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REVISITING JOINT STATIONARY DISTRIBUTION IN TWO FINITE
CAPACITY QUEUES OPERATING IN PARALLEL

L. Meykhanadzhyan®, S. Matyushenko?, D. Pyatkina®, and R. Razumchik*

Abstract: The paper revisits the problem of the computation of the joint stationary probability distribution p;; in
a queueing system consisting of two single-server queues, each of capacity NV > 3, operating in parallel, and a single
Poisson flow. Upon each arrival instant, one customer is put simultaneously into each system. When a customer
sees a full system, it is lost. The service times are exponentially distributed with different parameters. Using the
approach based on generating functions, the authors obtain a new system of equations of a smaller size than the
size of the original system of equilibrium equations (3N — 2 compared to (N + 1)2). Given the solution of the new
system, the whole joint stationary distribution can be computed recursively. The new system gives some insights
into the interdependence of p;; and p.n,. If relations between p; 1, n and p; n fori = 3,5,7, ... are known, then
the blocking probability can be computed recursively. Using the known results for the asymptotic behavior of p;; as
i, j — oo, the authors illustrate this idea by a simple numerical example.
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1 Introduction

The system with two single-server queues (both limited
and unlimited capacity cases) operating in parallel has
received significant attention in the literature due its
potential application in real-life scenarios (for example,
packet switches, packet radio networks, parallel pro-
cessing systems, inventory control of database systems,
etc.). Further, it is assumed that the system consists of
two queues (say, queue 1 and queue 2) each with a single
server and there is a single Poisson flow of customers
arriving at it. Each customer upon arrival is instantly
duplicated: one customer goes to queue 1 and the other
goes to queue 2. Both queues are working independently,
service times follow exponential distribution with dif-
ferent parameters, and the service discipline in a queue
is either FCFS (first-come-first-served), LCFS (last-
come-first-served), or Random. Despite the simplicity
of the structure, even under such markovian assump-
tions, the system turned out to be notoriously hard to
analyze.

A big list of publications on the topic is given in [1],
where the authors give an overview of functional equa-
tions (and solution approaches), which arise in the
analysis of such systems with infinite capacity queues.
References to the application related papers are also giv-

en. Among the pioneer works in the area, papers [2—3]
are worth noticing.

In this paper, the authors revisit the problem of the
computation of the joint stationary distribution in the
case, when both queues have finite capacity. Under the
exponential assumptions (and given additional dedicat-
ed Poisson flows to each queue), the matrix algorithm
has been proposed already in [3]. Some further con-
siderations, including the study of correlation between
the queues’ sizes were continued in [14]. In general,
the cases, when both of queues are on finite capacity
or one of the queues is (see, for example, [6]), have re-
ceived less attention in the literature. This is presumably
due to the fact that in those cases in order to obtain the
joint stationary distribution, one can use widely-adopted
general techniques: folding algorithm, linear level re-
duction or block-gaussian elimination algorithms (see,
for example, [7, 8]).

Our motivation for revisiting this problem comes
from the papers [9—13], where the generating func-
tion technique (which utilizes some properties of special
functions (Chebyshev and Gegenbauer polynomials))
was applied to the systems with two finite-capacity
queues and allowed one to derive new relations for
the recursive computation of the joint stationary distri-
bution.
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Revisiting joint stationary distribution in two finite capacity queues operating in parallel

Having applied the same approach for the system
considered here, the present authors found that it does
not lead to the recursive solution. Yet, it gives an alter-
native way to compute the joint stationary distribution.
Specifically, it requires the solution of the system of
linear algebraic equations of the size (3N — 2), when
the size of both queues is equal to N > 3 (the exact
solutions for V = 1 and 2 are obtained in [14]) and is
immediately suitable for exact arithmetics implementa-
tion. If the whole joint stationary distribution is not of
importance, this approach gives the straight way to cal-
culate the blocking probability and new insights into the
dependencies between the joint probabilities p;;, which
prevent the recursive solution.

