroutes (e. g., by estimating latency).

Figure 9 Description of the system

7 Concluding Remarks

The study in this paper illustrates a feasibility of modeling
and designing the route update process via verification
using DTMC. The goal was to strengthen the network
administrator involvement in management and decision
making during route update. In the present model,
the network administrator is able to consider network
parameters such as packet losses, delay, communica-
tion rounds, flow table updates, congestion, and other
inherent unreliabilities of the network.

We extended the updating algorithm with the ability
to compute QoS as the MC characteristics, where the

MC corresponds to the states of the update process.
Using this MC computation ability, it is possible to pre-
dict the expected number of steps (delay time) required
to complete the update process. These prediction re-
sults allow the administrator to make a decision whether
a new route can satisfy the user requirements per QoS or
a more reliable route will be selected.

We provided sequential update algorithm and an ar-
bitrary order algorithm when for the later, it is assumed
that immediate duplicate packets elimination is possi-
ble. Further, we suggest a supplementary graph and
algorithm for launching updates in parallel when it is
possible.

This paper proposes a conceptual approach. In
future research, we will focus on optimization of pre-
dictions supplementing the network administrator with
a powerful tool which will be able to enhance the update
process with fine grained analysis of the network.

Acknowledgments

The first author has partially been supported by the Rus-
sian Foundation for Basic Research under grants RFBR
18-07-00669 and 18-29-03100. The second author has
partially been supported by the Rita Altura Trust Chair
in Computer Sciences; The Lynne and William Frankel
Center for Computer Science.

The authors thank Prof. Shlomi Dolev for his valu-
able input and Prof. Yefim Dinitz for his comments.

References

1. Rao, S. K. 2014. SDN and its use-cases — NV and NFV:
A state-of-the-art survey. NEC Technologies India Ltd.
25 p.

2. Ghaznavi, M., N. Shahriar, R. Ahmed, and R. Bouta-
ba. 2016. Service function chaining simplified. arXiv.org.
arXiv:1601.00751.

3. Hansson, H., and B. Jonsson. 1994. A logic for reasoning
about time and reliability. Form. Asp. Comput. 6(5):512–
535.

4. Delaet, S., S. Dolev, D. Khankin, S. Tzur-David, and
T. Godinger. 2015. Seamless SDN route updates. IEEE
14th Symposium (International) on Network Computing and
Applications. IEEE. 120–125.

5. Frenkel, S., D. Khankin, and A. Kutsyy. 2017. Predicting
and choosing alternatives of route updates per QoS VNF
in SDN. IEEE 16th Symposium (International) on Network
Computing and Applications. IEEE. 1–6.

6. Devi, G., and S. Upadhyaya. 2015. An approach to dis-
tributed multi-path QoS routing. Indian J. Sci. Technol.
8(20):1–14. doi: 10.17485/ijst/2015/v8i20/49253.

7. Egilmez, H. E., S. Civanlar, and A. M. Tekalp. 2012.
A distributed QoS routing architecture for scalable video
streaming over multi-domain OpenFlow networks. 19th
IEEE Conference (International) on Image Processing.
IEEE. 2237–2240.

60 INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2018 volume 12 issue 4



Непрерывные обновления маршрута в SDN с использованием проверки соответствия качеству обслуживания

8. Juttner, A., B. Szviatovski, I. Mecs, and Z. Rajko. 2001.
Lagrange relaxation based method for the QoS routing
problem. IEEE Conference on Computer Communications.
20th Annual Joint Conference of the IEEE Computer and
Communications Society Proceedings. IEEE. 2:859–868.

9. Yu, Z., F. Ma, J. Liu, B. Hu, and Z. Zhang. 2013.
An efficient approximate algorithm for disjoint QoS
routing. Math. Probl. Eng. 2013:489149. 9 p. doi:
10.1155/2013/489149.

10. Foerster, K.-T., S. Schmid, and S. Vissicchio 2016.
A survey of consistent network updates. Arxiv.org. arXiv:
1609.02305.

11. Reitblatt, M., N. Foster, J. Rexford, and D. Walker. 2011.
Consistent updates for software-defined networks: Change
you can believe in! 10th ACM Workshop on Hot Topics in
Networks Proceedings. New York, NY: ACM. Art. No. 7.
doi: 10.1145/2070562.2070569.

12. Hogan, M., and F. Esposito. 2017. Stochastic delay fore-
casts for edge traffic engineering via Bayesian networks.
IEEE 16th Symposium (International) on Network Comput-
ing and Applications. IEEE. 1–4.

13. McGeer, R. 2012. A safe, efficient Update Protocol for
Openflow Networks. 1st Workshop on Hot Topics in Soft-
ware Defined Networks Proceedings. New York, NY: ACM.
12:61–66.

14. McGeer, R. 2013. A correct, zero-overhead protocol for
network updates. 2nd ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking Proceedings. New
York, NY: ACM. 13:161–162.

15. Katta, N. P., J. Rexford, and D. Walker. 2013. Incremental
consistent updates. 2nd ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking Proceedings. New
York, NY: ACM. 13:49–54.

