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Abstract. The problem of the boundedness of a Calderon-Zygmund singular
integral operator 7" in local Morrey-type spaces is reduced to the boundedness of the
Hardy operator in weighted L,-spaces on the cone of non-negative non-increasing
functions. This allows obtaining sufficient conditions for the boundedness of T" in
local Morrey-type spaces for all admissible values of the parameters. Moreover, for a
certain range of the parameters, for a genuine Calderon-Zygmund singular integral
operator these sufficient conditions coincide with the necessary ones.

1 Introduction

Let T be a singular integral Calderon-Zygmund operator, briefly a Calderon-
Zygmund operator, i. e., a linear operator bounded from Ly(R™) in Ly(R™) taking
all infinitely continuously differentiable functions f with compact support to the
functions T'f € LI°(R™) represented by

150 = [ K@nfwdy  ae on B\suppf, ()

Here K(x,y) is a continuous function away from the diagonal which satisfies the
standard estimates: there exist ¢; > 0 and 0 < ¢ <1 such that

[K(z,y)| < e —y[™" (2)
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for all z,y € R", = # y, and

I\ €
K (2,y) — K@ 9)| + 1K (5,2) — Ky 2)] < e (“‘; _Z") ey (3)
whenever 2|z — 2/| < |z — y|. Such operators were introduced in [9].

In the theory of partial differential equations, together with weighted L, ,-spaces,
Morrey spaces M, , play an important role. They were introduced by C. Morrey
in 1938 [17] and defined as follows. For 0 < A < n, 1 < p < oo, f € M, if
feL(R") and

A
”fHMp,)\ = Hf”MP’A(R”) = xeﬂz}}}i>07’ P Hf”Lp(B(:v,r)) < 00,
where B(z,7) is the open ball centered at x of radius r. Note that M, = L,(R")
and M,,, = Lo(R™"). If A < 0 or A > n, then M, , = O, where O is the set of all
functions equivalent to 0 on R™.

These spaces appeared to be quite useful in the study of the local behaviour of
solutions to elliptic partial differential equations, apriori estimates and other topics
in the theory of partial differential equations.

We also denote by WM,  the weak Morrey space of all functions f € WL;OC(R")
for which

2
up 7| fllwi, (B < 00,

17wty = Wl pty pcy = S0

where W L, denotes the weak L,-space.

The classical result for Calderon-Zygmund operators states that if 1 < p < oo
then 7' is bounded from L,(R") to L,(R"™), and if p = 1 then T is bounded from
Li(R™) to WLy (R™) (see, for example, [22]).

J. Peetre [20] studied the boundedness of singular integral operators in Morrey
spaces, and his results imply the following statement for Calderon-Zygmund
operators T

Theorem 1. Let 1 <p < o0, 0 <A <n. Then T is bounded from M,y to M, .

If A = 0, the statement of Theorem 1 reduces to the aforementioned result for
I,(R"). A

If in place of the power function r~» in the definition of M, we consider
any positive measurable weight function w, then it becomes generalised Morrey
space M, ,. T. Mizuhara [16], E. Nakai [18] and V. S. Guliyev [11] (see also [14])
generalised Theorem 1 and obtained sufficient conditions on weights w; and w,
ensuring the boundedness of T from M,,, to M,,,. The following statement,
containing the results in [16], [18] was proved in [11] (see also [14]).

Theorem 2. Let 1 < p < oco. Moreover, let wq, wy be positive measurable functions

satisfying the following condition: there exits co > 0 such that for allt > 0

1 _ _n
HLl(t’oo) < cqwy ()t v (4)

Then T' is bounded from M, ,, to My ,.

it ()2
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Earlier, in the [16], [18] Theorem 2 was proved for the case w; = wy = w, where
w satisfies the pointwise doubling condition, namely for some c3 > 0

c3tw(t) < w(r) < ezw(t)

for all ¢, » > 0 such that 0 < r <t < 2r.

We say that T is a genuine Calderon-Zygmund operator if it is a Calderon-
Zygmund operator and for n > 2 there exist c¢4,c5 > 0 and a rotation R such
that c

Kry) > — (5)
|z —y]

for all z € R™ and for all y € C,, = x + R(C), where

C={y= Wi ¥n) =T uyn) ER" 1y, > c5[7]}.

If n =1 then we assume that there exists ¢4 > 0 such that

Cq

K(z,y) >
(=:9) |z =y

for all x € R and for all y > z or for all x € R and for all y < z.