The paper is structured as follows. In section 2,
the description of the system is given and some known
results, which are necessary in what follows, are repeat-
ed. Section 3 contains the main contribution of the
paper. Here, it is shown how new relations for the joint
stationary distribution can be obtained (see Egs. (5)—
(12)). The insights into the interdependence between
the joint stationary probabilities is discussed in section 4.
Section 5 concludes the paper.

2 System Description

The system under consideration consists of two single-
server finite capacity queues (queue 1 and queue 2),
operating in parallel independently of each other. By
suffering a little a lack of generality, let us assume that
the capacities of both queues are equal to N > 3. There
is one incoming Poisson flow of rate A arriving at the
system. Upon arrival, each customer is split into two cus-
tomers: one enters queue 1 and another enters queue 2.
Service time of customers in queue i follows exponential
distribution with rate u;, 7 = 1, 2. Since we are interested
here only in the queue size related characteristics, we
allow the service discipline in queues to be either FCFS,
or LCFS, or Random. We are interested in the case (as
in [3]), when a customer always occupies the place in
the queue whenever it is not full. This is much different
from the case, when the customer checks the queues’
sizes before splitting and leaves the system if at least one
queue is full.

Denote by p;; stationary probability of the fact that
there are 7 customers in queue 1 and j customers in
queue 2. From [3], it follows that the double generating
function for p;;,

N N

P(u,v):ZZuivjpij, 0<u<1,0<v<1,
i=0 j=0

has the form:

B(u,v)P(u,v) = A(u,v) (1)
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where
B(u,v) = M0? — u(Av + 10 + pov — pio) + p1v;
N .
A(u,v) = prv (u—1) Zvjpoj
j=0
N
+ppu (v — 1) u'pio + Aw*uN T ZUJPNJ
=0

+ MM (1

’U) Z UipiN
i=0

+ NN TN —u) (1 = v)paw -

The quadratic polynomial B(u,v) has two roots:

u12 = u1,2(v) = (v()\ + p1 + p2) — po
— p2)? — 4)\u1v3) /(2)\1)2) .

The generating function P(u,v) is the ratio of two
polynomial functions. For each value of v, probability
generating function P(u,v) is a continuous function
of w in the interval [0,1]. Then, since the left part
in (1) vanishes at points (u1 (v),v), and (u2(v),v), then
the right part must vanish at these points too. In the
next section, it will be shown that from this observation,
one can obtain the system of linear algebraic equations
only for the probabilities {po;,p;n,0 < j < N} and
{pjo,0 < j < N — 3} which can be solved by any
standard numerical method. Once these probabilities
are known, the computation of the rest joint stationary
probabilities p;; is performed recursively from the system
of equilibrium equations.

F VN + 1+ p2)

3 New System of Equations

Both equations A(u;(v),v) = 0 and A(uz(v),v) = 0
share the same unknown quantities. If one expresses
term with Z —0 v/pg; from the first equation and put it
in the second equation, after collecting common terms,

one obtains:

N i+l it i i
1 Uy Uy Uy — Uy
pa(v —1) ————— —uue——— | Pio
- Uz — U1 Uz — Uy
=0

N+ N+1 N

1

+ M (1 — uy — ug + uug) 2—-->2— E i+

U2 — Uy

1+2 uz+2

N
NNt — Ua 1
+ v ( v)z e

=0

i+1 i+1
Uy — U ,
—UtU2——— | PiN

U2 — Uq
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+ MV = ug — ug 4 ugug)(1 — )
N+1
—u
x %PNN =0. (2

Instead of cancelling Z;-V:o v/po;, let us express the
term with px v from the A(u;(v),v) = 0 and put it into

A(uz(v),v) = 0. By doing so, one gets another relation:
N
U NFL gy N+ ;
o (1 — wy — ug + ugtig) ———————— E v po;
U2 — U
N 2N7i+1 o uN—z+1
+ p2(v — 1) E (urug)™! !
Uy — U
=0
uQN—z u{\/fi
- Pio
U2 — U
N — N—i
u — U1
+ A N+1(1 v) E (uqug) 2 ( 2
; Uz — Ul
=0
ué\/—z—l _ ulN i—1
- pin =0. (3)
U2 — U1

It is straightforward to see that the roots u; » admit the
following representation:

= VIR () oy = YN g

Uy =

a
where
_ V(A + g1+ pa) — p2
v/ 1 AV ’
_ 2 _ 4 2 _ 4
a(x):x 2x : b(x)Zer 2x

It can be shown that |x| > 2 for all v € (0, 1]. It is well-
known that the fraction (b(z)™ — a(x)™)/(b(x) — a(x))
is in fact a polynomial in v for m > 1. Thus,
(uf* — ul")/(ug — up) is a polynomial in v as well.
After some tedious algebra (derivation is analogous to
the one in [11]), let us find that for m > 1, the following
representation holds:

m B m=1loun_1)
1 —n
— (, /7> > v (4)
n=|m/2]

[(2n—(m—1))/3]

uz(v)™ — up(v)
us(v) — ug(v)

where

dm,2n—(m—l)—2j,j )
j=max{0,[n—(m—1)]}
m—1

2

Am,n =

<n<2(m-—1);
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di,m,k

m—k k
A+ p1 + po 2
B (o) (TR (PR
' k Apa Api

Here, () is the binomial coefficient and C;*(0) de-
notes the value of Gegenbauer polynomial C)*(z) at
point z = 0 (see, for example, [15, p. 175]). Since each
fraction (u§* — uy")/(uz — u1) is a polynomial in v with
real coefficients (defined by (4)) and wjus = pi /v,
up 4+ uz = (A + p1 + p2)v — p2)/(Mv?), both expres-
sions on the left in (2) and (3) are polynomials in v as
well with real coefficients depending on A, p1, pe and
certain p;;. Due to the lack of space we omit detailed
derivations and just state the final result. From the fact
that both polynomials (2) and (3) are equal to zero for

€ (0,1], it follows that their coefficients are equal
to zero. This leads to two systems of linear algebraic
equations (one from (2) and the other from (3)) for the
stationary probabilities on the boundaries (po;, pio, Pin»
and py ;). Careful inspection shows that from these two
systems, one can draw one single system of equations of
size 3N — 4 for the probabilities {po;, pjn, 0 < j < N}
and {p;o,0 < j < N — 3}, which can be solved numer-
ically. Specifically, for odd N > 3, the new system of
equations has the form:

N

Zp()jaNqu,qu(Nfl)/Q
=0

(N—1)/2—1

+ Z PiNATT2bN N (v—1)j2—j

j=0
— poop2TOny1,(n—1)2=0; (5)

N
ZPOjaN+1,j+(N—1)/2—i
j=i

(N—=1)/24(i—1)

+ > oAby N v-1y2-j-i = 0,
7=0
N -1

. 6

=155 ©
N N—-1

Z pojanLl»j*lJrZpiN)\THQbei,Nfifl
J=(N+1)/2 i=0

+pnn AN 0 =05 (7)

PojAN+1,5+i—(N+1)/2

j=N—i

2141
+ > ot Py vayapig = 0,
=0
N -3
=1, —— (8
i=1,——; @
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Algorithm 1 Recursive computation of p;;

For0<i< N —2,p;n-1 < pisin (L+p7 " +p5")
For1 <j <N —2,p1; « poj(p1+ pa/p1)
For2<i<N-1

Fori<j<N-1

Pij + Pi-1,5 (p1 + 14 p2/p1)
PN-2,0 — PN-3,0(p1+ 1) — PNn_3.1p2/ 111
For1<j< N —1,pn; < pn-1;(p1+ 1+ p2/p)
For N —1<i< N,pio <« pi—10(p1+1)

— Pin — PT ' DitaN
- pO,j+1M2/M1
— P1Pi—2,5—1 — pifl.,j+1ﬂ2/,ul

— P1IPN—-2,—1 — PN—l,j+1M2/M1
—pi_1,1uz/u1

2i+1

. N -3
ijNT]dj-',-l,i:O i=0,——; )
=0

ijw dji1,(n-1)/2 = 0; (10)
N
ZPOjaN+1,j+N72fi
=0
+ ijN)\Tj+2bn—j,2N—2—i—j
=0
N—3-2i
Z pjopa TN 11— N—2—i—j =0,
=0
N -5
=0, ——; (11
1=0,——; (D

1
j+1
E pOjaN+1,j+2N—i_§ Pjouzrj bN+1—j,2N—i—j
j=0 Jj=0

=0, i=1,N—3, (12

where the following notations are used:

H.
A?

T =

2

aij = 2 ( %) Ci,;(0) — 111Ci j+1(0);

—Ci—1,;(0);

1
dij = 4| 71 Ci,j(0) = Cit1,541(0) .

