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STUDY OF THE MMPP/GI/oco QUEUEING SYSTEM
WITH RANDOM CUSTOMERS’ CAPACITIES

E. Lisovskaya', S. Moiseeva!, M. Pagano?, and V. Potatueva'

Abstract: A queueing system with an infinite number of servers is considered. Customers arrive in the system
according to a Markov Modulated Poisson Process (MMPP). Each customer carries a random quantity of work
(capacity of the customer). In this study, service time does not depend on the customers’ capacities; the latter are
used just to fix some additional features of the system’s evolution. It is shown that the joint probability distribution
of the customers’ number and total capacities in the system is two-dimensional Gaussian under the asymptotic
condition of an infinitely growing service time. Simulation results allow determining the applicability area of the

asymptotic result.
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1 Introduction

Queueing systems represent a powerful mathematical
tool for investigating the performance of a wide variety
of real-life systems, ranging from telecommunication
networks to financial markets, from computer architec-
tures to supply chain management and airplane traffic
control, just to cite a few. Analytical tractability of the
corresponding models strongly depends on the nature
of the underlying processes (Poisson arrivals have many
nice features that strongly simplify the analysis) and on
the system geometry.

Although physical resources are always finite, quite
often it is easier to study queueing systems in which
the corresponding parameters assume infinite values.
For instance, the overflow probability is often used as
an upper bound for the loss probability in finite-buffer
queues and, indeed, asymptotic results are available
even for strongly non-Markovian systems [1]. More-
over, infinite-server queueing systems may be applicable
in case of models with a limited number of server devices
as described in [2].

In this work, an infinite-server queueing system, fed
by non-Poisson arrivals with random customers’ capac-
ities, is considered. Queues with random customers’
capacities are useful for analysis and design issues in
high-performance computer and communication sys-
tems, in which service time and customer volume are
the independent quantities (see [3, 4] and references
therein). For instance, in [3], performance analysis
of LTE (Long Term Evolution) networks is carried out

in terms of flow-level dynamics and the amount of re-
quired radio resources does not depend on the duration
of the flow. Such queues are also important in modeling
devices, where it is necessary to calculate a sufficient
volume of buffer for data storing [5, 6]. The results for
single-server queues with limited buffer and LIFO (last
in, first out) service discipline were presented in [7],
where algorithms for the calculation of stationary char-
acteristics were derived.

A new trend in the study of queueing systems is the
analysis of the systems with non-Poisson arrivals and
nonexponential service time. So, in the works [2,8—11],
queues with renewal arrivals, Markovian Arrival pro-
cesses (MAP), and MMPP are studied under various
asymptotic conditions. The main contribution of this
paper consists in extending such analysis, focusing on the
properties of the bidimensional process describing the
number of customers and the total capacity in the system
when an infinite-server queue is fed by MMPP arrivals
with random capacities and nonexponential service time
distribution.

2 Matematical Model

Consider a queue with infinite number of servers (Fig. 1)
and assume that customers arrive according to an
MMPP. The input process is defined by its generator
matrix Q = ||g;;|| of size K x K and the conditional
rates A1, ..., A\x, typically composed into the diagonal
matrix A = diag {\1, ..., A\x}. Denote the underlying
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Figure 1 Queue MMPP/GI/oo with random customers’
capacities

Markov chain of the MMPP as k(t) € 1,2,..., K. Let
each customer has some random capacity v > 0 with
distribution function G(y). An arriving customer in-
stantly occupies a server in the system and its service
time has distribution function B(z); when the service is
completed, the customer leaves the system. Customers’
capacities and service times are mutually independent
and do not dependent on the epochs of customers’
arrivals.

Denote by i(¢) and V' (t) the number of customers in
the system at time ¢ and their total capacity, respectively.
Let us obtain the probabilistic characteristics of two-
dimensional process {i(t),V(¢t)}. This process is not
Markovian; therefore, the dynamic screening method
has been used for its investigation.

Consider two time axes that are numbered as 0 and 1
(Fig. 2). Let axis 0 shows the epochs of customers’ ar-
rivals, while axis 1 corresponds to the screened process.

Let us introduce a function S(t) (dynamic proba-
bility) that satisfies the condition 0 < S(¢) < 1. Let
us assume that a customer, arriving in the system at
time ¢, is screened to axis 1 with probability S(¢), and
not screened with probability 1 — S(¢).

Let the system be empty at moment ¢y and let us fix
some arbitrary moment 7" in the future. S(¢) represents
the probability that a customer arriving at time ¢ will be
serviced in the system by the moment 7'. It is easy to
show [11] that S(t) =1 — B(T —t) forto <t <T.

