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EURASIAN MATHEMATICAL JOURNALISSN 2077-9879Volume 1, Number 1 (2010), 32 � 53NECESSARY AND SUFFICIENT CONDITIONS FOR THEBOUNDEDNESS OF GENUINE SINGULAR INTEGRALOPERATORS IN LOCAL MORREY-TYPE SPACES 1V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaCommuniated by E.D. NursultanovKeywords and phrases: singular integral operator, maximal operator, loalMorrey-type spaes, Hardy operator on the one of monotoni funtions, weakMorrey-type spaes, weighted estimates.Mathematis Subjet Classi�ation: 42B20, 42B25, 42B35.Abstrat. The problem of the boundedness of a Calderon-Zygmund singularintegral operator T in loal Morrey-type spaes is redued to the boundedness of theHardy operator in weighted Lp-spaes on the one of non-negative non-inreasingfuntions. This allows obtaining su�ient onditions for the boundedness of T inloal Morrey-type spaes for all admissible values of the parameters. Moreover, for aertain range of the parameters, for a genuine Calderon-Zygmund singular integraloperator these su�ient onditions oinide with the neessary ones.1 IntrodutionLet T be a singular integral Calderon-Zygmund operator, brie�y a Calderon-Zygmund operator, i. e., a linear operator bounded from L2(R
n) in L2(R

n) takingall in�nitely ontinuously di�erentiable funtions f with ompat support to thefuntions Tf ∈ Lloc
1 (Rn) represented by

Tf(x) =

∫

Rn

K(x, y)f(y) dy a. e. on R
n \ suppf. (1)Here K(x, y) is a ontinuous funtion away from the diagonal whih satis�es thestandard estimates: there exist c1 > 0 and 0 < ε ≤ 1 suh that

|K(x, y)| ≤ c1|x− y|−n (2)1V.I. Burenkov's researh was partially supported by the grant of RFBR (projet 09-01-00093a).V.I. Burenkov's and T.V. Tararykova's researh was partially supported by the grant of RFBR-DFG (projet 10-01-91331). V.S. Guliyev's and A. Serbeti's researh was partially supportedby the grant of Tubitak (projet B.02.TBT.0.06.01-220.01-619-48891). V.S. Guliyev's researh waspartially supported by the grant of the Azerbaijan-U.S. Bilateral Grants Program II (projet ANSFAward / AZM1-3110-BA-08).



Neessary and su�ient onditions for the boundedness of . . . 33for all x, y ∈ Rn, x 6= y, and
|K(x, y) −K(x′, y)| + |K(y, x) −K(y, x′)| ≤ c1

( |x− x′|
|x− y|

)ε
|x− y|−n (3)whenever 2|x− x′| ≤ |x− y|. Suh operators were introdued in [9℄.In the theory of partial di�erential equations, together with weighted Lp,w-spaes,Morrey spaes Mp,λ play an important role. They were introdued by C. Morreyin 1938 [17℄ and de�ned as follows. For 0 ≤ λ ≤ n, 1 ≤ p ≤ ∞, f ∈ Mp,λ if

f ∈ Lloc
p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖Lp(B(x,r)) <∞,where B(x, r) is the open ball entered at x of radius r. Note that Mp,0 = Lp(R

n)and Mp,n = L∞(Rn). If λ < 0 or λ > n, then Mp,λ = Θ, where Θ is the set of allfuntions equivalent to 0 on Rn.These spaes appeared to be quite useful in the study of the loal behaviour ofsolutions to ellipti partial di�erential equations, apriori estimates and other topisin the theory of partial di�erential equations.We also denote byWMp,λ the weak Morrey spae of all funtions f ∈WLloc
p (Rn)for whih

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) <∞,where WLp denotes the weak Lp-spae.The lassial result for Calderon-Zygmund operators states that if 1 < p < ∞then T is bounded from Lp(R

n) to Lp(Rn), and if p = 1 then T is bounded from
L1(R

n) to WL1(R
n) (see, for example, [22℄).J. Peetre [20℄ studied the boundedness of singular integral operators in Morreyspaes, and his results imply the following statement for Calderon-Zygmundoperators T .Theorem 1. Let 1 < p <∞, 0 < λ < n. Then T is bounded from Mp,λ to Mp,λ.If λ = 0, the statement of Theorem 1 redues to the aforementioned result for

Lp(R
n).If in plae of the power funtion r−

λ
p in the de�nition of Mp,λ we onsiderany positive measurable weight funtion w, then it beomes generalised Morreyspae Mp,w. T. Mizuhara [16℄, E. Nakai [18℄ and V. S. Guliyev [11℄ (see also [14℄)generalised Theorem 1 and obtained su�ient onditions on weights w1 and w2ensuring the boundedness of T from Mp,w1 to Mp,w2. The following statement,ontaining the results in [16℄, [18℄ was proved in [11℄ (see also [14℄).Theorem 2. Let 1 < p <∞. Moreover, let w1, w2 be positive measurable funtionssatisfying the following ondition: there exits c2 > 0 suh that for all t > 0

∥∥w−1
1 (r) r−

n
p
−1
∥∥
L1(t,∞)

≤ c2w
−1
2 (t) t−

n
p . (4)Then T is bounded from Mp,w1 to Mp,w2.



34 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaEarlier, in the [16℄, [18℄ Theorem 2 was proved for the ase w1 = w2 = w, where
w satis�es the pointwise doubling ondition, namely for some c3 > 0

c−1
3 w(t) ≤ w(r) ≤ c3w(t)for all t, r > 0 suh that 0 < r ≤ t ≤ 2r.We say that T is a genuine Calderon-Zygmund operator if it is a Calderon-Zygmund operator and for n ≥ 2 there exist c4, c5 > 0 and a rotation R suhthat
K(x, y) ≥ c4

|x− y|n (5)for all x ∈ Rn and for all y ∈ Cx = x+ R(C), where
C = {y = (y1, ..., yn) ≡ (y, yn) ∈ R

n : yn > c5 |y|} .If n = 1 then we assume that there exists c4 > 0 suh that
K(x, y) ≥ c4

|x− y|for all x ∈ R and for all y > x or for all x ∈ R and for all y < x.Clearly the Hilbert transform H, in whih ase K(x, y) = 1
x−y , is a genuineCalderon-Zygmund operator beause K(x, y) ≥ 1

|x−y| for all x ∈ R and for all y < x.Let T be a Calderon-Zygmund operator of the form
K(x, y) =

Ω
(
x−y
|x−y|

)

|x− y|n ,where Ω is a ontinuous funtion on the unit sphere Sn−1 in Rn, Ω 6≡ 0, whih ishomogeneous of order zero and suh that ∫
Sn−1 Ω(η)dη = 0. The properties of Ωimply that there exist c6 > 0, η0 ∈ Sn−1 and δ > 0 suh that Ω(η) ≥ c6 for all

