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Abstract. In this paper, we study the boundedness of sublinear operators and their
higher order commutators generated by Calderon-Zygmund operators and Riesz po-
tentials on generalized weighted Morrey space.

1 Introduction

The classical Morrey spaces L, , were originally introduced by Morrey in [30] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers to
[30, 32|. In [§], Chiarenza and Frasca showed the boundedness of the Hardy-Littlewood
maximal operator, the Riesz potential and the Calderon-Zygmund singular integral
operator these spaces. The boundedness of the Riesz potential was originally studied
by Adams [1].

On the other hand, in harmonic analysis it is very important to study weighted
estimates for these operators. On the weighted L, spaces, the boundedness of operators
above was obtained by Muckenhoupt [29], Mukenhoupt and Wheeden [30], and Coifman
and Fefferman [9]. Recently, Komori and Shirai [22] defined the weighted Morrey
spaces L, .(w) and studied the boundedness of the aforementioned classical operators
these spaces. These results were extended to several other spaces. However, their
boundedness in generalized weighted Morrey spaces M, ,(w) have not yet been studied.

Therefore, in this paper, we shall investigate the boundedness of sublinear opera-
tors and their higher order commutators generated by Calderon-Zygmund operators
and Riesz potentials in generalized weighted Morrey space, that is, the maximal op-
erator, the fractional maximal operator, the Riesz potential, the Calderon-Zygmund
operators, the Littlewood-Paley operator, the Marcinkiewicz operator, the Bochner-
Riesz operator.
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2 Definitions and notation

Let R™ be the n—dimensional Euclidean space of points « = (x, ..., x,) with the norm
lz| = (301, 22)1/2. For x € R™ and r > 0, let B(z,r) be the open ball centered at

of radius r, ‘B (x,r) denote its complement, and |B(z,r)| be the Lebesgue measure of
the ball B(x,r).
The fractional maximal operator M, and the Riesz potential I, are defined by

Mo f(x) = sup | Ba, )]+ / )y 0<a<n
B(x,t

t>0

[af(x):/RM 0<a<n.

n |z =y’

If « =0, then M = M, is the Hardy-Littlewood maximal operator.

Let K be a Calderéon-Zygmund singular integral operator, briefly a Calderén-
Zygmund operator, i.e., a linear operator bounded from Ls(R™) to Lo(R™) taking all
infinitely continuously differentiable functions f with compact support to functions in
L¢(R™), represented for such functions by

Kf(x)= /n k(x,y)f(y)dy a.e. on Esuppj’".

Here k(z,y) is a continuous function away from the diagonal which satisfies the stan-
dard estimates: there exist ¢; > 0 and 0 < ¢ < 1 such that

k(x,y)| < eilr —y[™"

for all x,y € R", x # y, and

r—2\° Y
) = k(e + 60 2) = k)] < e (21 o

whenever 2|z — 2/| < |x — y|. Such operators were introduced in [11].
It is well known that the fractional maximal operator, Riesz potential and Calderén-
Zygmund operators play an important role in harmonic analysis (see [14, 28, 37, 39)|).
Suppose that T,, o € [0,n) represents a linear or a sublinear operator, which
satisfies, for any f € L;(R"™) with compact support and x ¢ suppf, the inequality
i@l < [ LD, (2.)
R

|z —y|"

where ¢; is independent of f and x.

For a function b, suppose that the kth-order commutator operator 7}, o %, @ € [0, 1)
represents a linear or a sublinear operator, which satisfies, for any f € L;(R") with
compact support and x ¢ suppf, the inequality

Tyoif (@)] < e / Ib(z) — by)[* |z — y| "+ £ ()\dy, (2.2)

n
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where ¢; is independent of f and =x.

We point out that the condition (2.1) with @ = 0 was first introduced by Soria
and Weiss in [34] . Condition (2.1) is satisfied by many interesting operators in har-
monic analysis, such as the Calderén—Zygmund operator, Carleson’s maximal opera-
tor, Hardy-Littlewood maximal operators, fractional maximal operator, C. Fefferman’s
singular multipliers, R. Fefferman’s singular integrals, Riesz potentials, Ricci—Stein’s
oscillatory singular integrals, Bochner—Riesz means and so on (see [12], [27], [34] for
details).

We define the generalized weighed Morrey spaces as follows.

Definition 1. Let 1 < p < 0o, ¢ be a positive measurable function on R"™ x (0, 00) and
w be non-negative measurable function on R™. We denote by M, ,(w) the generalized
weighted Morrey space, the space of all functions f € Lgffu(R”) with finite norm

_ _1
113ty o0y = sup (@, m) " w(B(z,m) "% | fllL, wiB@n)

z€R™,r>0

where L, .,(B(x,r)) denotes the weighted L,-space of measurable functions f for which

1l neery = 1 F o ey = ( / \f(y)lpw(y)dy)

(zr)

Furthermore, by WM, ,(w) we denote the weak generalized weighted Morrey space

of all functions f € WL, (R™) for which
_ _1
1wty o) = E%BP>OSD($»7") Y (B, 7)) | w8 < 00,

where WL, .,(B(z,r)) denotes the weak Ly ,,-space of measurable functions f for which

||f||WLp,w(B(3377’)) = ||fXB(x7r) ||WLp,w(Rn) = Supt (/ w(y)dy)
{yeB(z,r): |f(v)>t}

>0
Remark 1. (1) Ifw =1, then M, (1) = M, is the generalized Morrey space.

(2) If p(x,r) = w(B(x,r))%, then M, ,(w) = L, .(w) is the weighted Morrey
space.

(3) If p(x,r) = U(B(ZL‘,T))%W(B($,T))7%, then M, ,(w) = L, .(v,w) is the two
weighted Morrey space.

(4) Ifw=1 and p(x,r) = PP with 0 < A < n, then M, ,(w) = L, \(R"™) is the
classical Morrey space and WM, ,(w) = W L, \(R"™) is the weak Morrey space.

(5) If p(z,r) = w(B(x,r))_%, then M, ,(w) = Ly,.,(R™) is the weighted Lebesgue
space.

In [20], we proved the boundedness of the sublinear operator Tj satisfying condition
(2.1) with @ = 0 from M, (w) to M,,,(w) with w € A,, 1 < p < oo, and from
M; ,, (w) to the weak space WM, ,,(w) with w € Ay, where A, is the Muckenhoupt
class [29] (see the definition in Section 4).
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In this work, we prove the boundedness of the sublinear operator 7,, a € (0,n)
satisfies the condition (2.1) generated by the Riesz potential operator from M, (w?)
to My, (w?) with w e A,,, 1 <p<qg<oo,1/p—1/¢=a/n, and from M, (w) to
the weak space WM, ,,(w?) with w € A;1,, 1 < ¢ < o0, 1 —1/¢=a/n, where A,, is
the Muckenhoupt-Wheeden class [30] (see the definition in Section 4).