Denote by n(t) and W (t) the number of arrivals
screened before the moment ¢ on axis 1 and their total

Figure 2 Screening of the customers’ arrivals

capacity, respectively. As it is shown in [9], the prob-
ability distribution of the number of customers in the
system at the moment 7" coincides with the probability
distribution of the number of screened arrivals on the
axis:
P{i(T) =m} = P{n(T) = m}

forallm = 0,1, 2,...Itiseasyto prove the same property
for the extended process {i(t), V(t)}:

P{i(T)=m,V(T) < z}
=P{n(T)=m,W(T) <z} (1)
forall m = 0,1,2,...and z > 0. Let us use Egs. (1)

for the investigation of the process {i(t), V(¢)} via the
analysis of the process {n(t), W (t)}.

3 Kolmogorov Differential
Equations

Let us consider the three-dimensional Markovian pro-
cess {k(t),n(t), W(t)}. Denoting the probability dis-
tribution of this process by P(k,n,w,t) = P{k(t)
= k,n(t) = n,W(t) < w} and taking into account the
formula of total probability, one can write the following
system of Kolmogorov differential equations:

z

= \eS(t) /P(k, n—1w—y,t)dG(y)
0

OP(k,n,w,t)
ot

7P(kvnawat) +ZP(V7nawat)QVk

fork=1,..., K;n=0,1,2,...;w > 0.
Let us introduce the partial characteristic function:

00 (o]
h(k,u1,uo,t) = Zejuln/ejusz(k,n,dw,t)
n=0 0

where j = +/—1 is the imaginary unit. Then, one can
write the following equations:
ot
= h (k,uy, uz,t) \pS(t) (67 G*(uz) — 1)

+ Z h(Vv n,w, t)ql/k

fork =1,..., K where G*(u) = [~ e/ dG(y).
Let us rewrite this system in the matrix form:
oh(uy,ug,t)
ot
= h(u1,uz,t) [AS(2) (7 G" (u2) = 1) + Q] (2)
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with the initial condition
h(U1,U27ﬁQ) =r (3)
where

h(ul,u2,t) = [h (l,ul,uz,t) oo .,h(K,Ul,UQ,t)]

and r = [r(1),...,r(K)] represents the stationary dis-
tribution of the underlying Markov chain, i. e., vector r
satisfies the following linear system:

rQ=0;
} 4)
re=1

where e is the column vector with all entries equal to 1.

4  Asymptotic Analysis

In general, the exact solution of Equation (2) is not
available, but it may be found under asymptotic condi-
tions. In this paper, the case of infinitely growing service
time is considered.

Denote by

(o] [ee]
by = /:ch(x) = /(1 — B(x))dx

0 0
the mean service time; then, the asymptotic condition
is by — oo.

Let us solve Problem (2)—(3) under such asymptot-
ic condition and we obtain approximate solutions with
different order of accuracy, named as “first-order asymp-
totic” h(uy, us,t) ~ h (uy, us,t) and “second-order
asymptotic” h(u, ug, t) ~ h® (uy, uy, t).

4.1 First-order asymptotic analysis

Let us formulate and prove the following statement.

Lemma. The first-order asymptotic characteristic func-
tion of the probability distribution of the process
{k(t),n(t), W(t)} has the form:

t
h(l)(ul,uQ,t) =rexp| (Juiky +juzl<;1a1)/S(v) dv
to
where k1 = rAe and a1 = fooo ydG(y) is the mean
customer capacity.
Proof. By performing the substitutions

1

E=—;
by’

et =71; ¢eto=10;

up =ex1; uz =exa; S(t) = 51(7);

h(uy,ug,t) = fi (21, 22,7, €)

in expressions (2) and (3), one obtains
Eafl(:cl, X9, T,€)
or
= fi (21, 22,7, €) [AS1(7) (7' G* (ex2) —1) + Q] (5)
with the initial condition
fi(z1, 22,70,¢) =r. (6)

Let us find the asymptotic solution of Problem (5)—
(6) f1 (Zl, xa, ’7') = limeﬁo f1 (Zl, X2, T, E) in two steps.

Step 1. Let ¢ — 0 in (5)—(6); then, one obtains the
following system of equations:

f1 (21,22, 7) Q = 0;
f1 (Zl,ZQ,To) =7Tr.