η ∈ Sn−1 ∩ B (η0, δ). Hene ondition (5) is satis�ed.In this paper we onsider loal and global Morrey-type spaes LMpθ,w andGMpθ,was in [2℄�[7℄, [11℄�[15℄, where the boundedness of the maximal operator, frationalmaximal operator and Riesz potentials was studied. We study the boundednessof Calderon-Zygmund operators from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to
GMpθ2,w2. We obtain su�ient onditions on weight funtions w1 and w2 ensuringthe boundedness of Calderon-Zygmund operators T from LMpθ1,w1 to LMpθ2,w2 andfrom GMpθ1,w1 to GMpθ2,w2 for all admissible values of the parameters p, θ1, θ2.Moreover, for a ertain range of the parameters p, θ1, θ2 we obtain neessary andsu�ient onditions on weight funtions w1 and w2 for a genuine Calderon-Zygmundoperator T to be bounded from LMpθ1,w1 to LMpθ2,w2. In partiular, in Theorem 8we prove that if 1 < p <∞, 0 < θ1 ≤ θ2 ≤ ∞ and θ1 ≤ 1, then the ondition

∥∥∥∥∥w2(r)

(
r

t+ r

)n/p∥∥∥∥∥
Lθ2

(0,∞)

≤ c7 ‖w1‖Lθ1
(t,∞) (6)



Neessary and su�ient onditions for the boundedness of . . . 35for all t > 0, where c7 > 0 is independent of t, is neessary and su�ient for theboundedness of T from LMpθ1,w1 to LMpθ2,w2.We note that ondition (6) is also neessary and su�ient for the boundedness ofthe maximal operator from LMpθ1,w1 to LMpθ2,w2 for a wider range of the parameter
θ1 : θ1 ≤ p [3,5℄.In Theorem 9 it is proved that, under additional assumption of regularity on w2,ondition (6) is neessary and su�ient for the boundedness of T from LMpθ1,w1 to
LMpθ2,w2 also for θ1 ≤ p.We also onsider separately the ase in whih LMpθ1,w1 is replaed 2 by Lp.Most of the results of this paper were formulated without proofs in [8℄.2 De�nitions and basi properties of Morrey-type spaesDe�nition 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable funtion on
(0,∞). We denote by LMpθ,w and GMpθ,w the loal Morrey-type spaes, the globalMorrey-type spaes respetively, the spaes of all funtions f ∈ Lloc

p (Rn) with �nitequasinorms
‖f‖LMpθ,w

≡ ‖f‖LMpθ,w(Rn) =
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

,

‖f‖GMpθ,w
= sup

x∈Rn

‖f(x+ ·)‖LMpθ,wrespetively.Note that
‖f‖LMp∞,1

= ‖f‖GMp∞,1
= ‖f‖Lp.Furthemore, GM

p∞,r
−λ

p
≡ Mp,λ, 0 ≤ λ ≤ n and GMp∞,w ≡ Mp,w.In [2, 3℄ the following statement was proved.Lemma 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable funtion on

(0,∞).1. If for all t > 0
‖w(r)‖Lθ(t,∞) = ∞, (7)then LMpθ,w = GMpθ,w = Θ.2. If for all t > 0

‖w(r)rn/p‖Lθ(0,t) = ∞, (8)then for 0 < p <∞ GMpθ,w = Θ.De�nition 2. Let 0 < p, θ ≤ ∞. We denote by Ωθ the set of all funtions w whihare non-negative, measurable on (0,∞), not equivalent to 0 and suh that for some
t > 0

‖w(r)‖Lθ(t,∞) <∞. (9)2Here and in the sequel we write just Lp for Lp(R
n), 0 < p ≤ ∞. If G 6= Rn, then we preservethe full notation Lp(G). The same refers to the ase of weighted Lebesgue spaes Lp,v.



36 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaMoreover, we denote by Ωpθ the set of all funtions w whih are non-negative,measurable on (0,∞), not equivalent to 0 and suh that for some t1, t2 > 0

‖w(r)‖Lθ(t1,∞) <∞, ‖w(r)r
n
p ‖Lθ(0,t2) <∞. (10)In the sequel, keeping in mind Lemma 1, we always assume that, for the spaes

LMpθ,w, w ∈ Ωθ and, for the spaes GMpθ,w, w ∈ Ωpθ.Let w ∈ Ωθ and f ∈ LMpθ,w, then f ∈ Lp(B(0, r)) for all r > 0. If f ∈ Lp,then ∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(t,∞)

< ∞ for any t > 0, and the fat that f ∈ LMpθ,wompletely depends on the behaviour of f(x) for small |x|. However, if f /∈ Lp, thenthe fat that f ∈ LMpθ,w depends both on the behaviour of f(x) for small and large
|x|.3 Corollaries of weighted Lp,w-estimatesFor a measurable set G ⊂ Rn and a funtion v non-negative and measurable on G,let Lp,v(G) be the weighted Lp-spae of all funtions f measurable on G for whih 3

‖f‖Lp,v(G) = ‖vf‖Lp(G) <∞.If 0 < p ≤ θ ≤ ∞, then
‖f‖LMpθ,w

≤ ‖f‖Lp,W
, (11)and if 0 < θ ≤ p ≤ ∞, then

‖f‖Lp,W
≤ ‖f‖LMpθ,w

, (12)where for all x ∈ Rn

W (x) = ‖w‖Lθ(|x|,∞).These inequalities are partiular ases of general inequalities of suh type forthe Lebesgue spaes with mixed quasinorms (see, for example,[19, setion 3.37℄). Inpartiular, for 0 < p ≤ ∞
‖f‖LMpp,w = ‖f‖Lp,V

,where for all x ∈ Rn

V (x) = ‖w‖Lp(|x|,∞).Hene the results for LMpp,w follow from the known results for weighted Lp,V -spaes.We start by quoting Theorem 3.4.2 in [10℄ stating neessary and su�ientonditions on v1 and v2 ensuring the validity of the inequality
‖Tf‖Lp,v2

≤ c8‖f‖Lp,v1
, (13)where v1 and v2 are funtions non-negative and measurable on Rn and c8 > 0 isindependent of f ∈ Lloc

p (Rn).3See footnote in Setion 1.