Clearly the Hilbert transform H, in which case K(z,y) = =
Calderon-Zygmund operator because K (z,y) > ﬁ for all x € R and for all y < .
Let T be a Calderon-Zygmund operator of the form

K(z,y) = 7?}?3) :

is a genuine

where () is a continuous function on the unit sphere S*~! in R", Q # 0, which is
homogeneous of order zero and such that fS"—l Q(n)dn = 0. The properties of Q
imply that there exist cg > 0, 79 € S"! and § > 0 such that Q(n) > ¢ for all
n € S" 1N B (ny,d). Hence condition (5) is satisfied.

In this paper we consider local and global Morrey-type spaces LM, ., and G Mg ,,
as in [2]-[7], [11]-[15], where the boundedness of the maximal operator, fractional
maximal operator and Riesz potentials was studied. We study the boundedness
of Calderon-Zygmund operators from LMy, ., to LMy, 4, and from GM,g, ., to
G M,yp, ,- We obtain sufficient conditions on weight functions w; and ws ensuring
the boundedness of Calderon-Zygmund operators 1" from LMy, ,, to LMy, ., and
from GM,g, v, to GMyg, ., for all admissible values of the parameters p, 0, 6s.

Moreover, for a certain range of the parameters p, #,, 85 we obtain necessary and
sufficient conditions on weight functions w; and w, for a genuine Calderon-Zygmund
operator T' to be bounded from LM, ., to LM, .,. In particular, in Theorem 8
we prove that if 1 < p < oo, 0 < #; <0y < oo and #; <1, then the condition

war) (t i T)"/”

< erlwnllyy o Q
Lo, (0,00)
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for all ¢ > 0, where ¢; > 0 is independent of ¢, is necessary and sufficient for the
boundedness of 1" from LMyp, ., to0 LM, 1, -

We note that condition (6) is also necessary and sufficient for the boundedness of
the maximal operator from LMy, ., to LMy, ., for a wider range of the parameter
0, : 01 <pl3,5]

In Theorem 9 it is proved that, under additional assumption of regularity on ws,
condition (6) is necessary and sufficient for the boundedness of 7' from LM, ,, to
LMy, 1, also for 6; < p.

We also consider separately the case in which LMy, ., is replaced ? by L,.

Most of the results of this paper were formulated without proofs in [8|.

2 Definitions and basic properties of Morrey-type spaces

Definition 1. Let 0 < p,0 < oo and let w be a non-negative measurable function on
(0,00). We denote by LMyg., and GMyg,, the local Morrey-type spaces, the global
Morrey-type spaces respectively, the spaces of all functions f € L},OC(R") with finite
quasinorms

1 lan . = 1 liags ey = 0 Nz 1, 0
HﬂbMW;=E$Hﬂx+)MMww
respectively.
Note that
Wi, = Wl = 11l
Furthemore, GM = My, 0 <A <nand GM,w y = M, .
poo,T

In [2, 3] the following statement was proved.

Lemma 1. Let 0 < p,0 < oo and let w be a non-negative measurable function on
(0,00).
1. If for all t > 0
[w(r)l|Zo(t00) = 00, (7)
then LM,g., = GMyg ., = O.
2. If for all t > 0
[ (r)r™?| L0 = o0, (8)

then for 0 <p < oo GMpy,, = O.

Definition 2. Let 0 < p,0 < co. We denote by Cy the set of all functions w which
are non-negative, measurable on (0,00), not equivalent to 0 and such that for some
t>0

[0 ()| g (t,00) < 00 (9)

*Here and in the sequel we write just L, for L,(R™), 0 < p < co. If G # R™, then we preserve
the full notation L,(G). The same refers to the case of weighted Lebesgue spaces Ly, .
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Moreover, we denote by €,y the set of all functions w which are non-negative,
measurable on (0,00), not equivalent to 0 and such that for some t1,ty > 0

[0 Lo .00) < 00, [[w(r)77 || y(02) < 00 (10)

In the sequel, keeping in mind Lemma 1, we always assume that, for the spaces
LMy, w € Q9 and, for the spaces GMpg ,, w € (2pp.