In the case b € BMO(R") and T}, a sublinear kth-order commutator operator,
satisfying condition (2.2) with @ = 0, we find the sufficient conditions on the pair
(41, 2) which ensure the boundedness of the operator Ty, from M, ., (w) to M, ,,(w)
with w € A,, 1 < p < oo. Also, in the case b € BMO(R") and Ty o, o € (0,n) a
sublinear kth-order commutator operator, satisfying condition (2.2) with a € (0,n),
we find the sufficient conditions on the pair (1, p2) which ensure the boundedness
of the operator Ty from M, , (wP) to My, (w?) with w € Ay, 1 < p < g < o0,
1/p —1/q = a/n. Finally, as application, we apply this result to several particular
operators such as Littlewood-Paley operator, Marcinkiewicz operator, Bochner-Riesz
operator and fractional powers of some analytic semigroups.

By A < B we mean that A < C'B with some positive C' is independent of insignif-
icant quantities. If A < B and B < A, then we write A ~ B and say that A and B
are equivalent.

3 Main results

The following statements, were proved in |20, 21].

Theorem 3.1. Let 1 <p < oo, w € A, and (y1,p2) satisfy the condition

— < Cy(z,1), (3.1)

R
. w(B(z,t))r t

where C' does not depend on x and r. Let Ty be a sublinear operator satisfying condition
(2.1) with « = 0 bounded on L,,,(R") for p > 1, and bounded from Li,(R™) to
WLy .,(R™). Then the operator Ty is bounded from M, , (w) to M, ,,(w) forp > 1 and
from M ,, (w) to WM, ,,(w).

Note that, in the case w = 1 Theorem 3.1 was proved in [17] and for the operators
M and K in [3].

Theorem 3.2. Let 1 < p < oo, w € A,, b € BMO(R"), and (1, p2) satisfy the
condition

t<s<oo
e+ — — < Cyy(x,r), (3.2)
’ w(B(x, 1)) !
where C' does not depend on x and r. Let Ty be a sublinear operator satisfying
condition (2.2) with o« = 0, k =1 and bounded on L, .,(R™). Then the operator T},
is bounded from M, ., (w) to M, ,,(w).

/Tooln( t)ess inf @1 (z, s)w(B(z,s))» 4

Note that for ¢1(x,r) = po(x,r) = w(B(a:,T))%l, from Theorems 3.1 and 3.2 we
get the following new results.
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Corollary 3.1. Let 1 <p < o0, 0 <k <1 and w € A,. Let also Ty be a sublinear
operator satisfying condition (2.1) with o = 0 bounded on L, ., (R™) for p > 1, and
bounded from Ly ,,(R™) to WLy ,,(R™). Then the operator Ty is bounded on L, . (w) for
p > 1 and from Ly .(w) to WLy .(w) (see [21]).

Corollary 3.2. Let 1 <p < o0, 0 <k <1, we A, be BMO(R") and let T}, be
a sublinear operator satisfying condition (2.2) with « = 0, k = 1. Let also Ty01 be
bounded on L, ,,(R"™). Then the operator Ty, is bounded on L, .(w) (see [21]).

Note that from Corollaries 3.1 and 3.2 for the Hardy-Littlewood maximal operators
M and the Calderén-Zygmund operators K we get results which were proved in [22].
From Theorem 3.1 we also get the following result.

Corollary 3.3. Let 1 <p<oo,0<A<n, A—-n<f<nlp—-1 A=—n<p <0,
if p = 1) and let Ty be a sublinear operator satisfying condition (2.1) with o = 0
bounded on L, |s(R") for p > 1, and bounded from L s(R") to WLy s(R"). Then
the operator T is bounded on M, (| -|°) for p > 1 and from My \(|-|%) to WM, (|- |?).

Corollary 3.4. Let 1 <p<oo,0<A<n, A—n<f<n(p—1 A—-n<p<0,if
p = 1). Then the operators M and K are bounded on M, (| - |°) for p > 1 and from
Myx(]-1%) to WMy (] - |°) forp=1.

Next we state our main results. First we present some estimates which are the main
tools for proving our theorems, on the boundedness of the operators T,, with o € (0, n)
on the generalized weighted Morrey spaces.

Theorem 3.3. Let 1 <p<g<oo,0<a< %, %zi—%, and w € A,,. Let also Ty,

be a sublinear operator satisfying condition (2.1), bounded from L, ,»(R™) to Ly (R™)
for p > 1, and bounded from Li ,,(R™) to W L, ,a(R"™) for p=1.
Then, for 1 <p <2 the inequality

Qe
Qe

dt
1 Taf |y e (Bary S (w(B(z,r))) n

| U8ty (B 2)
holds for any ball B(x,r) and for all f € LL?SU(R”).
Moreover, for p =1 the inequality

Q=
Q=

I Taf Wiy weBar) S (W(B(z,r)))

dt
— 3.3
SNCE)

/2 1 llor ey (w0(B(a, 1))

holds for any ball B(z,r) and for all f € L%, (R™).

[0

Theorem 3.4. Let 1 <p < g <o0, 0 <a <7, é = 117 — 2w e Ay, and (o1, 92)
satisfy the condition

B =

/oo ess inf o1 (z, 3)(wP(B(x, 3))) dt
' % t

Lo — < Cyy(x,r), (3.4)
(wq(B(x, t)))
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where C' does not depend on x and r. LetT,, be a sublinear operator satisfying condition
(2.1) with o € (0,n), bounded from Ly, .,0(R™) to Ly e (R™) for p > 1, and bounded from
Ly »(R™) to WLy wa(R™) for p =1. Then the operator T, is bounded from M, ,, (w?)
to My, (w?) for p > 1 and from M ,, (w) to WM, ,,(w?) for p = 1. Moreover, for
p>1

| Tofll 2ty oy we) S N Fllaty o, up)s
and for p =1

| ToflIw sty oy we)y S NIty o, (w)-

Note that, in the case w = 1 Theorem 3.4 was proved in [18].

Corollary 3.5. Let 1 <p<g< oo, 0 < a< %, % = % — % we Ay, and (o1, p2)

satisfy condition (3.4). Then the operators M, and I, are bounded from M, ,, (wP) to
Mg, (w?) for p>1 and from M o, (w) to WM, ,,(w?) forp=1.