Neessary and su�ient onditions for the boundedness of . . . 37Theorem 3. Let 1 < p <∞ and let v1, v2 be funtions non-negative and measurableon Rn. Moreover, let for some c9 > 0

sup
1
4
|x|≤|y|≤4|x|

v2(y) ≤ c9v1(x) for a.e. x ∈ R
n (14)or for some c10 > 0

v2(x) sup
1
4
|x|≤|y|≤4|x|

1

v1(y)
≤ c10 for a.e. x ∈ R

n. (15)Then inequality (13) holds if, and for the Hilbert transform H only if, thefollowing two onditions are satis�ed:
J1 = sup

r>0
‖v2‖Lp(B(0,r)) ‖ |y|−nv1(y)

−1‖
Lp′ (

∁B(0,2r))
<∞ (16)and

J2 = sup
r>0

‖v−1
1 ‖Lp′(B(0,r)) ‖ |y|−nv2(y)‖Lp( ∁B(0,2r))

<∞, (17)where ∁
B(0, t) is the omplement of B(0, t).Moreover, the sharp onstant c∗8 in (13) satis�es the inequality

c∗8 ≤ c11(J1 + J2),and for the Hilbert transform H also
c12(J1 + J2) ≤ c∗8,where c11, c12 > 0 are independent of v1 and v2.The appliation of Theorem 3 immediately implies the following result for thease of loal Morrey-type spaes.Theorem 4. Let 1 < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 . Moreover,let for some c13 > 0

sup
1
4
|x|≤|y|≤4|x|

W2(y) ≤ c13W1(x) for a. e. x ∈ R
n (18)or for some c14 > 0

W2(x) sup
1
4
|x|≤|y|≤4|x|

1

W1(y)
≤ c13 for a. e. x ∈ R

n, (19)where for all x ∈ Rn

W1(x) = ‖w1‖Lθ1
(|x|,∞), W2(x) = ‖w2‖Lθ2

(|x|,∞).If θ1 ≤ p ≤ θ2,

sup
r>0

‖W2‖Lp(B(0,r)) ‖ |y|−nW1(y)
−1‖

Lp′(
∁
B(0,2r))

<∞ (20)



38 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. Tararykovaand
sup
r>0

‖W−1
1 ‖Lp′(B(0,r)) ‖ |y|−nW2(y)‖Lp( ∁B(0,2r))

<∞, (21)then the operator T is bounded from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to
GMpθ2,w2. (In the latter ase we assume that w1 ∈ Ωpθ1, w2 ∈ Ωpθ2.)If θ2 ≤ p ≤ θ1, then onditions (20) and (21) are neessary for the boundednessof the Hilbert transform H from LMpθ1,w1 to LMpθ2,w2.In partiular, if θ1 = θ2 = p, then onditions (20) and (21) are neessary andsu�ient for the boundedness of H from LMpp,w1 to LMpp,w2.Proof. Let θ1 ≤ p ≤ θ2. By applying (11), the su�ieny of (20) and (21) for theboundedness of T and (12) we get

‖Tf‖LMpθ2,w2
≤ ‖Tf‖Lp,W2

≤ c15‖f‖Lp,W1
≤ c15‖f‖LMpθ1,w1

, (22)where c15 > 0 is independent of f .Conversely if θ2 ≤ p ≤ θ1 and
‖Hf‖LMpθ2,w2

≤ c16‖f‖LMpθ1,w1
,where c16 > 0 is independent of f, then by (11) and (12)

‖Hf‖Lp,W2
≤ c16‖f‖Lp,W1

(23)and one may apply the neessity of (20) and (21) for the validity of (23).Also (22) implies that
‖Tf‖GMpθ2,w2

≤ c15‖f‖GMpθ1,w1
.

�4 Singular integrals and Hardy operatorIn order to obtain neessary and su�ient onditions on w1 and w2 ensuring theboundedness of T for other values of the parameters we shall redue the problemof the boundedness of T in the loal Morrey-type spaes to the boundedness of theHardy operator in weighted Lp-spaes on the one of non-negative non-inreasingfuntions.We start with quoting the following result proved in [11℄ (see also [14℄).Lemma 2. Let 1 < p <∞ and γ ≥ 1, then there exists c17 > 0 suh that
‖Tf‖Lp(B(0,r)) ≤ c17r

n
p

∫ ∞

γr

t−
n
p
−1‖f‖Lp(B(0,t))dt (24)for all r > 0 and for all f ∈ Lloc

p (Rn).



Neessary and su�ient onditions for the boundedness of . . . 39Corollary 1. Let 1 < p <∞, 0 < δ < n
p
and γ ≥ 1. Then there exists c18 > 0 suhthat

‖Tf‖Lp(B(0,r)) ≤ c18r
n/p−δ

(∫ ∞

γr

(∫

B(0,t)

|f(x)|pdx
)

dt

tn−δp+1

)1/p (25)for all r > 0 and for all f ∈ Lloc
p (Rn).Proof. It su�es to apply H�older's inequality to the integral in the right-hand sideof (24). �Let H be the Hardy operator

(Hg)(r) =

∫ r

0

g(t)dt, 0 < r <∞.Lemma 3. Let 1 < p <∞, 0 < θ ≤ ∞ and w ∈ Ωθ. Then there exists c19 > 0 suhthat
‖Tf‖LMpθ,w

≤ c19 ‖Hĝ‖Lθ,v̂(0,∞) (26)for all f ∈ Lloc
p (Rn), where

ĝ(t) = ‖f‖
Lp

“

B
“

0,t−
p
n

”” (27)and
v̂(r) = w

(
r−

p
n

)
r−

p
n(n

p
+ 1

θ )−
1
θ . (28)Proof. By Lemma 2

‖Tf‖LMpθ,w
=
∥∥w(r)‖Tf‖Lp(B(0,r))

∥∥
Lθ(0,∞)

≤ c17

∥∥∥∥w(r)r
n
p

∫ ∞

r

t−
n
p
−1‖f‖Lp(B(0,t))dt

∥∥∥∥
Lθ(0,∞)

=
c17p

n

∥∥∥∥∥w(r)r
n
p

∫ r
−n

p

0

‖f‖
Lp(B(0,t−

p
n ))
dt

∥∥∥∥∥
Lθ(0,∞)

= c20

∥∥∥∥w(r−
p
n )r−1−( p

n
+1) 1

θ

∫ r

0

‖f‖
Lp(B(0,t−

p
n ))
dt

∥∥∥∥
Lθ(0,∞)

= c20‖Hĝ‖Lθ,v̂(0,∞),where c20 > 0 depends only on n, p and θ. �Lemma 4. Let 1 < p < ∞, 0 < δ < n
p
, 0 < θ ≤ ∞ and w ∈ Ωθ. Then there exists

c21 > 0 suh that
‖Tf‖LMpθ,w

≤ c21‖Hgδ‖
1
p

L θ
p ,vδ

(0,∞)
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p (Rn), where

gδ(t) =

∫

B

„

0,t
1

δp−n

« |f(y)|pdy (29)and
vδ(r) =

[
w
(
r

1
δp−n

)
r

1
δp−n(n

p
−δ+ 1

θ )−
1
θ

]p
. (30)Proof. By Corollary 1

‖Tf‖LMpθ,w
=
∥∥w(r)‖Tf‖Lp(B(0,r))