Let w € Qp and f € LM,p,, then f € L,(B(0,r)) forall» > 0. If f € L,
then Hw<r>Hf”LP(B(O7T))HLQ(t,oo) < oo for any t > 0, and the fact that f € LMy,

completely depends on the behaviour of f(z) for small |z|. However, if f ¢ L, then
the fact that f € LM,y ,, depends both on the behaviour of f(z) for small and large
|z

3 Corollaries of weighted L, ,-estimates

For a measurable set G C R™ and a function v non-negative and measurable on G,
let L, . (G) be the weighted L,-space of all functions f measurable on G for which *

1Al 2ty = N0 f 1Ly < oo

If0<p<6O<oo, then

1| 2atyo < F11Lpors (11)
and if 0 < § < p < oo, then

[T | YA (12)

where for all x € R

W(z) = [|w] Ly(lz|,00)-

These inequalities are particular cases of general inequalities of such type for
the Lebesgue spaces with mixed quasinorms (see, for example,[19, section 3.37]). In
particular, for 0 < p < oo

1zt = Nl

where for all x € R"
V(@) = llwllz,(el.00)-
Hence the results for LM, ,, follow from the known results for weighted L, -
spaces.

We start by quoting Theorem 3.4.2 in [10]| stating necessary and sufficient
conditions on v; and vy ensuring the validity of the inequality

1T f |y < sl fllzy, (13)

where v; and vy are functions non-negative and measurable on R™ and ¢g > 0 is
independent of f € Ly*(R™).

3See footnote in Section 1.
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Theorem 3. Let 1 < p < oo and let vy, v9 be functions non-negative and measurable
on R™. Moreover, let for some cg > 0

sup  va(y) < couy(z)  for a.e. x € R (14)

11zl <|y|<4|z|

or for some cyg > 0

1
ve(x)  sup <cy fora.e xreR" (15)

La|<]y|<dlz| V1 (Y)

Then inequality (13) holds if, and for the Hilbert transform H only if, the
following two conditions are satisfied:

Ji = sup ool zy s 1191701 @) 7 e, < 0 (16)

and
T = s 05 1m0 1191020, 000, < (17)

where CB(O, t) is the complement of B(0,t).
Moreover, the sharp constant c§ in (13) satisfies the inequality

cg <cen(h + ),
and for the Hilbert transform H also

c1o(Jh + Ja) < cg,
where cq11, c12 > 0 are independent of vy and v,.

The application of Theorem 3 immediately implies the following result for the
case of local Morrey-type spaces.

Theorem 4. Let 1 < p < 00, 0 < 01,0, < 00, wy € Qy, and wy € y,. Moreover,
let for some cy3 > 0

sup  Wa(y) < cisWi(z) fora. e.x € R" (18)
Flel<lyl<4fa|
or for some c14 > 0
1
Way(z)  sup <3 fora. e x €R", (19)
Lal<lyi <t W1(Y)

where for all x € R™
Wiz) = [[willzy, gatoe)s W) = lwal|Ly, (1],00)-
If 6, < p < 0y,

—n —1
Srli%) ”W2HLP(B(O,T)) H ‘y‘ Wl<y) HLP,(GB(O,QT)) < 00 (20)
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and
-1 -n
Srl>1%) ||W1 ||Lp/(B(0,r)) || |y| Wz(y)HLP(GB(O,Qr)) < 00, (21)

then the operator T is bounded from LMpyg, , to LMpg, , and from GMpg, ., to
G Mg, w,- (In the latter case we assume that wy € Qpg,, W € pg,.)

If 03 < p < 04, then conditions (20) and (21) are necessary for the boundedness
of the Hilbert transform H from LMyg, w, to LMyp, 1, .

In particular, if 01 = 0y = p, then conditions (20) and (21) are necessary and
sufficient for the boundedness of H from LM, to LM,

pp,w1 pp,w2-

Proof. Let 0; < p < 6,. By applying (11), the sufficiency of (20) and (21) for the
boundedness of T and (12) we get

T AN ertyy g S NT SN2y iy < sl Fll,w, < crsllflla, ., (22)

where c15 > 0 is independent of f.
Conversely if 05 < p < 6; and

IH AN 2ty 0, < Cr6l1F 201, 0,

where ¢j6 > 0 is independent of f, then by (11) and (12)

IRy, < crsllfllL,w, (23)

and one may apply the necessity of (20) and (21) for the validity of (23).
Also (22) implies that

HTfHGMPGQ,wQ S Cl5Hf”GMp91,w1'

4 Singular integrals and Hardy operator

In order to obtain necessary and sufficient conditions on w; and wy ensuring the
boundedness of T' for other values of the parameters we shall reduce the problem
of the boundedness of T in the local Morrey-type spaces to the boundedness of the
Hardy operator in weighted L,-spaces on the cone of non-negative non-increasing
functions.