System (5)—(12) consists of 3N — 4 equations in 3N — 2
unknowns. Two additional equations follow from the
fact that each queue, when considered independently,
operates as the standard M /M /1/N queue and, thus,

ZPOJ

l—pl N 1—p2
N+1’ PN—ZZ%N*Pz T
2

Here and henceforth, p; = A/u;, i = 1,2. Once the
system (5)—(12), supplemented with these two equa-
tions, is solved, all other probabilities p;; can be found
recursively (see Algorithm 1).

The relations in Algorithm 1 follow from the sys-
tem of equilibrium equations for p;; (see, for exam-
ple, [3, p. 435]). Algorithm 1 is not well suited for the
computation of the whole joint stationary distribution p;;
because the accuracy of the results heavily depends on
the values of initial parameters and sometimes may be
low.

4 Relating p;_; y and p; ;

System (5)—(12) gives some insights into the interde-
pendence of p;; and py,,,. Specifically, Egs. (9) and (10)
show that it is enough to know the relations between pa v
and p3 v, pa,n and ps N, pe,n and p7, v, etc. to compute
the value of py . Indeed, let p; v = pi—1,n;. From (9)
and (10), for y;x = pjn/pon, one has:

d
YIN = — L0 ; (13)
rd270
21—1
Z, YNt djr
Y2i,N = — 33 = ,
r'doiy1 +Oé2i+17’ B d2iy2,i
N -3
=1, ——; (14
i=150 (4
YN—-1,N
N-2 -
2.7 YiNT? T dj (N—1))2
=) - N—1 - (15
AN (-2 FanTT T ANy (N-1) /2

From this system and the normalization condi-
tion p.x = p3' (1 — p2)/(1 = p3 '), one finds pon

N
= p.N/ > i—o¥in and pyN = ponyn,N. We are un-
aware of any general rule for choosing «;. Yet, some
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heuristics can be suggested. Without any loss of gener-
ality, further on, we consider A = 1. From the results
in [5], it follows that if o > pu1 > 1, then for large IV,
one has:

P(wiy1) — ‘I’(Ii))

PiN = Pi—1,N ((b(xi) —®(z)

where
L (. p2—m >
Ti=—=|1——FN);
VN ( p2 —1

D(x) = ! / em7/(29%) gy

Vamo ’
2 2 2 2 6
o2 = ik TRy gt pe R Bpape
(p2 —1)°

Thus, the (approximate) value of pyy can be found
from (13)—(15) with

0 = 2@it1) — ®(:)
! <I>(xl) — (b(xi—l) '

It is worth noticing that the value p. x (1 — ®(xn)) gives
another approximation for pyy if g2 > g1 > 1 and
can be quite accurate. We can try one’s luck and use
the same value of «; in the overloaded case as well
(i.e., when the load of at least one queue is 1) with
two minor modifications. Firstly, substitute —o? instead
of o2 and, secondly, put o; = 1 whenever —0? < 0
or ®(x;) ~ ®(x;—1). With these agreements, by using
Di,N = Di—1,N¢; in (13)—(15), the value of pyx can be
approximated with 2ponyn, . The data in the table give
the idea of the quality of the approximation for the case
N =35,\=1,and p; = 0.01 (p; = 100).