∥∥
Lθ(0,∞)

≤ c18

∥∥∥∥∥w(r)r
n
p
−δ
(∫ ∞

r

(∫

B(0,t)

|f(x)|pdx
)

dt

tn−δp+1

) 1
p

∥∥∥∥∥
Lθ(0,∞)

= c18(n− δp)−
1
p

∥∥∥∥∥∥
w(r)r

n
p
−δ
(∫ rδp−n

0

(∫

B(0,τδp−n)

|f(x)|pdx
)
dτ

) 1
p

∥∥∥∥∥∥
Lθ(0,∞)

= c18(n− δp)−
1
p



∫ ∞

0

(
w(r)r

n
p
−δ
)θ
(∫ rδp−n

0

g(τ)dτ

) θ
p

dr




1
θ

= c18(n− δp)−
1
p
− 1

θ

(∫ ∞

0

(
w
(
ρ

1
δp−n

)
ρ

n
p(δp−n)

)θ
ρ

1
δp−n

−1 (Hg(ρ))
θ
p dρ

) 1
θ

= c21‖Hg‖
1
p

L θ
p ,vδ

(0,∞),where c21 > 0 depends only on n, p, θ and δ. �Remark 1. Reall that for the maximal operatorM, as proved in [5℄, for 1 < p <∞,
0 < θ ≤ ∞ and w ∈ Ωθ, there exists c22 > 0 suh that

‖Mf‖LMpθ,w
≤ c22‖Hg0‖1/p

L θ
p ,v0

(0,∞)for all f ∈ Lloc
p (Rn).Theorem 5. Let 1 < p < ∞, 0 < θ1, θ2 ≤ ∞, 0 < δ < n

p
, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .Moreover, let

v1,δ(r) =
[
w1

(
r

1
δp−n

)
r

1
(δp−n)θ1

− 1
θ1

]p
, (31)

v2,δ(r) =

[
w2

(
r

1
δp−n

)
r

1
δp−n

“

n
p
−δ+ 1

θ2

”

− 1
θ2

]p (32)and
v̂1(r) = w1

(
r−

p
n

)
r
− p

nθ1
− 1

θ1 , (33)
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v̂2(r) = w2

(
r−

p
n

)
r
− p

n(n
p
+ 1

θ 2)−
1

θ2 . (34)Assume that the operator H is bounded from L θ1
p
,v1,δ

(0,∞) to L θ2
p
,v2,δ

(0,∞) orfrom Lθ1,v̂1(0,∞) to Lθ2,v̂2(0,∞) on the one of all non-negative funtions ϕ non-inreasing on (0,∞) and satisfying lim
t→∞

ϕ(t) = 0.Then T is bounded from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2.(In the latter ase we assume that w1 ∈ Ωpθ1 , w2 ∈ Ωpθ2.)Proof. Let H be bounded from L θ1
p
,v1,δ

(0,∞) to L θ2
p
,v2,δ

(0,∞). Then by Lemma 4applied to LMpθ2,w2

‖Tf‖LMpθ2,w2
≤ c23‖Hgδ‖1/p

L θ2
p ,v2,δ

(0,∞),where c23 > 0 is independent of f .Sine g is non-negative, non-inreasing on (0,∞) and lim
t→+∞

gδ(t) = 0 and H isbounded from L θ1
p
,v1,δ

(0,∞) to L θ2
p
,v2,δ

(0,∞) on the one of funtions ontaining gδ,we have
‖Tf‖LMpθ2,w2

≤ c24‖gδ‖1/p
L θ1

p ,v1,δ
(0,∞),where c24 > 0 is independent of f.Hene

‖Tf‖LMpθ2,w2
≤ c24



∫ ∞

0

v1,δ(t)
θ1
p ‖f‖θ1

Lp

„

B

„

0,t
1

δp−n

««dt




1/θ1

= c24(n− δp)
1

θ1

(∫ ∞

0

v1,δ(r
δp−n)

θ1
p rδp−n−1‖f‖θ1Lp(B(0,r))dr

)1/θ1

= c25

(∫ ∞

0

(
w1(r)‖f‖Lp(B(0,r))

)θ1
dr

)1/θ1

= c25‖f‖LMpθ1,w1
, (35)where c25 > 0 is independent of f.If H is bounded from Lθ1,v̂1(0,∞) to Lθ2,v̂2(0,∞) then the argument is similar.(Lemma 4 should be replaed by Lemma 3. ) �5 Su�ient onditionsIn order to obtain expliit su�ient onditions on the weight funtions ensuring theboundedness of T , �rst we shall apply the following well-known simple su�ientonditions ensuring the boundedness of the Hardy operator H from one weightedLebesgue spae to another one (see, for example, [3℄).



42 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaLemma 5. Let 0 < θ1, θ2 ≤ ∞ and let v1, v2 be funtions positive and measurableon (0,∞). Then the ondition
∥∥∥v2(r)

∥∥∥t−
(1−θ1)+

θ1 v−1
1 (t)

∥∥∥
L θ1

(θ1−1)+

(0,r)

∥∥∥
Lθ2

(0,∞)
<∞ (36)is su�ient for the boundedness of H from Lθ1,v1(0,∞) to Lθ2,v2(0,∞) in the ase

1 ≤ θ1 ≤ ∞ and for the boundedness of H from Lθ1,v1(0,∞) to Lθ2,v2(0,∞) on theone of all non-negative non-inreasing funtions on (0,∞) in the ase 0 < θ1 < 1.If θ1 = ∞, then ondition (36) is also neessary for the boundedness of H from
L∞,v1(0,∞) to Lθ2,v2(0,∞).The statements of Lemma 5 follow by applying H�older's inequality if 1 ≤ θ1 ≤ ∞and the inequality

(∫ b

a

ϕ(t)dt

)θ1
≤ θ1

∫ b

a

(t− a)θ1−1ϕ(t)θ1dtfor all −∞ < a < b ≤ ∞ and for all funtions ϕ non-negative and non-inreasingon (0,∞) if 0 < θ1 < 1. (See, for example, [1℄.)Theorem 5 and Lemma 5 imply the following su�ient onditions for theboundedness of T from LMpθ1,w1 to LMpθ2,w2.Theorem 6. Let 1 < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2. If, for some
0 < δ < n

p
,

∥∥∥w2(r)r
n
p
−δ
∥∥∥w−1

1 (t)t
δ−n

p
− 1

min{p,θ1}

∥∥∥
Ls(r,∞)

∥∥∥
Lθ2

(0,∞)
<∞, (37)where s = pθ1

(θ1−p)+ (if θ1 ≤ p, then s = ∞) or if
∥∥∥w2(r)r

n
p

∥∥∥w−1
1 (t)t

−n
p
− 1

min{1,θ1}

∥∥∥
Lσ(r,∞)

∥∥∥
Lθ2

(0,∞)
<∞, (38)where σ = θ1

(θ1−1)+
(if θ1 ≤ 1, then σ = ∞), then T is bounded from LMpθ1,w1to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2. (In the latter ase we assume that

w1 ∈ Ωpθ1, w2 ∈ Ωpθ2.)Remark 2. Reall that, as proved in [5℄, if ondition (37) is satis�ed and, moreover,if it is satis�ed with δ = 0, then the maximal operator M is bounded from LMpθ1,w1to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2.Under some assumptions on the regularity of the weight w1 onditions (37) and(38) an be weakened. To prove this we shall need the following lemmas proved in[7℄.