K—1

For pi(x,r) = po(x,r) = w(B(x,r)) 7 , from Theorem 3.4 we get the following
new result.

Corollary 3.6. Let 1 <p <g<o0,0<a<?, éz%—%,0<ﬁ<§ and w € Ay ,.
Let also T, be a sublinear operator satisfying condition (2.1) with « € (0,n) bounded
from Ly (R™) to Ly uwe(R™) for p > 1, and bounded from Ly ,(R™) to W L, .q(R").
Then the operator T, is bounded from Ly .(w?, w?) to Lq cq/p(w?) for p > 1 and from

Ly o(w,w?) to WL, .(w?) for p=1.

Now we present some estimates which are the main tools for proving our theorems,
on the boundedness of the operators Tj %, o € [0,n) on the generalized weighted
Morrey spaces.

Theorem 3.5. Let 1 < p < o0, w € Ay, b € BMO(R"™), and Tyoy be a sublinear
kth-order commutator operator satisfying condition (2.2) with o = 0. Let also Ty be
bounded on L, ,,(R"™). Moreover, let

1 Th006 f 1| L) S NBIE N 1|2y R

where ||b||. is the norm in BMO(R™) (see Definition 2 below).
Then the inequality

1Tk f o, wisern < IB1Ew(B(z, r)b /

2r

o0

t g dt
In* (6 + ;) ||f||Lp,w(B(x,t)) w(B(a:,t)) e ?

holds for any ball B(z,r) and for all f € L%, (R™).
Theorem 3.6. Let 1 < p < g < 00, 0 < a < %, é = %—%, b € BMO(R"),
and w € Ay 4. Let also Ty o be a sublinear kth-order commutator operator satisfying
condition (2.2), and bounded from L, ,»(R™) to Ly.,q«(R™). Moreover, let
1Ty cnf N2y e S NOIE NIz, @)
Then the inequality

Q=

oo t _
it S 01 (B [0 (e42) 1l ooy (7B 0)
2

T

holds for any ball B(z,r) and for all f € L, (R™).

p,wP

Q=

~|&
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Now we give theorem about the boundedness of the operators T} ., on the gener-
alized weighted Morrey spaces.

Theorem 3.7. Let 1 < p < oo, w € A,, b € BMO(R") and (p1,p2) satisfy the
condition

00 ess inf oy (z, s)w(B(x, s))%
[ (e D) ; L < o) (3.5)
r r w(B(z,t))» t

where C' does not depend on x and r. Let Ty be a sublinear kth-order commutator
operator satisfying condition (2.2) with a« = 0 and bounded on Ly, ,,(R™). Moreover, let

10,6 f 12y S OIS N £l Ly ®e)-

Then the operator Ty is bounded from M, ., (w) to M, ,,(w). Moreover,

1Tb0 118ty g ) S NONZ NNl 0

Note that from Theorem 3.7 we get new results in particular for the sublinear
kth order commutator of the maximal operator M,; and for the linear kth order
commutator of the Calderén-Zygmund operator

P K@) = B K] 5@ = [ (00) = 50) o) f0)dy
— n
For @1 (z,7) = @a(z, 1) = w(B(z, 7“))%1, from Theorem 3.7 we also get the following
new result.

Corollary 3.7. Let 1 <p < oo, 0 <k <1, we A, b€ BMO(R") and let Ty be
a sublinear kth-order commutator operator satisfying condition (2.2) with o = 0. Let
also Ty 1 s bounded on Ly, ,,(R™). Then the operator Ty be bounded on L, .(w).

Proof. Let 1 <p<oo,we A, 0<k <1, be BMO(R"). Then the pair
— k—1

(w(B(x,r))%,w(B(x,r))T) satisfies condition (3.5). Indeed,

s £y €SS infw(B(x,s))% dt 0o " w1 dt
k LY i<s<oo o k - 7 —
/T bt e+ ) wB@ Ot / b (e ) w(Ble,0)F

k=1

< Cw(B(x,r)) 7,

with where the last inequality with C' > 0 independent of x and r follows from Lemma
13 in [4]. [

Note that, in the case k¥ = 1, from Corollary 3.7 for the operator [V*, K] we get
results which were proved in [22].
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Theorem 3.8. Let1<p<q<oo,0<oz<%,
and (1, @2) satisfy the condition

i = S we A, be BMOR")

3 =

fes<o0 n < Cpo(z,T), (3.6)

/oolnk (6+f ess infnpl(x,s)(wp(BEx,s))) di
r r (wq(B(x,t)))q

where C' does not depend on x andr. Let T} o be a sublinear kth-order commutator op-
erator satisfying condition (2.2), and bounded from Ly ,»(R™) to L, .,«(R™). Moreover,
let

1T f N2y ey S MBS NI, o Ry

Then the operator Ty o i is bounded from M, ,, (wP) to My ,,(w?). Moreover,

||Tb,a’7kff||Mq,<p2(wq) 5 ||b||]>: ||f||Mp,gal(wp)'

For the sublinear kth order commutator of the fractional maximal operator

Myor(f)(@) = sup | B(a, )+ /B RGO

t>0

and for the linear kth order commutator of the Riesz potential

f()

’33 _ y’nfa

O, L)f(x)=[b...[b 1] ... ]f(z) = / (b(z) — b(y))k

k

from Theorem 3.8 we get the following new result.

Corollary 3.8. Letl <p<qg< oo, 0 <a< > % = 1—1) -2 we A, be BMOR")
and (1, p2) satisfy condition (3.6). Then, the operators My ., and [b*, 1,] are bounded
Jrom My, (wP) to Mg, (w?).

In the case ¢1(x,r) = @o(x,r) = w(B(x,r))%, from Theorem 3.8 we get the
following new results.
CorollaryS.Q.Letl<p<q<oo,0<a<%,%:%—%,O</ﬁ<§,b€
BMO(R"), andw € A,,. Let also Ty ) be a sublinear kth-order commutator operator
satisfying condition (2.2) bounded from Ly w(R™) to L,.qa(R™). Then the operator
Ty,ak s bounded from L, .(wP, w?) to Lg q/(w?).