We start with quoting the following result proved in [11] (see also [14]).

Lemma 2. Let 1 < p < oo and v > 1, then there exists cy; > 0 such that

1T fll B0 < 017”/ t7 2 fll Lo dt (24)

yr

for all r > 0 and for all f € L;,OC(]R").
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Corollary 1. Let 1 <p<o00,0< < % and v > 1. Then there exists cig > 0 such

that
5 [ee} dt 1/p
5o < esr ([ ([ lprae) 255) T e
yr B(0,t)

for all v > 0 and for all f € L;)OC(R").

Proof. It suffices to apply Hélder’s inequality to the integral in the right-hand side
of (24). O
Let H be the Hardy operator

(Hg)(r) = /Org(t)dt, 0<r<oo.

Lemma 3. Let 1 <p < oo, 0 <0 < oo andw € Cy. Then there exists c1g > 0 such
that

1T f | 2oty < c10l[Hl 1, 0,00 (26)
for all f € LY*(R™), where
9(t) = ||f||Lp<B<0,f%)) (27)

and oL
o(r) =w (7”%) 7’_5(%+5)_5. (28)

Proof. By Lemma 2

1T Flleatyo, = W IT FLy0)] |1y 0000

< o ||w(r)rd / 5 L 0y dt

Lg(0,00)

C17p

.
W) [ 1
0

Lg(0,00)

_ —By —1-(241)5 "
= C20 U}('f’ )T 9/0 Hf”Lp(B(Qt*%))dt

Lg(0,00)
= 020||Hg||L9,@(0,00)’
where cog > 0 depends only on n, p and 6. O

Lemma 4. Let 1 <p < oo, 0<§ < 5 0< 0 < oo and w € Qy. Then there exists
co1 > 0 such that

1
TS . < calHaly, 0
.
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for all f € LY*(R™), where
)= [ Iy (20)
p0e7)
and 1 1 n_g5i1 11P
v5(r) = [w (rap—-n) rpap——n(z— +@)—5] ) (30)
Proof. By Corollary 1

1T Flleatyo, = W T Fp50) |1y 0000

T.&p—n
— el — dp) [[w(r)ri < /
0

< ci8

Lg(0,00)
1

(/B(o,rsp-n) |/ (x)|pd9€) dr) ’

Lg (0,00)

Sl
=

= c1g(n — dp) > /OOO <w<r)7,g_5>e (/O‘T5Pn g(T)dT> B
</ooo (10 () pm)eﬂ“’“ (Hg(p))? dﬂ)

1
= cmHHgHZ%%(QOO),

=

D=

= cis(n— dp)

where co; > 0 depends only on n, p, 8 and 9. O

Remark 1. Recall that for the maximal operator M, as proved in [5], for 1 < p < oo,
0 <0 < oo andw € Qy, there exists cog > 0 such that

1
1M et < 2 HGlE, 000y
p””

for all f € LY*(R™).

Theorem 5. Let 1 < p < o0, 0 < by,0, <o00,0<9d< %, wy € Qy, and wy € Qy,.
Moreover, let

1)1,6(7“) = [wl (’["M%n) rﬁ*é]p’ (31)
! 1 n_g§4 1 1 p
vg5(1) = {wQ <rm) rap_n<;— +62>_02} )

and L
@1(7*) = w; (7“7%) r7m7ﬁ7 (33)
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D 1

Vo (1) = wo (7”%) raGro) e (34)

Assume that the operator H is bounded from Le, ~ (0,00) to Le, ,  (0,00) or

1,8 V2,5
from Lg, 4, (0,00) to Ly, 4,(0,00) on the cone of all non-negative functions ¢ non-
increasing on (0,00) and satisfying tlim (t) =0.
Then T is bounded from LMyp, ., to LMyp, , and from GMyp, v, to GMpp, w,-
(In the latter case we assume that wy € Qup,, Wwa € pp,-)

Proof. Let H be bounded from Ls, , (0,00) to Lg, = (0,00). Then by Lemma 4

1,6

applied to LM, .,

1
1T Fllertyoy g < sl Hasl? g
D °V2,8

where co3 > 0 is independent of f.