Neessary and su�ient onditions for the boundedness of . . . 43Lemma 6. Let ϕ be a non-negative measurable funtion on (0,∞), c26 > 0 and
∫ ∞

r

ϕ(t)dt ≤ c26rϕ(r) (39)for all r > 0. Then for all δ ∈ (0, 1
c26

)

r−δ
∫ ∞

r

ϕ(t)tδdt ≤ (1 − δc26)
−1

∫ ∞

r

ϕ(t)dt (40)for all r > 0.Corollary 2. Let 0 < p, q ≤ ∞ and c27 > 0. Moreover, let ϕ and ψ be non-negativemeasurable funtions on (0,∞) and
‖ϕ‖Lp(r,∞) ≤ c27r

1
pϕ(r) (41)for all r > 0. Then for all δ ∈ (0, 1

pc27
)

‖ψ(r) r−δ‖ϕ(t) tδ‖Lp(r,∞)‖Lq(0,∞) ≤ (1 − δpc27)
− 1

p ‖ψ(r) ‖ϕ(t)‖Lp(r,∞)‖Lq(0,∞). (42)Lemma 7. Let ϕ be a non-negative measurable funtion on (0,∞), c28 > 0 and
∫ r

0

ϕ(t)dt ≤ c28rϕ(r) (43)for all r > 0. Then for all δ ∈ (0, 1
c28

)

rδ
∫ r

0

ϕ(t)t−δdt ≤ (1 − δc28)
−1

∫ r

0

ϕ(t)dt (44)for all r > 0.Theorem 7. Let 1 < p < ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 . If, for some
c29 > 0, for all r > 0

‖w−1
1 (t)t

−n
p
− 1

min{p,θ1}‖Ls(r,∞) ≤ c29w
−1
1 (r)r

−n
p
− 1

min{p,θ1}
+ 1

s (45)and ∥∥∥w2(r)r
n
p

∥∥∥w−1
1 (t)t

−n
p
− 1

min{p,θ1}

∥∥∥
Ls(r,∞)

∥∥∥
Lθ2

(0,∞)
<∞, (46)or if, for some c30 > 0, for all r > 0

‖w−1
1 (t)t

−n
p
− 1

min{1,θ1}‖Lσ(r,∞) ≤ c30w
−1
1 (r)r

−n
p
− 1

min{1,θ1}
+ 1

σ (47)and for all δ > 0
∥∥∥w2(r)r

n
p
+δ
∥∥∥w−1

1 (t)t
−δ−n

p
− 1

min{1,θ1}

∥∥∥
Lσ(r,∞)

∥∥∥
Lθ2

(0,∞)
<∞, (48)then T is bounded from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2. (Inthe latter ase we assume that w1 ∈ Ωpθ1 , w2 ∈ Ωpθ2.)



44 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaProof. 1. Note that regularity ondition (45) oinides with ondition (41) ofCorollary 2, where p = s and ϕ(t) = w−p
1 (t)t

−n− p
min{p,θ1} . By Corollary 2 ondition(44) is satis�ed for some δ > 0 with q = θ2 and ψ(t) = w−p

2 (r)r−
1
p , whih impliesondition (37). Therefore Theorem 6 implies that T is bounded from LMp∞,w1 to

LMpθ2,w2 and from GMp∞,w1 to GMpθ2,w2.2. Let ondition (48) be satis�ed. Then, in partiular, it is satis�ed for 0 < δ <
(σc30)

−1. Next ondition (47) implies that
∥∥∥w−1

1 (t)t
−δ−n

p
− 1

min{1,θ1}

∥∥∥
Lσ(r,∞)

≤ r−δ
∥∥∥w−1

1 (t)t
−n

p
− 1

min{1,θ1}

∥∥∥
Lσ(r,∞)

≤ c30w
−1
1 (r)r

−δ−n
p
− 1

min{1,θ1}
+ 1

σ .Hene ondition (41) is satis�ed for p = σ, ϕ(t) = w−1
1 (t)t

−δ−n
p
− 1

min{1,θ1} and
c27 = c30. Therefore Corollary 2 with ψ(t) = w2(t)t

n
p
+δ, q = θ2 implies ondition(38) beause

∥∥∥w2(r)r
n
p

∥∥∥w−1
1 (t)t

−n
p
− 1

min{1,θ1}

∥∥∥
Lσ(r,∞)

∥∥∥
Lθ2

(0,∞)

≤ (1 − δσc30)
− 1

σ

∥∥∥w2(r)r
n
p
+δ
∥∥∥w−1

1 (t)t
−δ−n

p
− 1

min{1,θ1}

∥∥∥
Lσ(r,∞)

∥∥∥
Lθ2

(0,∞)
<∞.Therefore Theorem 6 implies that T is bounded from LMp∞,w1 to LMpθ2,w2 andfrom GMp∞,w1 to GMpθ2,w2. �Corollary 3. Let 1 < p < ∞, 0 < θ2 ≤ ∞, w1 ∈ Ω∞ and w2 ∈ Ωθ2. If, for some

c31 > 0, for all r > 0
∥∥w−1

1 (t)t−
n
p
−1
∥∥
L1(r,∞)

≤ c31w
−1
1 (r)r−

n
p (49)and for all δ > 0

∥∥w2(r)r
δ+ n

p

∥∥w−1
1 (t)t−δ−

n+1
p

∥∥
Lp(r,∞)

∥∥
Lθ2

(0,∞)
<∞, (50)then T is bounded from LMp∞,w1 to LMpθ2,w2 and from GMp∞,w1 to GMpθ2,w2. (Inthe latter ase we assume that w1 ∈ Ωp∞, w2 ∈ Ωpθ2.)Proof. Note that ondition (50) and H�older's inequality imply ondition (48) for all

δ > 0 in the ase θ1 = ∞ and therefore Corollary 2 implies Corollary 3. �Corollary 4. Let 1 < p < ∞ and w1, w2 ∈ Ω∞. If, for some c32, c33 > 0, for all
r > 0 ∥∥w−1

1 (t)t−
n
p
−1
∥∥
L1(r,∞)

≤ c32w
−1
1 (r)r−

n
p (51)and for some δ > 0

∥∥w−1
1 (t)t−δ−

n+1
p

∥∥
Lp(r,∞)

≤ c33w
−1
2 (r)r−δ−

n
p , (52)then T is bounded from LMp∞,w1 to LMp∞,w2 and from GMp∞,w1 to GMp∞,w2. (Inthe latter ase we assume that w2 ∈ Ωp∞.)