Corollary 3.10. Let 1 <p < qg< o0, 0 < a < 2,1

=, 0<k<E be
BMOR"), and w € A,,. Then, the operators My .. and [b*,1,] are bounded from

L, . (wP,wi) to Lqﬁq/p(wq) )

Note that in the case k = 1 Corollary 3.10 was proved in [22].
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4 Preliminaries and some lemmas

By a weight function, briefly weight, we mean a locally integrable function on R"
which takes values in (0, oo) almost everywhere. For a weight w and a measurable set
E, we define w(E) = [, w(z)dz, and denote the Lebesgue measure of E by |E| and
the Characterlstlc functlon of E by x,. Given a weight w, we say that w satisfies the
doubling condition if there exists a constant D > 0 such that for any ball B, we have
w(2B) < Dw(B). When w satisfies this condition, we write brevity w € A,.

If w is a weight function, we denote by L, ,,(R") = L,(R", w) the weighted Lebesgue
space defined by finiteness of the norm

e, = ([ 1P i) <o, it 12p<oc

and by || fllz..., = ess sup|f(z)jw(x) if p = oo.
we n
We recall that a weight function w is in the Muckenhoupt’s class 4, [29], 1 < p < o0,
if

[w]a, : = S%P[W]AP(B)

ap (s ) (i )<

where the sup is taken with respect to all the balls B and % + ]% = 1. Note that, for
all balls B by Holder’s inequality

[w]i(” = |B|” 1||w||1/p Hw_l/pHLp/(B) > 1. (4.1)
For p = 1, the class A; is defined by the condition Mw(z) < Cw(z) with [w]a, =
Mt _ ~ o
S;lIé)" o(z) ; and for p =00 A = U)o Ap and [w]a, = 1<1£1<foo[w],4p.

A weight function w belongs to the Muckenhoupt-Wheeden class 4, , [30] for 1 <
p,q < oo if

[wa,,, : = S%P[W]Ap,q(m

ap i o) (g ) <

where the sup is taken with respect to all balls B. Note that, for all balls B by Holder’s
inequality

11 _
[wa,,5) = |B[P"s 1||w||Lq(B) |w 1||Lp/(B) > 1. (4.2)
Ifp=1wisin Ay, with 1 < g < oo if

I:w]Al,q L= Slép[w]Al,q(B)

1 Ha 1
_ q
sup <|B| / w(x) dx) (esies;p w(x)) < 00,

where the sup is taken with respect to all balls B.
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Remark 2. [14, 15 If w € A,, with 1 < p < q < oo, then the following statements
are true:

(a) w? € Ay witht =14 q/p'.
(b) w? € Ay witht' =1+ p/q.
(c)we A,

(d) wP € Ay with s =1+ p/q'.
(e) w € Ay with s =1+ ¢ /p.

Lemma 4.1. ([15]) (1) Ifw € A, for some 1 < p < oo, then w € Ay. Moreover, for
all A >1

w(AB) < A"Plw]a,w(B).
(2) Ifw € Ay, then w € Ay. Moreover, for all X > 1

w(AB) < 2N [w]a w(B).

oo

(3) Ifw e A, for some 1 < p < oo, then there exit C > 0 and § > 0 such that for
any ball B and a measurable set S C B,

w(S S[\¢
%so(%).

We are going to use the following result on the boundedness of the Hardy operator

(Hg)(0) = 7 [ atraur). o<t <ox,

where p is a non-negative Borel measure on (0, 00).
Theorem 4.1. ([7]) The inequality

ess supw(t)Hg(t) < cess supv(t)g(t)
£>0 >0

holds for all functions g non-negative and non-increasing on (0,00) if and only if

w(t) [* du(r)

A :=sup
>0 t

and c =~ A.

We also need the following statement on the boundedness of the Hardy type oper-
ator

(Hy9)(t) := %/Ot In* (e + ;) g(r)du(r), 0 <t < oo,

where p is a non-negative Borel measure on (0, 00).
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Theorem 4.2. The inequality

ess supw(t)Hyg(t) < cess supv(t)g(t)
>0 >0

holds for all functions g non-negative and non-increasing on (0,00) if and only if

t) [* t d
A= supm/ In” <e+—) & < 00,
>0 U Jo r/ ess sup v(s)
0<s<r

and c~ A;.
Note that, Theorem 4.2 can be proved analogously to Theorem 4.3 in [17].

Definition 2. BMO(R") is the Banach space modulo constants with the norm || - ||.
defined by

1
Bl = sup / 1b(y) — b |dy < oo,
|B(ZE,T)| B(z,r) ()

z€R™ r>0

where b € L*(R™) and

1
bBar) = 75— b(y)dy.
) = TG ] oy O

Lemma 4.2. (|30], Theorem 5, p. 236) Let w € As,. Then the norm ||-||« is equivalent
to the norm

1 !
*W sup 2T
zeR™,r>0 w(B(ZL’, T))

/ |b(y) - bB(:L‘,’/‘),w|w<y)dy7
B(z,r)

where
1

bp@r)w = (B ) /B . b(y)w(y)dy.

Remark 3. (1) The John-Nirenberg inequality : there are constants Cy, Cy > 0, such
that for allb € BMO(R™) and 3 >0

{z € B : |b(z) —bg| > B} < Cy|Ble=2P/IPl- - vB c R".

(2) For 1 < p < oo the John-Nirenberg inequality implies that

1 P
1b]]. = sup (— / b(y) - bB|pdy> (4.3)
B ‘B| B

and for 1 < p < oo and w € Ay

ol = sup (ﬁ / Ib(y) — bB|Pw<y>dy)’l’. (4.4)
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Note that, by the John-Nirenberg inequality and Lemma 4.1 (part 3) it follows that
w{z € B : |b(z) —bg| > }) < Cow(B)e~ 22/ IV
for some 0 > 0. Hence

/B b(y) — balPw(y)dy = p / Tt w{z e B - blx) - bs| > B))d

<pCiu(B) [ g ORI 4 = Cuu(B)ol,
0

where C3 > 0 depends only on C?, Cy, p, and §, which implies (4.4).
Also (4.3) is a particular case of (4.4) with w = 1.

The following lemma was proved in [23].

Lemma 4.3. Let b € BMO(R"). Let also 1 < p < oo, x € R, and r1,79 > 0. Then

) 151l

1
1 P "
- b(y) — bpa.nlPdy ) <C (1 (1 n
<|B(JI,’/‘1)’ /B(x,m) ‘ <y) bl 2)’ y) B ¢ ( T )

where C' > 0 s independent of f, x, r1, and rs.
The following lemma is valid.