Taking into account (4), one can conclude that
f1(x1, 2, 7) can be expressed as

fi (21,22, 7) = r®1 (21, 22,7) 7

where @1 (x1, 22, 7) is some scalar function which satis-
fies the condition

Dy (21, 22,70) =1. 8)

Step 2. Let us multiply (5) by vector e, substitute (7),
divide the result by €, and perform the asymptotic transi-
tion € — 0. Then, taking into account that Qe = 0 and
re = 1, one obtains the following differential equation
for the function @4 (x1, x2,7):

6(1)1(1‘1, o, T)
or
= (I)l (Zl,l'z,’r) Sl(’T) (lellil +j£E2/€1a1) . (9)

The solution of Problem (8)—(9) is as follows:

Dy (21,22, 7) = exp { (jr1K1 —l—jacgmal)/Sl(v) dv

70

Substituting this expression into (7), one obtains

T

fi(x1,22,7) =rexp K (jr1K1 +jx2n1a1)/51(v) dv

70
Therefore, one can write

WY (uy, ug, t) = £1 (21,29, 7,€) = £ (21, 22,7)

T

=rexp1 (jr1k1 +jx2ﬁ1a1)/51(v)dv

70

¢
=rexpX (Juik: +ju21£1a1)/5(v) dv

to

Thus, the proof is complete.
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4.2 Second-order asymptotic analysis

The main result is the following theorem.
Theorem. T7he second-order asymptotic characteristic

function of the probability distribution of the process
{E(t),n(t), W(t)} has the form:

h(2) (U1, ug, t)

¢
=rexpX (Juik: +ju21£1a1)/5(v) dv

to
(jur)

5 Iil/tS(U)dU+I€2/S2(’U)d’U

to to
¢ ¢
(ju2)® 2 2
+ 5 kiaz | S(v)dv + keai | S*(v)dv
to to
¢ ¢

+ juyjus nlal/S(v) dv+n2a1/52(v)dv

t() t()
where ko = 2g(A — k11)e; az = [;° y*dG(y); and the
row vector g satisfies the linear matrix system
{ gQ =r(kI—A);

ge = const .

Proof. Let hy(zy1,22,t) be a vector function that
satisfies the equation:

h (Ul,UQ,ﬁ) = h2 (ula ’LL27ﬁ)

t
x exp 4 (juiki +ju21€1a1)/5(v)dv . (10)

to
Substituting this expression into (2) and (3), one
obtains the following problem:
8h2 (ul, Uz, t)
ot
= ho(u1, ug,t) [(ej“1 G*(uz2) — 1)S(t)A

— (Juiky + jugriar) S(OI+ Q] (11)
with the initial condition
hy(uy,ug,to) =1 (12)
where I is the identity matrix.
Let us make the substitutions:
2 1 2 2
€ :b—; et=T1; to=10;
1
up =exy; ug =exg; S(t) = 51(t); (13)

ho(uy,ug,t) = fo(z1, 22, 7,€) .

Using these notations, Problem (11)—(12) can be
rewritten in the form

2 afz(l'l, T2, T, E)
or
= (21, 22,7, €) [AS1(7) (/" G*(em2) — 1)

— (jer1m1 + jerimoar) S1 (1) I+ Q]  (14)
with the initial condition
f5(x1, 22, 70,€) = . (15)

Let us find the asymptotic solution of this problem
fo(x1,20,7) = 111% fo(x1, 2, T, €) in three steps.
E—

Step 1. Letting ¢ — 0 in (14)—(15), one obtains the
following system of equations:

{f2($1,$277)Q0;

f2 (Zl, T2, ’7'0) =7Tr.
Therefore, taking into account (4), one can write:

(16)

fo (x1,22,7) = r®3 (21,22, 7)

where @4 (21, 2, T) is some scalar function which satis-
fies the condition

a7

Dy (21, 22,70) = 1.

Step 2. Using (16), the function fa(x1, z2, 7) can be
represented in the expansion form:

f2 (xla T2, T, 5)
= Oy (21,22, 7) [r + 851(7) (Jex1 + jexoar)]

+0(2) (18)

where g is the row vector that satisfies the condition
ge = const and O(e?) is the row vector of the second-
order infinitesimals. Let us use substitution (18) and the
expansion

e/ =1+ jex + O (?)

in Eq. (14). Taking into account (4) and making the tran-
sition € — 0, one obtains the following matrix equation
for the vector g:

gQ=r(kiI—-A).