Neessary and su�ient onditions for the boundedness of . . . 45Remark 3. We note that ondition (52) is weaker than ondition (4) in Theorem2. However in Theorem 2 there is no additional regularity assumptions on w1. If
w1 = w2 then the statements of Theorem 2 and Corollary 4 oinide, beause in thisase by Lemma 6 ondition (51), oiniding in this ase with ondition (4), impliesondition (52).Remark 4. When proving the results of this setion we applied inequalities (24)and (25) with γ = 1. One may trae that inequalities (24) and (25) in fat implythe statements of this setion in a slightly stronger version. Namely the norms in
Lq(r,∞) with q equal to s, σ, 1 or p of the expressions ontaining w−1

1 (t) in formulas(45)�(52) an be replaed by the norms of the same expressions but in Lq(γr,∞) witharbitrary γ ≥ 1.6 Neessary and su�ient onditionsFor the majority of ases the neessary and su�ient onditions for the validity ofthe inequality
‖Hϕ‖Lθ2,v2

(0,∞) ≤ c34 ‖ϕ‖Lθ1,v1
(0,∞) , (53)where c34 > 0 is independent of ϕ, for all non-negative non-inreasing funtions ϕare known; for detailed information see [23℄, [24℄. Appliation of Theorem 5 and ofany of those onditions gives su�ient onditions for the boundedness of Calderon-Zygmund operators from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1 to GMpθ2,w2.However, there is no guarantee that the appliation of the neessary and su�ientonditions on v1 and v2 ensuring the validity of (53) will imply the neessary andsu�ient onditions for the boundedness of T from LMpθ1,w1 to LMpθ2,w2.Fortunately for ertain values of the parameters this is the ase, namely for

1 < p <∞ and 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ 1.Theorem 8. Let 1 < p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .1. If T is a genuine Calderon-Zygmund operator, then the ondition
∥∥∥∥∥w2(r)

(
r

t+ r

)n/p∥∥∥∥∥
Lθ2

(0,∞)

≤ c35 ‖w1‖Lθ1
(t,∞) , (54)where c35 > 0 is independent of t > 0, is neessary for the boundedness of T from

LMpθ1,w1 to LMpθ2,w2.2. If T is a Calderon-Zygmund operator, θ1 ≤ θ2 and θ1 ≤ 1, then ondition (54)is su�ient for the boundedness of T from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1to GMpθ2,w2. (In the latter ase we assume that w1 ∈ Ωpθ1 and w2 ∈ Ωpθ2.)3. In partiular, if T is a genuine Calderon-Zygmund operator, θ1 ≤ θ2 and
θ1 ≤ 1, then ondition (54) is neessary and su�ient for the boundedness of Tfrom LMpθ1,w1 to LMpθ2,w2.Proof. 1. Let T be an operator (1) where K(x, y) is a ontinuous funtion awayfrom the diagonal whih satis�es ondition (5). Assume that, for some c36 > 0 andfor all f ∈ LMpθ1,ω1

‖Tf‖LMpθ2,ω2
≤ c36 ‖f‖LMpθ1,ω1

.



46 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaConsider `piee-of-ake' test funtions, i. e. take here
f(x) = χ(B(0,2t)\B(0,t))∩R(βC)(x), x ∈ R

n,where su�iently small β > 0 will be hosen later.Then as in [5℄ for some c37 > 0

‖f‖LMpθ1,ω1
≤ c37t

n
p ‖ω1‖Lθ1

(t,∞) .Moreover
‖Tf‖LMpθ2,ω2

=

∥∥∥∥∥ω2(r)

∥∥∥∥
∫

(B(0,2t)\B(0,t))∩R(βC)

K(x, y)dy

∥∥∥∥
Lp(B(0,r))

∥∥∥∥∥
Lθ2

(0,∞)

≥

≥
∥∥∥∥∥ω2(r)

∥∥∥∥
∫

(B(0,2t)\B(0,t))∩R(βC)

K(x, y)dy

∥∥∥∥
Lp(B(0,ρ)∩R(βC))

∥∥∥∥∥
Lθ2

(0,∞)

,where ρ = 1
2
min {r, t} . Assume that β > 0 is suh that for all t > 0 and for all

x ∈ B (0, t/2) ∩R(βC) we have
B (0, t/2) ∩R(βC) ⊂ x+ R(C) = Cx.Then by ondition (5) for all x ∈ B(0, ρ) ∩ R(βC) and for all y ∈

(B(0, 2t)\B(0, t)) ∩R(βC) we have K(x, y) ≥ c4
|x−y|n ≥ 2nc4

tn
, hene

∣∣∣∣
∫

(B(0,2t)\B(0,t))∩R(βC)

K(x, y)dy

∣∣∣∣ ≥
2nc4
tn

|(B(0, 2t)\B(0, t)) ∩R(βC)| ≥ c38,where c38 > 0 is independent of t.Therefore
‖Tf‖LMpθ2,ω2

≥ c38

∥∥∥ω2(r) |B(0, ρ) ∩R(βC)| 1p
∥∥∥
Lθ2

(0,∞)
≥ c39

∥∥∥ω2(r) min {r, t}n
p

∥∥∥
Lθ2

(0,∞)
.Thus ∥∥∥ω2(r) min {r, t}n

p

∥∥∥
Lθ2

(0,∞)
≤ c37
c39

t
n
p ‖ω1‖Lθ1

(t,∞) .Sine
min

{r
t
, 1
}
≥ r

t+ r
, 0 < t, r <∞,this implies ondition (54).2. It is known [24℄ that the neessary and su�ient ondition for the boundednessof the operator H from Lθ1,v̂1(0,∞) to Lθ2,v̂2(0,∞) on the one of all non-negativenon-inreasing on (0,∞) funtions ϕ, where θ1 ≤ 1, has the form: for some c40 > 0,for all t > 0

‖v̂2(r) min{t, r}‖Lθ2
(0,∞) ≤ c40 ‖v̂1(r)‖Lθ1

(0,t) , (55)



Neessary and su�ient onditions for the boundedness of . . . 47where v̂1 and v̂2 are de�ned by (33) and (34). This ondition is equivalent to ondition(54). Indeed, replaing r− p
n by ρ and t− p

n by τ, we get an equivalent form of (55) forsome c41 > 0 for all t > 0
∥∥∥w2(ρ)ρ

n/p min{τ−n
p , ρ−

n
p }
∥∥∥
Lθ2

(0,∞)
≤ c41 ‖w1‖Lθ1

(τ,∞) .In its turn this ondition is equivalent to (54) sine there exist c42, c43 > 0 suh that
c42

(
r

r + τ

)n
p

≤ rn/p min{τ−n
p , r−

n
p } ≤ c43

(
r

r + τ

)n
pfor all r, τ > 0. Hene by Theorem 5 the seond statement of the theorem follows.