Lemma 4.4. i) Let w € Ay, and b € BMO(R™). Let also 1 <p < oo,z € R", k>0

and ri,r9 > 0. Then
k
) ol
where C' > 0 s independent of f, w, x, r1, and rs.
ii) Let w € Ay, and b € BMO(R™). Let also 1 < p < oo, x € R*, k > 0 and
ri,r9 > 0. Then
k
) ol

<m / by) — bB(x,m>,w|’“pw(y)dy)’l° <cC (1 + )m%

B(z,r1)

1
7

1 , , r
b(y) = bp(erawl P w(y) Pdy)" < C (1 ‘1_1
(wl—p’(B<I7T1)) / (y) = bB ()0l w(Y) Z/) A ( + nr2

B(z,r1)

where C' > 0 s independent of f, w, x, r1, and rs.
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Proof. i) From (4.4) and Lemma 4.3 we have

(E@iggﬁl¥ﬁﬁww—meﬁu@mmwQ
S(aﬁiézﬁl;mﬂmﬂ‘%@mww@”@

+ |bB(z,r1) - bB(x,T2)|k + |bB(x,r2) - bB(gﬁ,r‘g),wVg

1
1 / & P
< | —== b(y) — bz pwydy)
(mmam>&mﬂ” s P0(y)
1

( b(y) — b )
+ T/ Nl - x,ro
B, r)] Jpry ) eI

+ (W /B(MQ) b(y) — bB(x,m)Iw(y)dy)k

k
S (1 [m 2 [) ot
T2

This completes the proof of the first part of the lemma.
ii) From (4.4) and Lemma 4.3 we have

P

P

1
7

1 :
b(y) — b k2w (y) P d
(wl‘p'(B(:E,m)) /B(:r:,rl)| ®) = bp@mul* w) y)
1

< b(y) — bper |7 1=p' g
< (TG 1)~ brero 00 0]

k

1
Iy

+ ‘bB(&?ﬂ“z) - bB(:t:,rg),wl—Pl

1 /
< — L 1—p
- (wl - (B(x,r1)) / (1) [b(y) bB(wm)ﬂu | w(y) dy>

k
+ )bB(m,rl) - bB(x,rz)

o=

k
b ld )
|Ba:7"1|/g”1 B(Qly
k
b(y) — b p 1-r'q
" (wl‘p "(B(z,72)) /B(:r,rz)l (W) = bt oy [00) y)
k
S (1] m2]) ol
2

This completes the proof of the second part of the lemma.

The following lemma can be proved analogously.
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Lemma 4.5. i) Let w € Ay, and b € BMO(R"). Let also 1 < ¢ < oo, x € R", k >0,

and ri,r9 > 0. Then

1

1 k

— b(y) — bi(araywe | W (y)dy) " < 1(1E bk

(o [ 10~ b utian)” < 0 (1 | 2]) ol
B(z,r1)
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where C' > 0 1s independent of f, w, x, r1 and rs.
ii) Let 1 <p<gqg<oo,weA,, andb e BMO(R"). Let also x € R", k > 0, and
ri,r9 > 0. Then

1 kp' —p! ;1/ ™ F k
— ! <
(wp/(B(x,?”l)) / bW) = bparayomw [T 0(9) dy) s¢ (1 ‘ln To D el

B(z,r1)

where C' > 0 s independent of f, w, x, ri and rs.
Note that, Lemma 4.3 is a particular case of Lemma 4.4 (statement i) with w =1

and k =1).

5 Proofs of Theorems 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8

In this section we shall prove Theorems 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. First we
shall prove Theorem 3.3.

Proof of Theorem 3.3. Let 1 <p < g<oo,0<a<?, . :}—1?—%, and w € A, .

For arbitrary = € R™, set B = B(x,r), 2B = B(z,2r). We represent f as

f=h+t  h)=FfGxsy), L) =F)xe), >0 (5.1)

and have
1T f N, we) < NTafill, o) + 1 Tofollz, waB)

Since fi € Lpuw(R"), Tofi € Lgw(R") and from the boundedness of T, from
Ly wr(R™) to Ly.e(R™) it follows that:

1Tafillzguam) < NTafilley e < CllAllL, .o = ClFlL, . es),

where constant C' > 0 is independent of f.
It is clear that z € B, y € lj(ZB) implies 1|z —y| < [z —y| < 3|z — y|. We get

T 20 [ W)

C2B) |z — y|—

By Fubini’s theorem we have

/(23 ’93— ’n !

22

Q

dt
— ) d
/ /|; ol thrlfa) Y
dt
y)ldy
/ /2r<x y|<t| ( )| > i

/ / F)ld ) dt
Y)l————-
2r B(z,t) gntize
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By applying Hélder’s inequality, we get

/) - ] dt
R =t Rl A LAY L s
@B) [T — Yl 2r (5.2)
_1dt '
S [ 1Al (w0 (B 1) -
Moreover, for all p € [1,00) the inequality
0ok ‘ _1dt
ITeolliyam S w'(B)7 | HfHL,,wp By W(B(z, )77 — (5.3)

is valid. Thus

1 [ _ dt
HTafHquwq (B) S HfHLp (2B Fwi(B)s /QT HfHLp,wp(B(z,t)) [Jw 1HLP/(B(x,t)) o

On the other hand,

1y~ BP0 g iamr [ i
S T (5.4
SR POy T P
SRR Ty L PR =

1 i d
S [wla,,, w(B)s /2 1l By (W (B, 1)) ?t
Thus y
| Tofllz, 0B S wq(B)q/2 1Ly By (w!(B(z,1))) <

Let p = 1. From the weak (1,¢) boundedness of T, and (5.4) it follows that:

|Tofillwe, o) < T fillwe, g
S illzr. =1L wes

a o dt
~ |-
~ Bl fllLy weB) /QT prE

L[ dt
< |BJ! / HfHLl,ww(m,t))—th_a

2 (5.5)
< d( PR (-1 dt
Sw(B)i|lw |z, 5 ||f||L1 w(B@) frri—a

2r
1 [ _ dt

< wi(B): / [Ty Iy PR
< q 1 q _1dt
S wl(B)s ||f||L1w o (w!(B(,1)) " —

2r
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By (5.3) and (5.5) we get the inequality (3.3).
U