16. Dinitz, Y., S. Dolev, and D. Khankin. 2017. Dependence
graph and master switch for seamless dependent routes re-
placement in SDN. IEEE 16th Symposium (International)
on Network Computing and Applications. IEEE. 1–7.

17. Amiri, S. A., S. Dudycz, S. Schmid, and S. Wieder-
recht. 2016. Congestion-free rerouting of flows on DAGs.
ArXiv.org. arXiv:1611.09296.

18. Kwiatkowska, M., G. Norman, and D. Parker. 2011.
PRISM 4.0: Verification of probabilistic real-time sys-
tems. Computer aided verification. Eds. G. Gopalakrish-
nan and S. Qadeer. Lecture notes in computer science ser.
Springer. 6806:585–591.

19. Kwiatkowska, M., G. Norman, and D. Parker.
2018. PRISM manual. Available at: http://www.
prismmodelchecker.org/manual/ (accessed Decem-
ber 10, 2018).

20. Open Networking Foundation. 2015. OpenFlow Switch
Specification Ver 1.5.1.

21. Wu, Q., and J.-K. Hao. 2015. A review on algorithms for
maximum clique problems. Eur. J. Oper. Res. 242(3):693–
709.

22. Kaur, S., J. Singh, and N. S. Ghumman. 2014. Network
programmability using POX controller. Conference (In-
ternational) on Communication, Computing and Systems.
138.

23. Lantz, B., B. Heller, and N. McKeown. 2010. A network
in a laptop: Rapid prototyping for software-defined net-
works. 9th ACM SIGCOMM Workshop on Hot Topics in
Networks Proceedings. New York, NY: ACM. Art. No. 19.
doi: 10.1145/1868447.1868466.

Received October 9, 2018

Contributors
Frenkel Sergey L. (b. 1951) — Candidate of Science (PhD) in technology, associate professor, senior scientist,
Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation; fsergei51@gmail.com
Khankin D. (b. 1983) — MSc, doctorate student, Department of Computer Science, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel; danielkh@post.bgu.ac.il

НЕПРЕРЫВНЫЕ ОБНОВЛЕНИЯ МАРШРУТА В SDN

С ИСПОЛЬЗОВАНИЕМ ПРОВЕРКИ СООТВЕТСТВИЯ

КАЧЕСТВУ ОБСЛУЖИВАНИЯ∗

С. Л. Френкель1, Д. Ханкин2

1Институт проблем информатики Федерального исследовательского центра «Информатика и управление»
Российской академии наук
2Университет им. Бен-Гуриона в Негеве, Беэр-Шева, Израиль

Аннотация: В программно-определяемой сети (SDN — software-defined networking) уровень управления
и уровень данных разделены. Это обеспечивает высокую гибкость эксплуатации, предоставляя абстрак-
ции для управления сетью приложений и возможность непосредственного программирования маршрутов.
Однако из-за изменений топологии, процедуры обслуживания или происходящих сбоев иногда необхо-
дима реконфигурация и обновление сети. В предлагаемом сценарии рассматривается текущий маршрут C
и набор возможных новых маршрутов {Ni}, где для замены текущего маршрута требуется один из

∗Работа была частично поддержана РФФИ (гранты 18-07 00669 и 18-29-03100), а также Rita Altura Trust Chair in Computer Sciences;
The Lynne and William Frankel Center for Computer Science.

ИНФОРМАТИКА И ЕЁ ПРИМЕНЕНИЯ том 12 выпуск 4 2018 61



С. Л. Френкель, Д. Ханкин

новых маршрутов. Существует вероятность того, что новый маршрут Ni окажется длиннее некоторого
другого нового маршрута Nj , но при этом Ni будет более надежным и он будет обновляться быстрее или
работать лучше после обновления с точки зрения требований качества обслуживания (QoS — quality of
service). Принимая во внимание случайный характер функционирования сети, авторы дополнили недавно
предложенный алгоритм обновления маршрута Delaet с соавт. методом оценки соблюдения требований
QoS во время непрерывного обновления маршрута, основанным на использовании цепей Маркова. При
этом, во-первых, предлагается расширить алгоритм передачи пакетов по выбранному маршруту, сравнивая
процесс обновления для возможных альтернатив маршрута. Во-вторых, предлагается несколько способов
выбора комбинаций предпочтительных отрезков путей новых маршрутов, что приводит к оптимальному
в смысле соответствия QoS маршруту.

Ключевые слова: программно-определяемые сети; цепи Маркова; качество обслуживания

DOI: 10.14357/19922264180408

Литература

1. Rao S. K. SDN and its use-cases — NV and NFV: A state-
of-the-art survey. — NEC Technologies India Ltd., 2014.
25 p.

2. Ghaznavi M., Shahriar N., Ahmed R., Boutaba R. Ser-
vice function chaining simplified // Arxiv.org, 2016.
arXiv:1601.00751cs.