�Theorem 9. Let 1 < p <∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .1. If T is a Calderon-Zygmund operator, then the ondition: for some 0 < δ < n
p
,

c44 > 0, for all t > 0

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p
−δ
∥∥∥∥∥
Lθ2

(0,∞)

≤ c44 ‖w1‖Lθ1
(t,∞) (56)is su�ient for the boundedness of T from LMpθ1,w1 to LMpθ2,w2 and from GMpθ1,w1to GMpθ2,w2. (In the latter ase we assume that w1 ∈ Ωpθ1 and w2 ∈ Ωpθ2.)2. If T is a genuine Calderon-Zygmund operator and for some c45 > 0 for all

t > 0
∥∥∥w2(r)r

n
p

∥∥∥
Lθ2

(0,t)
≤ c45w2(t)t

n
p
+ 1

θ2 , (57)then ondition (54) is neessary and su�ient for the boundedness of T from
LMpθ1,w1 to LMpθ2,w2.Proof. 1. Sine θ1

p
≤ θ2

p
and θ1

p
≤ 1, the operator H is bounded from L θ1

p
,v1,δ

(0,∞)to L θ2
p
,v2,δ

(0,∞) on the one of non-negative non-inreasing funtions if and only if
‖v2,δ(r) min{t, r}‖L θ2

p

(0,∞) ≤ c40 ‖v1,δ(r)‖L θ1
p

(0,t) . (58)An argument similar to the one used in the proof of statement 2 of Theorem 8 showsthat this ondition is equivalent to ondition (56).2. Assume that onditions (54) and (57) are satis�ed. By (57) and Lemma 7there exist 0 < δ < n
p
and c46 > 0 suh that for all t > 0

tδ
∥∥∥w2(r)r

n
p
−δ
∥∥∥
Lθ2

(0,t)
≤ c46

∥∥∥w2(r)r
n
p

∥∥∥
Lθ2

(0,t)
≤ c46(2t)

n
p

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p

∥∥∥∥∥
Lθ2

(0,t)

.(59)



48 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaHene by (54) and (59)
∥∥∥∥∥w2(r)

(
r

t+ r

)n
p
−δ
∥∥∥∥∥
Lθ2

(0,∞)

≤ 2
( 1

θ1
−1)+



∥∥∥∥∥w2(r)

(
r

t+ r

)n
p
−δ
∥∥∥∥∥
Lθ2

(0,t)

+

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p
−δ
∥∥∥∥∥
Lθ2

(t,∞)




≤ 2
( 1

θ1
−1)+


t−n

p
+δ
∥∥∥w2(r)r

n
p
−δ
∥∥∥
Lθ2

(0,t)
+ 2δ

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p

∥∥∥∥∥
Lθ2

(t,∞)




≤ c47



∥∥∥∥∥w2(r)

(
r

t+ r

)n
p

∥∥∥∥∥
Lθ2

(0,t)

+

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p

∥∥∥∥∥
Lθ2

(t,∞)




≤ 2c47c35 ‖w1‖Lθ1
(t,∞) ,where a+ denotes the positive part of a ∈ R and c47 > 0 is independent of t,whih implies ondition (56). Therefore by the �rst statement of the theorem Tis bounded from LMpθ1,w1 to LMpθ2,w2. Thus ondition (54), under the assumption(57), is su�ient for the boundedness of T. It is also neessary by the �rst statementof Theorem 8. �Theorem 10. Let T be a Calderon-Zygmund operator, 1 < p < ∞, 0 < θ2 ≤ ∞and w2 ∈ Ωθ2 . Then the ondition

w2 ∈ Lθ2(0,∞) (60)is su�ient, and for a a genuine Calderon-Zygmund operator is also neessary, forthe boundedness of T from Lp to LMpθ2,w2 and from Lp to GMpθ2,w2. (In the latterase we assume that w2 ∈ Ωpθ2.)Proof. First onsider the ase of spaes LMpθ2,w2.By the �rst statement of Theorem 9 with w1 ≡ 1 and θ1 = ∞ the ondition
I = sup

t>0

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p

∥∥∥∥∥
Lθ2

(0,∞)

<∞is neessary for the boundedness T from LMpθ1,w1 to LMpθ2,w2. Hene it su�es tonotie that by the Monotone Convergene Theorem
‖w2‖Lθ2

(0,∞) = lim
t→0+

∥∥∥∥∥w2(r)

(
r

t+ r

)n
p

∥∥∥∥∥
Lθ2

(0,∞)

= I <∞.The su�ieny of (60) follows by the boundedness of T from Lp to Lp:
‖Tf‖LMpθ2,w2

=
∥∥∥w2(r) ‖Tf‖Lp(B(0,r))

∥∥∥
Lθ2

(0,∞)
≤ c48 ‖w2‖Lθ2

(0,∞) ‖f‖Lp
,



Neessary and su�ient onditions for the boundedness of . . . 49where c48 > 0 is independent of f.In the ase of the spaes GMpθ2,w2 the neessity of ondition (60) follows sine
‖Tf‖GMpθ2,w2

≥ ‖Tf‖LMpθ2,w2
, and the su�ieny of this ondition follows sine

‖Tf‖GMpθ2,w2
= sup

x∈Rn
‖ (Tf) (x+ ·)‖LMpθ2,w2

≤ c48‖w2‖Lθ2
(0,∞) sup

x∈Rn

‖f(x+ ·)‖Lp

= c48‖w2‖Lθ2
(0,∞)‖f‖Lp.