Step 3. Let us multiply Eq. (14) by vector e and use
expression (18) and the second-order expansion:

N2
ej”:l—l—jaa:—i-@—i—O(ss).
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After some transformations, using the notation
ke =2g (A — K1) e,

one obtains the following differential equation for the
function (I)Q (331, T2, T):

6(1)2(1‘1, o, T)
or
(ja1)?
2

= (I)Q(Zl,lﬂg,’l') (’flsl(’r) +HQS%(T))

(jao)?

M

(k1a2S1(7) + ’fza%Sf(T))
+jrjzs (k10281 (1) + f<&2a15§(7))] :

The solution of this equation with initial condi-
tion (17) is as follows:

®y (21,22, 7T)

i 2 T T
@ nl/Sl(v)var/iz/Sf(v)dv
7o To
. 9 T T
+ @ K1G2/S1(’U) dv + koa? /Sf(v) dv

+ jx1jas | K1aq /Sl (v) dv + Koaq /Sf(v) dv
To To

Substituting this expression in formula (16) and
performing the substitutions that are inverse to (13)
and (10), one obtains

h(2) (ul, uz, t)

t
=rexpX (Juik: +ju21£1a1)/5(v) dv
to

(ur)® /

¢
+T Iil/S(U)dU+I$2/S2(’U)d’U
to to
¢ ¢
(ju2)® 2 2
—|—T kiaz | S(v)dv + keai | S*(v)dv
to to

t t
+ Juijus K1a1/5(’l}) dU+K2a1/S2(’U) dv
to to

for the asymptotic characteristic function of the process
{k(t),n(t), W(t)}. The proof is complete.

Corollary. Assuming t = T and t9 — —oo and us-
ing Egs. (1), one obtains the steady-state characteristic
function of the process under study {i(t), V' (¢)}:

h(uy,u2) = exp {(juik1b1 + juskiaiby)

. 2 . 2
+ (jUI) (Iilbl + Iigbz) -+ (]’U;) (Iilagbl + HQG%I)Q)
+ juijug (K1a1b1 + K2a1b2)}  (19)
where

blo/(lB(v))dv; bzo/(lB(v)) dv.

From the form of the characteristic function (19),
it is clear that the probability distribution of the two-
dimensional process {i(¢), V' (¢) } isasymptotically Gaus-
sian with vector of means

a = [Iilbl K1a1bl}

and covariance matrix
ag % K 12
K= 2
K 12 O 2

_ K1b1 + koba  K1a1b1 + Kaaibe
k1a1by + Koarby Kiasby + Keatby |

Therefore, the correlation coefficient is given by

- Ky K1a1b1 + K2a1bo

7102 \ Iilbl -+ I€2b2 \/ I€1(I2b1 -+ HQG%bQ

5 Numerical Example

Result (19) is obtained under the asymptotic condi-
tion by — oo. Therefore, it may be used just as an
approximation when b, is large enough. To test its prac-
tical applicability, the present authors considered several
numerical examples, varying all the system parameters
(including the distributions of the service time and of
the customer capacity). Since all the different simu-
lation sets led to similar results, for sake of brevity, in
the following, just one of them is discussed in detail.
In particular, let us assume that the input MMPP is
characterized by the matrices:

—0.8 04 04
Q= 0.3-0.6 0.3
04 04 -0.38
and
050 0
A=]010
0015
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Table 1  Kolmogorov
distances between simula-
tion results and asymptot-
ic values for the number of
customers in the system

Table 2 Kolmogorov
distances between simu-
lation results and asymp-
totic values for the total
capacity in the system

N A N A

1 0.265 1 0.355

10 0.039 10 0.033

15 0.032 15 0.025
20 0.027 20 0.021
25 0.025 25 0.019
50 0.017 50 0.013
100 0.012 100 0.010
Hence, the fundamental rate of arrivals is ki

= rAe = 1 customers per time unit. Let us also assume
that customers’ capacities have uniform distribution in
the range [0; 1] and service time has gamma distribution
with shape and inverse scale parameters o = 1.5 and
B = «a/N, respectively. So, when N — oo, one obtains
the asymptotic condition of an infinite growing service
time (by = /B = N — 00).

0.12

0.10-

0.08 -

0.06 -

0.04 -

0.02 -

0.00 | | ! R
0

0.24

0.20

0.16 / %

Ty

0.12F : |
0.08F

0.04 -

0.00 | | | | | L

The goal is to find a lower bound of parameter N
for the applicability of the approximation (19). To this
aim, series of simulation experiments have been carried
out for increasing values of IV and the asymptotic dis-
tributions have been compared with the empiric ones by
using the Kolmogorov distance [12, 13]

A= sup|F (z) = A(@)

as an accuracy measure. Here, F'(x) is the cumulative
distribution function built on the basis of simulation
results and A(z) is the Gaussian approximation based
on (19).