3. Hansson H., Jonsson B. A logic for reasoning about time
and reliability // Form. Asp. Comput., 1994. Vol. 6. No. 5.
P. 512–535.

4. Delaet S., Dolev S., Khankin D., Tzur-David S., Godinger T.

Seamless SDN route updates // IEEE 14th Symposium
(International) on Network Computing and Applica-
tions. — IEEE, 2015. P. 120–125.

5. Frenkel S., Khankin D., Kutsyy A. Predicting and choosing
alternatives of route updates per QoS VNF in SDN //
IEEE 16th Symposium (International) on Network Com-
puting and Applications. — IEEE, 2017. P. 1–6.

6. Devi G., Upadhyaya S. An approach to distributed multi-
path QoS routing // Indian J. Sci. Technol., 2015. Vol. 8.
Iss. 20. P. 1–14. doi: 10.17485/ijst/2015/v8i20/49253.

7. Egilmez H. E., Civanlar S., Tekalp A. M. A distributed
QoS routing architecture for scalable video streaming over
multi-domain OpenFlow networks // 19th IEEE Confer-
ence (International) on Image Processing. — IEEE, 2012.
P. 2237–2240.

8. Juttner A., Szviatovski B., Mecs I., Rajko Z. Lagrange re-
laxation based method for the QoS routing problem //
IEEE INFOCOM 2001 Conference on Computer Com-
munications. 20th Annual Joint Conference of the IEEE
Computer and Communications Society Proceedings. —
IEEE, 2001. Vol. 2. P. 859–868.

9. Yu Z., Ma F., Liu J., Hu B., Zhang Z. An efficient ap-
proximate algorithm for disjoint QoS routing // Math.
Probl. Eng., 2013. Vol. 2013. Art. No. 489149. 9 p. doi:
10.1155/2013/489149.

10. Foerster K.-T., Schmid S., Vissicchio S. A survey of consis-
tent network updates // Arxiv.org, 2016. arXiv:1609.02305.

11. Reitblatt M., Foster N., Rexford J., Walker D. Consistent
updates for software-defined networks: Change you can
believe in! // 10th ACM Workshop on Hot Topics in Net-
works Proceedings. — New York, NY, USA: ACM, 2011.
Art. No. 7. doi: 10.1145/2070562.2070569.

12. Hogan M., Esposito F. Stochastic delay forecasts for edge
traffic engineering via Bayesian Networks // IEEE 16th
Symposium (International) on Network Computing and
Applications. — IEEE, 2017. P. 1–4.

13. McGeer R. A safe, efficient Update Protocol for Openflow
Networks // 1st Workshop on Hot Topics in Software
Defined Networks Proceedings. — New York, NY, USA:
ACM, 2012. Vol. 12. P. 61–66.

14. McGeer R. 2013. A correct, zero-overhead protocol for
network updates // 2nd Workshop on Hot Topics in Soft-
ware Defined Networking Proceedings. — New York, NY,
USA: ACM, 2013. Vol. 13. P. 161–162.

15. Katta N. P., Rexford J., Walker D. Incremental consistent
updates // 2nd Workshop on Hot Topics in Software De-
fined Networking Proceedings. — New York, NY, USA:
ACM, 2013. Vol. 13. P. 49–54.

16. Dinitz Y., Dolev S., Khankin D. Dependence graph and
master switch for seamless dependent routes replacement
in SDN // IEEE 16th Symposium (International) on
Network Computing and Applications. — IEEE, 2017.
P. 1–7.

17. Amiri S. A., Dudycz S., Schmid S., Wiederrecht S.
Congestion-free rerouting of flows on DAGs // ArXiv.org,
2016. arXiv:1611.09296.

18. Kwiatkowska M., Norman G., Parker D. PRISM 4.0: Ver-
ification of probabilistic real-time systems // Computer
aided verification / Eds. G. Gopalakrishnan, S. Qadeer. —
Lecture notes in computer science ser. — Springer, 2011.
Vol. 6806. P. 585–591.

19. Kwiatkowska M., Norman G., Parker D. PRISM manual,
2018. http://www.prismmodelchecker.org/manual.

20. Open Networking Foundation. OpenFlow Switch Speci-
fication Ver 1.5.1, 2015.

21. Wu Q., Hao J.-K. A review on algorithms for maximum
clique problems // Eur. J. Oper. Res., 2015. Vol. 242.
No. 3. P. 693–709.

22. Kaur S., Singh J., Ghumman N. S. Network programmabil-
ity using POX controller // Conference (International) on
Communication, Computing and Systems, 2014. P. 138.

23. Lantz B., Heller B., McKeown N. A network in a laptop:
Rapid prototyping for software-defined networks // 9th
ACM SIGCOMM Workshop on Hot Topics in Networks
Proceedings. — New York, NY, USA: ACM, 2010. Art.
No. 19. doi: 10.1145/1868447.1868466.

Поступила в редакцию 09.10.2018

62 ИНФОРМАТИКА И ЕЁ ПРИМЕНЕНИЯ том 12 выпуск 4 2018