�7 The ase of weak Morrey-type spaesNext we onsider the loal and global weak Morrey-type spaes and study theboundedness of Calderon-Zygmund operators in these spaes.De�nition 3. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable funtion on
(0,∞). Denote by LWMpθ,w and GWMpθ,w, the loal weak Morrey-type spaes, theglobal weak Morrey-type spaes respetively, the spaes of all funtions f ∈ Lloc

p (Rn)with �nite quasinorms
‖f‖LWMpθ,w

≡ ‖f‖LWMpθ,w
=
∥∥w(r)‖f‖WLp(B(0,r))

∥∥
Lθ(0,∞)

,

‖f‖GWMpθ,w
= sup

x∈Rn

‖f(x+ ·)‖LWMpθ,w
,respetively, where

‖f‖WLp(B(0,r)) = sup
t>0

t (meas {x ∈ B(0, r) : |f(x)| > t})1/p ,if p <∞ and ‖f‖WL∞(B(0,r)) = ‖f‖L∞(B(0,r)).The spaes LWMpθ,w, GWMpθ,w are aimed at desribing the behaviour of
‖f‖WLp(B(0,r)), ‖f‖WLp(B(x,r)) respetively, for small r > 0.Note that for any 0 < p, θ ≤ ∞

‖f‖LWMpθ,w
≤ ‖f‖LMpθ,w

, ‖f‖GWMpθ,w
≤ ‖f‖GMpθ,wfor all funtions f ∈ LMpθ,w, f ∈ GMpθ,w respetively.We shall use the following theorem stating neessary and su�ient onditionsfor the validity of the following inequality

‖Tf‖WLp,v2
≤ c49‖f‖Lp,v1

, (61)where v1 and v2 are funtions non-negative and measurable on Rn and c49 > 0 isindependent of f ∈ Lloc
p (Rn) (see [10℄ and [21℄).



50 V.I. Burenkov, V.S. Guliyev, A. Serbeti, T.V. TararykovaTheorem 11. Let 1 ≤ p <∞. Then inequality (61) holds if, and only if, inequality(16) holds. Moreover, the sharp (minimal possible) onstant c∗49 in (61), satis�es theinequality
c50J1 ≤ c∗49 ≤ c51J1,where c50, c51 > 0 are independent of v1 and v2.Lemma 8. [11℄, [14℄ Let 1 ≤ p <∞ and γ ≥ 1, then there exists c52 > 0 suh that

‖Tf‖WLp(B(0,r)) ≤ c52r
n
p

∫ ∞

γr

t−
n
p
−1‖f‖Lp(B(0,t))dt (62)for all r > 0 and for all f ∈WLloc

p (Rn).Consequently, Corollary 1 holds if Lp(B(0, r)) is replaed by WLp(B(0, r)) andthe ondition 1 < p <∞ is replaed by 1 ≤ p <∞, and Lemmas 3 � 4 and Theorem5 hold if LMpθ,w and GMpθ,w are replaed by LWMpθ,w, GWMpθ,w respetively, andthe ondition 1 < p <∞ is replaed by 1 ≤ p <∞.Theorem 12. Let 1 ≤ p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .1. If T is a genuine Calderon-Zygmund operator, then the ondition (54) isneessary for the boundedness of T from LMpθ1,w1 to LWMpθ2,w2.2. If T is a Calderon-Zygmund operator, θ1 ≤ θ2 and θ1 ≤ 1, then ondition(54) is su�ient for the boundedness of T from LMpθ1,w1 to LWMpθ2,w2 and from
GMpθ1,w1 to GWMpθ2,w2. (In the latter ase we assume that w1 ∈ Ωpθ1 and w2 ∈
Ωpθ2.)3. In partiular, if T is a genuine Calderon-Zygmund operator, θ1 ≤ θ2 and
θ1 ≤ 1, then ondition (54) is neessary and su�ient for the boundedness of Tfrom LMpθ1,w1 to LWMpθ2,w2.Proof. Su�ieny follows by Theorem 5 for the weak ase as in the proof of Theorem8. The proof of neessity is also essentially the same as in the proof of Theorem 8,beause (with the same notation as in the proof of Theorem 8)
‖Tf‖LWMpθ2,ω2

≥
∥∥∥∥∥ω2(r)

∥∥∥∥
∫

(B(0,2t)\B(0,t))∩R(βC)

K(x, y)dy

∥∥∥∥
WLp(B(0,r)∩R(βC))

∥∥∥∥∥
Lθ2

(0,∞)

≥ c38

∥∥∥ω2(r) |B(0, ρ) ∩R(βC)| 1p
∥∥∥
Lθ2

(0,∞)
≥ c39

∥∥∥ω2(r) min {r, t}n
p

∥∥∥
Lθ2

(0,∞)
.

�Theorem 13. Let T be a Calderon-Zygmund operator, 1 ≤ p <∞, 0 < θ2 ≤ ∞ and
w2 ∈ Ωθ2 . Then ondition (60) is su�ient, and for a genuine Calderon-Zygmundoperator is also neessary, for the boundedness of T from Lp to LWMpθ2,w2 and from
Lp to GWMpθ2,w2. (In the latter ase we assume that w2 ∈ Ωpθ2.)Proof. The proof is similar to the proof of Theorem 10. �



Neessary and su�ient onditions for the boundedness of . . . 518 Conluding remarkWhen de�ning the global Morrey-type spaes, it may make sense to onsider a weightfuntion w depending not only on r > 0, but also on x ∈ Rn, and onsider the spaeof all funtions f ∈ Lloc
p (Rn) for whih
∥∥∥
∥∥w(x, r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

∥∥∥
L∞

<∞.For the ase θ = ∞ suh quasinorms were onsidered in [18℄. Moreover, it is alsoreasonable to replae L∞ by Lη, where 0 < η ≤ ∞, thus assuming that
‖f‖GMpθη,w

=
∥∥∥
∥∥w(x, r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

∥∥∥
Lη

<∞.Let in Theorem 5 formulas (31) and (32) be replaed by
v1,δ(x, r) =

[
w1

(
x, r

1
δp−n

)
r

1
(δp−n)θ1

− 1
θ1

]p
,

v2,δ(x, r) =

[
w2

(
x, r

1
δp−n

)
r

1
δp−n

“

n
p
−δ+ 1

θ2

”

− 1
θ2

]pand formulas (33) and (34) be replaed by
v̂1(x, r) = w1

(
x, r−

p
n

)
r
− p

nθ1
− 1

θ1 ,

v̂2(x, r) = w2

(
x, r−

p
n

)
r
− p

n(n
p
+ 1

θ 2)−
1
θ2 .An argument similar to the one of the proof of Theorem 5 shows that if

∥∥∥ ‖H‖C∩L θ1
p ,v1,δ(x,r)

(0,∞)→C∩L θ2
p ,v2,δ(x,r)

(0,∞)

∥∥∥
Lη

<∞,

∥∥∥ ‖H‖C∩Lθ1,v̂1(x,r)(0,∞)→C∩Lθ2,v̂2(x,r)(0,∞)

∥∥∥
Lη

<∞respetively, where C is the one of all non-negative funtions ϕ non-inreasing on
(0,∞) satisfying lim

t→+∞
ϕ(t) = 0, then T is bounded from GMpθ1η,w1 to GMpθ2η,w2 .Similar remarks refer to all other inequalities of the paper involving globalMorrey-type spaes or global weak Morrey-type spaes.
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