Proof of Theorem 3.4. By Lemma 3.3 and Theorem 4.1 we have for p > 1

[ _1dt
| Tafllrtgpywsy S SUP  pa(z,7) 1/ 1L, wr (B (WI(B(x,1)) * —
z€R™ r>0 r t
—1 T71 q —1 1 dt
= sup () 1Nz, 0By (WI(B(z,t7))) iy
Z€RM, >0 0
PRI Y q 111
= sup oz, ) e = [ fllL, e By (W(B(x, t7h))) 0 —dt
zER™, r>0 ™ Jo ’ 13
1
S osup () TH WP (B, ) P 1 llLy e (Be1)
zeR™ r>0
_1
= sup @iz, )" (WP(B(2,7)) " 1fllL, w e = 1.0 @)
z€R™ r>0
and for p =1
T L dt
T f Wty py sy = SUP @2(1‘77‘)_1/ ||f||L1,w(B(x,tfl))(wq(B(%t_l)))jy
z€R™ r>0 0
NN g BT
= sup @, ) e = Bty (W(B(x, t7h))) 0 < dt
z€R™, r>0 rJo t
S osup pu(a ) T w(B(@ ) Tl L, e (Baat)

z€R™,r>0

= sup pi(z,m) w(B(@,m) " 1 f s e = 1fllan g, -

z€R™,r>0

O

Proof of Theorem 3.5. Let p € (1,00) and b € BMO(R"™). For arbitrary x € R",
set B = B(x,r) for the ball centered at x and of radius r. Write f = f; + fo with

fi = fxep and fo = fXC(ZB)' Hence
1Ty0,kf 2p(B) < | To0kf1 12y B) + | To0kf2llLy0B)
From the boundedness of T} in L, ,,(R™) it follows that:

1 Ts0kf11 2,03 < | Tho0xf1]Lp.0
SN Al = 101E 1N 2y02B)-

For 2 € B we have

st 5 [ PO=2IE gty

~ o = s

|z —y|"
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Then

Tiaselle,im 5 ([ ( [ BOLZYAE, )1y ) (e ) |
() . B =l 10y ) oz’

- [1 +[2

RS

Let us estimate I;.

1 [b(y) — bpwl*
I = B P -7 d
1 =w(B) ﬂ(w) iz — g | f(y)ldy

< dt
thrl dy

~ w(B);ﬁ bo) bl U |

dt
—b ;W f dy
/21“ Lr<|x y|<t b | | ( )| tntl

dt
) — bBw
B [ b el

Applying Holder’s inequality and by Lemma 4.4, we get

'ﬂh—‘

‘S\H

1
7/

& ’ o dt
/ (/ |b(y) - bB(:E,r),’w|kp w(y)l P dy) Hf”Lp w(B(z,t)) thrl
2r B(z,t)

1 1 dt
S Lol It w(B) [ (14100 2 2 ey 1 e s
2r

1 1 [ dt
S [0l WS w(B) |10 (e4 1) Wy iotasy w(Bla,t) 7 5.

3=

I Sw(B)

In order to estimate I note that

= (/B o) = bB’w’kpw(Z)dz> % A@B) |9|3f—(y?3||”dy'

By Lemma 4.4, we get

LS Il w()? | W g,

Som) [T —y["
Applying Holder’s inequality, we get

|f(v)] /OO . dt
————dy S Ifllz w(B(z,t) |w™ /pHL B(z,t
/3(23) |z —y|" 2 " ) D gt

dt
<0l [ Uity w(BCast) 2 5
2r

49

(5.6)



50 V.S. Guliyev

Thus, by (5.9)

1 dt
B S W) [ 1l e w(Blan)

Summing up [; and I, for all p € [1,00) we get

1 r t dt
IThonfellzy i S 1B w(B)> / I* (4 = )1l piany w(Bla )7 0 (5.7)
2r
On the other hand,
*dt
11 ctemr % B oy [
o dt
SIBI [ Wflltyeiston s 58)
2r
1 dt
< w(B) |01 m) / 1710 500 g
1 [ dt
< B [ lpuistoen 0™l 00
2r

1 dt
< Wl wB) [ 1l o (B ) T

Finally,
1 To00f |2y wim) S IBIE N Ly 0em)
F t . dt
bl 0B [0 (et D)1l i 0Bl )G
2r

t Y
and the statement of Theorem 3.5 follows by (5.8).
O

Now we shall get to the proof of Theorem 3.6.

Proof of Theorem 3.6.

Let 1 <p<g<oo,0<a<?h %:%—9 b € BMOR") and w € A,,. For
arbitrary x € R", set B = B(z,r). Write f = fi1+ fo with fi = fx2p and fo = fxe (28)"
Hence

1Ty 0k f 1 Ly wa(B) < N To0b f1ll 0 (B) + 1 Tk follL, wa(B)-
From the boundedness of T}, o ; from L, ,»(R™) to Ly e (R™) it follows that:

| Th,0f 12y e ®)(B) < 1 Toakf1] L, e ®e)
S BTNl 2y o ry = [OIE N F NI, o (e 2)-
For z € B we have

Tins2) 5 | o) =B, 1 1y

no |z =yl

~ [ By
ton) |7 — Y
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Then

hoatilig 3 (], (A@B) %v(y)wy)qw%zmz);
: (/B (AQB) vaﬂdy)qwq(z)dz)
! (/B (/n@B) %my)uy)q wq<z>dz)3

== [1 +[2

Q=

Let us estimate I;.

~ )} [ b bl )] [

1 dt
q _b ,W f dy
/27' Lr<|:p y\<t N | | ( )| tn—atl
dt
b _b w f Yy
L/m‘ sl L)y

Applying Holder’s inequality and by Lemma 4.4, we get

, oo ., dt
[1 5 (U}q(B))q/ (/ ’b< >_ bB (z,r) ’ pw( ) pdy) “f”prP tn a+1
2r B(a:t)
< Bl () B dt
< |IolF (w?(B)) ( 105 2 o ) 1 5
(

1 [ _1dt
< ol (5 | (e ) WAyt (0B 0) 5 5
In order to estimate I note that

2r
= — kay,4 g M
I = < /B 1B(2) — by | (z)dz) ﬁ =

By Lemma 4.4, we get

LS ol () | W,

Ci2m) |z — y[

-Q\H

==

Applying Holder’s inequality, we get

1y [ } .
ey S W fllz, oo B 10 L, (Bt ——
ﬁ(gB) |.1' — y|"7a 9 ’ pwp (B(z,t)) | | » (B(z,t)) Pr———

T

(5.9)
< ula,, / 11y ooy (w7 (Bl 1))

-Q\»—‘

dt
t
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Thus, by (5.9)

1 [f° _1.dt
I < bl (wi(B)) / 1l By (@B, 1)) 2.