Let us consider the marginal distributions of the
customers’ number and the total capacity in the system.

In the first case, the asymptotic values of mean and
variance are equal to IV and 1.144 N, respectively, and
the corresponding values of the Kolmogorov distance for
increasing values of parameter N are presented in Ta-
ble 1. Similarly, for the total capacity in the system, mean
and variance are equal to 0.5/N and 0.369.V, respectively,
and Table 2 shows the Kolmogorov distance.

One can notice that the asymptotic results become
more accurate when the parameter /N increases. Fig-

55 70 85 100 115
n

0.063
0.054
0.045
0.036
0.027
0.018
0.009

T

T

T

T

T

T

T

20

(®)

Figure 3 Distributions of the number of customers (a) and of the total capacity (b) for different values of N: left column —
N = 10; right column — N = 100; I/ — theoretical results; and 2 — simulation
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o
o
XN

5

5=0.03

000 | ""'["'7*""'?""-'---'--'1--'----- e
0 10 20 30 40 50 60 70 80 90 100
N

Figure 4 Relative error for the variance of the number of
customers 4(¢) () and the total capacity V (¢) (2)

ure 3 compares the asymptotic approximations with the
empirical results for the number of customers and the
total capacity in the system.

As typically done in the literature [ 12], let us suppose
that an approximation is applicable if its Kolmogorov
distance is less than 0.03. Hence, one can conclude that
the asymptotic results are applicable for values of the
parameter N equal to 15 or more (marked by boldface
in Tables 1 and 2).

Then, let us compare the asymptotic value of some
characteristics of the queueing system with the cor-
responding empirical characteristics, using the relative
error

|d — al

4]
d

where d denotes the value constructed on the basis of
simulation results and a is obtained from (19).

In more detail, the mean values of the processes i(t)
and V (t) are very close (with 6 < 107> for all N) and
the relative errors of the variance decreases with IV as
shown in Fig. 4.

Finally, Table 3 shows the relative error for the cor-
relation coefficient.

Table 3 Relative error for the
correlation coefficient

N 5

1 60-10"4
10 11-10%
15 7.10"%
20 5.10"%
25 4-107%
50 1.-1074
100 0.8-107%

INFORMATIKA I EE PRIMENENIYA — INFORMATICS AND APPLICATIONS 2017 volume 11 issue 4

6 Concluding Remarks

In the paper, the queue with MMPP arrivals, infinite
number of servers, and nonexponential service time is
considered. Moreover, random customers’ capacities,
independent of their service time, are assumed. The
analysis is performed under the asymptotic condition of
an infinitely growing service time. It is shown that two-
dimensional probability distribution of customers’ num-
ber and total capacity in the system is two-dimensional
Gaussian under this asymptotic condition. Numerical
results show that asymptotic results have enough accura-
cy for the marginal distributions of number of customers
and of the total capacity in the system when the ser-
vice rate exceeds the fundamental rate of arrivals by at
least 15 times.
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AnHoTtamus: [IpoBeneHo McclieoBaHNE CUCTEMbBI MACCOBOTO OOCTY:KMBAHUSI C HEOTPAHMYEHHBIM YMCIIOM TPU-
00poB. 3asiBKU MOCTYIAIOT B CUCTEMY B BUJIE MaPKOBCKU-MOAYJIMPOBAHHOTO IyaCCOHOBCKOTO MoToka. Kaxmnas
3asiBKa HeceT B cede MpOoM3BOJbHOE KOJUYECTBO AaHHBIX (00beM 3asiBKM). B 3TOM ucciegoBaHuu Bpemst 00-
CIY’KMBaHMS HE 3aBUCUT OT o0ObeMa 3asiBOK. [lokazaHO, UTO COBMECTHOE pacipeae/ieHue BEPOSITHOCTEH Yuncia
3asIBOK B CUCTEME U UX CYMMapHOT0 00beMa SIBJISIETCS IBYMEPHBIM TayCCOBCKUM IPU aCUMITTOTUYECKOM YCIOBUU
pacryiiero BpeMeHu oocayxkuBaHust. UMuTaiimoHHOe MOJEIMPOBaHNE U YUCIICHHBIE SKCITEPUMEHTBI TTO3BOJIVIIU
OIpeNeTUTh 00JaCTh MPUMEHUMOCTY aCUMITTOTUYECKOTO pe3yibTarta.
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