Exact values of pnyn (solution of (5)—(12)) and
approximate values of pyn (solution of (13)—
(15)). The case of N = 35, A = 1, and p1 = 0.01

PNN
H2 Exact value Approximate value
2.5 1.1310-1071%° 1.1334-107%°
2 3.6258 - 1012 3.6380 - 1012
1.25 5.1702-107° 5.1934 -10~°
1.1 0.0027 0,0027
1.01 0.0217 0.0218
0.9 0.1013 0.1016
0.8 0.1989 0.1972

5 Concluding Remarks

In this paper, it has been shown that the joint sta-
tionary probability distribution can be computed using
the system of equations of the smaller size (than the
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original one). The idea follows from the fact that in the
finite-capacity case, both roots in the denominator of the
generating function are the roots of its numerator (on the
contrast to the infinite-capacity case). The drawbacks
of the utilized method can be seen when computing the
whole joint distribution p;;. Here, the widely-adopted
Gaussian elimination and matrix-analytic methods are
preferable. Yet, when only the blocking probability
is of interest, the utilized method leads to the new
computational procedure and some insights into the in-
terdependencies between p;; and py.,. Unlike in some
other system with two queues of finite-capacity, here
the values of p;; do not allow recursive computation,
which is, as clearly seen, due simultaneously happening
arrivals. Still the utilized method allows further inves-
tigations into the new procedures for the approximate
computation of p;; as suggested in [13].
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COBMECTHOE CTAUMOHAPHOE PACITPEAEJIEHUE YN CIIA
3ASIBOK B CUCTEME C JIBYMS OUYEPEJAIMU KOHEYHO
EMKOCTH U ObIINUM BXOIALLINUM ITOTOKOM*

JI. A. Meiixanamxsan®, C. M. Matiomenko?, 1. A. [Tarkuna?, P. B. Pasymunxk?®?

'kona Ne 281 ropona MocKBbI

2PoccuiicKuil yHUBEPCUTET IPYKObI HAPOIOB

3UHCcTuTyT Tpobiem nadopmarku PenepaibHOTro nccaenoBaTensckoro neHTpa « Madopmarnka u yrpasieHe»
Poccuiickoit akaneMnu HayK

Annoramusa: PaccMaTtpuBaeTcsi cucteMa MacCOBOTO OOCTYKUBAHUSI C BXOISIIITM ITyaCCOHOBCKIM MTOTOKOM U JIBY-
MsI pUOGOpaMu, SIBJISIONIAsICS OMHUM M3 MPOCThIX BapuaHToB fork-cucrem. Ilepen KaxkabiM MPUOOPOM UMEETCST
HaKOTIUTEIb KOHEYHOU eMKOCTH. [Ipu MOCTYIUIEHUMU B CUCTEMY HOBOM 3asBKM CO3AeTCsl ee KOIUS M Jaliee
B KaXIYI0 U3 OYepeleil MocTymaeT Mo OMHON 3asiBKe. Eciu B MOMEHT MOCTYTUIEHUS 3asiBKM HAKOTIUTEh OKa-
3bIBAETCS TIOJTHOCTBIO 3aITOJIHEHHBIM, 3asiBKa TePsSIETCSI M B CUCTeMY He Bo3BpallaeTcs. BpemeHa o6cTy>kuBaHusI
3asiBOK Ha MPUOOpax MMEIOT SKCIMOHEHLIMATbHOE PACIIPE/IC/ICHUE C pa3IMYHBIMU MapaMeTpamMu. XOpollo M3-
BECTHO, UTO MOMOOHBIE CUCTEMBI C TPYIOM TMOJIAI0TCST aHATMTUUECKOMY aHanu3y. B pabore mpeiaraercst METox
HaXOX/JICHUsI BEPOSITHOCTU OJIOKMPOBKH, a TakXKe COBMECTHOIO CTALIMOHAPHOTO PACIIPE/IC/ICHUS YUCIIa 3asiBOK
B HAKOITUTEJISIX, OCHOBAHHBIN Ha METOJe MPOU3BOISIINX PYHKIIMIA M MCITOJIB3YIOIINI HEKOTOPbIE Pe3yIbTaThl
TEOPUU CTIEIINATbHBIX (PYHKITUH.

KioueBbie cioBa: cucTteMa MaccOBOTO O6CJ'[y}KI/IBaHI/I$I; fOfk-CI/ICTCMa; OBC O4YepCau, KOHCYHasA €MKOCTb,
CTallMOHapHOC pacripeacjicHuc
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