2r
Summing up I; and Iy, for all p € [1,00) we get

o0

/mk <e + ;> £ 12y By (W (B(z,1)))

2r

Q=
Q=

dt
1 Tyenfollz, o) S IBNE (w(B)) -

(5.10)
Finally,

I Toak fllzyury S NOUIE N FlIL, 028

[l (wi(B)) /

2r

[e.9]

Q=

)

i (e )1y otey (03B, 1) 75

and the statement of Theorem 3.6 follows by (5.4).

Now we shall get to the proof of Theorem 3.7
Proof of Theorem 3.7. By Theorem 3.5 and Theorem 4.1 we have

IR _1dt
1 Th0kf 104y 0y 0y S IBIE - sup  a(z,7) 1/ In" ( ) NIy (B2 w(B(z,t)) P r
x€R™, r>0 r
1
[ 1 1 dt
— Bl supalen) [ b (et ) I atee w(Bla )G
z€ER™ r>0 0 tr t

1 [ _1
Bl supaCer ) e [t (e D) 1 ity (Bl )
0

zER™, >0 r

1N — _ _1
< Il eigpw%(%?“ D7 w (B, r ™) T 1 f ey w (B

_ _1
=olf sup  @i(z,r) ' w(B(@, )7 || fllLpw (B
z€R™,r>0

= 11811 £ 110 ()

Now we shall get to the proof of Theorem 3.8.
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Proof of Theorem 3.8. By Theorem 3.6 and Theorem 4.2 we have

4 [ t _1
st oy SIS s i)™ [ 10 (et 1) 1ty oty (07 (Bl 1))

z€R™ r>0 T
k L 1 q ~1dt
= bl sup po(e,) 0¥ (e =) £l o peay (0 (B,1) 0 5
zeR™, r>0 0 tr t
g L r _1dt
Bl sup g ) e [0 (e ) 1l ey (0BG 0) 5
z€R™, r>0 ™ Jo t t

_1
SollE sup (@, r )T WP (Bl r ™)) P 1 f 2w (B

zER™ r>0

_1
= HbHI: sup 901(x7r)_1 (wp<B($ar))) P HfHLp,wp(B(fB,T))
z€R™,r>0

= 11002 1 1ty ()

6 Some applications

In this section, we shall apply Theorems 3.7 and 3.8 to several particular operators
such as the Littlewood-Paley operator, the Marcinkiewicz operator, the Bochner-Riesz
operator and the fractional powers of some analytic semigroups.

6.1 Littlewood-Paley operator

The Littlewood-Paley functions play an important role in classical harmonic analysis,
for example in the study of non-tangential convergence of Fatou type and boundedness
of Riesz transforms and multipliers [35, 36, 37, 39]. The Littlewood-Paley operator
(see |24, 39]) is defined as follows.

Definition 3. Suppose that i € L1(R") satisfies

- Y(x)dx = 0. (6.1)

Then the generalized Littlewood-Paley g function gy is defined by

st = ([ 1E@rE)

where Y (z) = t~"P(x/t) fort >0 and Fy(f) = ¥ * f.
The sublinear kth order commutator of the operator gy is defined by

gl = ([T IR D@PY) -

dt
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where

FYM(f) () = / b(z) — b(y)]F (e — 1) F(y)dy.

n

The following theorem is valid (see [28|, Theorem 5.2.2).

Theorem 6.1. Suppose that ¢ € L1(R") satisfies (6.1) and the following properties:

[6(0)] < e (6:2)
c
[Vip(z)| < (e (6.3)

where C' > 0 is independent of x. Then gy is bounded on L, .,(R™) for 1 <p < oo and
w e Ay

Let H be the space H = {h : [|h|| = ([, |h(t)|?dt/t)"/* < oo}, then, for each fixed
z € R, Fi(f)(z) may be viewed as a mapping from [0,00) to H, and it is clear that

gu(f) (@) = [[F(f) ()]
In fact, by Minkowski inequality and the conditions on v, we get

00 1/2
sl < [ 106 ol ([ hote - 0P )

%) —2n 1/2
< [ @ sl ([ qp s )

= [ P

|z —y|"

Thus we get

Corollary 6.1. Let 1 < p < oo, and w € A,. Suppose that (1, p2) satisfy condi-
tion (3.5), b € BMO(R™) and ¢ € Li(R") satisfies (6.1)-(6.3). Then the kth order
commutator of Littlewood-Paley operator [V*, g,] is bounded from M, ,, (w) to M, ,,(w).

From Corollary 3.7 we get the following

Corollary 6.2. Let 1 <p<o00,0<k <1, we A, andbe BMO(R"™). Suppose that
Y € Li(R") satisfies (6.1)-(6.3). Then the operator [V*, gy is bounded on L, .(w).

6.2 Marcinkiewicz operator

Let S"!' = {z € R™ : |z| = 1} be the unit sphere in R" equipped with the Lebesgue
measure do. Suppose that €2 satisfies the following conditions.
(a) Q is the homogeneous function of degree zero on R™ \ {0}, that is,

Q(ux) = Qz), forany p >0,z € R"\ {0}
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(b) Q has mean zero on S"~!, that is,

/ Q(z")do (") = 0.

Sn—1

(c) @ € Lip,(S™'), 0 <y < 1, that is there exists a constant M > 0 such that,
) — )| < Mz — o/ for any o,y € 5.

In 1958, Stein [36] defined the Marcinkiewicz integral of higher dimension uq as

) = ([ |Fg,t<f><x>|2%)l/2,

where

Fau o) = [ 2@ by,

|lz—y|<t ‘ill' - y‘nil
Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been exten-
sively studied as a research topic and also provides useful tools in harmonic analysis
[28, 35, 37, 39].
The Marcinkiewicz operator is defined by (see [40])

00 1/2
ol $)) = ([T Faad DS )
where
P = [ Ay

Note that puof = paof.
The sublinear kth-order commutator of the operator jiq o is defined by

00 = ([T NP ) "

where
Qz —y)

y|n—1—oc

[b(x) — b(y)]" f(y)dy.

Let H be the space H = {h : ||h]| = (J;"|h(t)|?dt/t?)'/* < co}. Then, it is clear

that pa(f)(z) = [[Fa(z)].
By Minkowski inequality and the above conditions on €2, we get

o) < [ Py (f =

R |'T - y|n717a z—y| n |3j - y|nfa

P10 = |

je—yl<t [T —

and

e £) () s/ |Q(:r:—y)||b(:c)—b(y)|’“,f(y)| (/loo dt)l/Qdy

n |l’ - y|n—1—a x—y| t3

co [ @ —b)

Re |7 — gy

£ (y)ldy.
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Thus, p10, and ju, o, satisfies conditions (2.1) and (2.2) respectively. It is known that
for w € A, pa, is bounded from L, .0 (R™) on L, e (R™) for p > 1, and from L, ,,(R"™)
to WL, .a(R™) (see [40]), then from Theorems 3.7 and 3.8 we get the following new
results.

Corollary 6.3. Let 1 < p < ¢ <00, 0 < a < 2, % ]13— 2w e Apg, (01,02)

satisfy condition (3.4), and Q) satisfies conditions (a) — (c¢). Then pq o is bounded from
M, o, (WP) to My, (w?) for p > 1 and bounded from M ,, (w) to WM, ,,(w?).

Corollary 6.4. Let 1 <p<g<oo,0<a <2 -=+—-2 weA,,becBMOR"),

(p1,p2) satisfy condition (3.6), and Q satisfies conditions (a) — (¢). Then ppgak is
bounded from M, , (wP) to My ,,(w?).

Note that, in the case w = 1, a = 0 and £ = 1 Corollaries 6.3, 6.4 was proved in
[19].
1

Corollary 6.5. Let1§p<q<oo,0<a<%, %:5—%,0<f@<§,w€AP,q, and
Q satisfies conditions (a) — (c). Then jiq.q is bounded from Ly ,.(wP, w?) to L q/p(w?)
for p>1 and from Ly ,(w,w?) to W Ly .,(w?) for p=1.

Corollary 6.6. Let 1 < p < oo, 0 <a< 2 t=1L1_2cpx<l yecA,,
P’ q D n q )

b € BMO(R"™), and Q satisfies conditions (a) — (¢). Then ppoar is bounded from
Ly (WP, w?) to L qp(w?).

6.3 Bochner-Riesz operator

Let 6 > (n—1)/2, BI(f)(€) = (1 = £€P)3./(€) and Bf(x) = t"B*(x/t) for t > 0.
The maximal Bochner-Riesz operator is defined by (see 25, 26|)

B (f)(z) = sup | B (f)()].

Let H be the space H = {h : ||h|| = sup,s( |h(t)] < oo}, then it is clear that

Bs.(f)(x) = | BY(f)(=)].
By [14]

e |2 =y

Thus, Bjs,. satisfies condition (2.1) with o = 0. It is known that B, is bounded on
L,,(R") for 1 <p < oo and w € Ay, and bounded from L, ,,(R") to WL, (R") for
w € Ay (see [33, 38]), then from Theorem 3.7 we get

Corollary 6.7. Let 1 < p < oo, and w € A,. Suppose that (v1,¢2) satisfy condition
(3.5), § > (n—1)/2 and b € BMO(R™). Then the operator [b*, Bs.] is bounded from
Mp7§01 (w> to Mp7§02 (w)'

From Corollary 6.7 we get the following

Corollary 6.8. Letl <p<oo,0<k<1l,we A, be BMO(R"), andd > (n—1)/2.
Then the operator [b*, Bs.] is bounded on L, .(w).
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6.4 Fractional powers of some analytic semigroups

The theorems of the previous sections can be applied to various operators which are
estimated from above by the Riesz potentials. We give some examples.

Suppose that L is a linear operator on Ly which generates an analytic semigroup
e 'L with the kernel p;(z,y) satisfying a Gaussian upper bound, that is,

_ .2
C1 _62%

ez, y)| < 2® (6.4)
for x,y € R™ and all t > 0, where ¢;, ¢co > 0 are independent of z, y and t.
For 0 < a < n, the fractional powers L=%2 of the operator L are defined by

o I dt
LR = g [ )

Note that if L = —A is the Laplacian on R”, then L~%/? is the Riesz potential I,,.
See, for example, Chapter 5 in [35].

Property (6.4) is satisfied for large classes of differential operators (see, for example
[4]). In [4] also other examples of operators which are estimates from above by the
Riesz potentials are given. In these cases Theorems 3.4 and 3.8 are also applicable for
proving boundedness of those operators and commutators from M, .., (w?) to M ,, (w?).

Theorem 6.2. Let condition (6.4) be satisfied. Moreover, let 1 < p < 00, 0 < a < o

1=1_2a weA,, and (p1,¢2) satisfy condition (3.4). Then L~*/* is bounded from

q
M, o, (WP) to My, (w?) for p > 1 and from M, (w) to WM, (w?) for p=1.

p,¥1

Proof. Since the semigroup e ** has the kernel p;(,y) which satisfies condition (6.4),
it follows that

L7 f(2)] S La(lfD(2)

(see [13]). Hence by the aforementioned theorems we have

||L_a/2f||Mq,s02(wq) S H]oe(|f|)||Mq,<p2(wq) 5 ||f||Mp,w1(wp)'
[l

Corollary 6.9. Let condition (6.4) be satisfied. Moreover, let 1 < p < 00, 0 < a < ;%,

=1l _ag<k<? andw € A,,. Then L2 is bounded from L, .(wP,w) to
p n q ) ’

1
q
Ly rq/p(w?) for p > 1 and from Ly . (w,w?) to W Lg xq(w?) for p=1.

Let b be a locally integrable function on R”, the kthe order commutator of b and
L=/? is defined as follows

(6", L7 f(x) = L™ ((b(x) = b(-))" f) ().

In [13] extended the result of [6] from (—A) to the more general operator L defined
above. More precisely, they showed that when b € BMO(R™), then the kthe order

commutator operator [b¥, L~%/2] is bounded from L,(R") to L,(R") for 1 < p < ¢ < o0

and % = % — 2. Then from Theorem 3.8 we get
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Theorem 6.3. Let condition (6.4) be satisfied. Moreover, let 1 < p < g < 00, 0 <
a< 2, % = %— %, b€ BMO(R"), w € Apy, and (¢1,p2) satisfy condition (3.6). Then

(¥, L=%/%] is bounded from M, ,, (wP) to M, ,,(w?).

Proof. Since the semigroup e ' has the kernel p;(x,y) which satisfies condition (6.4),
it follows that

[B", L= f ()] S 0, L] (1£]) ()

(see [13]). Hence by the aforementioned theorems we have

106°, L™ Ity oy S WO L (LF Dty oy ) S NBIEE1F 1, 9)-
O

Corollary 6.10. Let condition (6.4) be satisfied. Moreover, let 1 < p < q < o0,
0<a<?, % = % — 2, be BMO(R"), 0 < k < §, and w € A,,. Then [b, L=%/%] is
bounded from Ly, (WP, w?) to Lg q/p(w?).
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