Since ¢ is non-negative, non-increasing on (0, c0) and tli+m gs(t) = 0 and H is

—+00
bounded from Lo, , (0,00) to Ls, , (0,00) on the cone of functions containing gs,
p p e

we have

1
1T FlEttyayy < 2allgll? 0
V1,8

where c94 > 0 is independent of f.
Hence

1/91

Ly

o0 0_1 0
1T f Loty .0, < C2a /0 v1s(t) 7 || fl I(B(o,tépln))dt

19 1/61
1 B
= coq(n — 0p)™ (/0 v175(7»5p E rop 1|’inlp(B(07r))d'r)

= Co3 (/0 (Wi ()|l zos0) " d’“)

1/91

= 25| fll Lty s (35)

where co5 > 0 is independent of f.

If H is bounded from Ly, 5,(0,00) to Ly, s,(0,00) then the argument is similar.
(Lemma 4 should be replaced by Lemma 3. ) O

5 Sufficient conditions

In order to obtain explicit sufficient conditions on the weight functions ensuring the
boundedness of T', first we shall apply the following well-known simple sufficient
conditions ensuring the boundedness of the Hardy operator H from one weighted
Lebesgue space to another one (see, for example, [3]).
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Lemma 5. Let 0 < 01,05 < oo and let vy, vy be functions positive and measurable
on (0,00). Then the condition

_(-61)4

O]l

< 00 (36)

Vo\T
2( ) Le, (0,00)

L 61 (O,T‘)
(61-1)4

is sufficient for the boundedness of H from Ly, .,(0,00) to Lg,.,(0,00) in the case
1 <6, < oo and for the boundedness of H from Ly, .,(0,00) to Lg, ,(0,00) on the
cone of all non-negative non-increasing functions on (0,00) in the case 0 < 6y < 1.

If 0, = oo, then condition (36) is also necessary for the boundedness of H from
Loo.0,(0,00) to Ly, 4,(0,00).

The statements of Lemma 5 follow by applying Holder’s inequality if 1 < 6; < oo

and the inequality
b
([ o)

for all —oo < a < b < 0o and for all functions ¢ non-negative and non-increasing
on (0,00) if 0 < 6y < 1. (See, for example, [1].)

Theorem 5 and Lemma 5 imply the following sufficient conditions for the
boundedness of 1" from LMyp, ., to0 LMp, 1, -

01 b
< 01/ (t —a)Lp(t)at

Theorem 6. Let 1 < p < o0, 0 < 01,0, < 00, wy € Qy, and wy € Qy,. If, for some
0<o<?2
p’

é

n_s ] _n_ 1 ’
wo(r)r? wy (¢)t7 p minip,01} < 00, 37
H 2(r) H r® Ls(r,00) |1 L, (0,00) (37)
where s = (glp_e;))+ (if 01 < p, then s = o0) or if
wo(r)re ||lwy ()t » min{ho1} ’ < 00, 38
H 2(r) o) Lo (r,00) Il Lg, (0,00) (38)
where o = (612711” (if 6, < 1, then 0 = o0), then T is bounded from LMy,

to LMy, w, and from GMyp, w, t0 GMpp,w,. (In the latter case we assume that
wy € Qp917 Wy € Qp92')

Remark 2. Recall that, as proved in [5], if condition (37) is satisfied and, moreover,
if it is satisfied with 6 = 0, then the mazimal operator M is bounded from LMyp, v,
to LMyg, v, and from GMyp, v, 1o GMpyp, 1,

Under some assumptions on the regularity of the weight w; conditions (37) and
(38) can be weakened. To prove this we shall need the following lemmas proved in
[7].
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Lemma 6. Let ¢ be a non-negative measurable function on (0,00), ca6 > 0 and

/ " pt)dt < carip(r) (39)

for all r > 0. Then for all § € (0

’626)

] /Oo p()0dt < (1 — beog) ™" /Oo p(t)dt (40)

for all r > 0.

Corollary 2. Let 0 < p,q < 00 and co7 > 0. Moreover, let ¢ and ¢ be non-negative
measurable functions on (0,00) and

||90||Lp (r,00) < 0277°;S0(T) (41)
for all r > 0. Then for all § € (0

’ p027)
() 77210 (t) Bl 100 240,00 < (1= dpear) ™ [9(F) 0|1, (00 | Eat0,00)- (42)
Lemma 7. Let ¢ be a non-negative measurable function on (0,00), cog > 0 and
/ o(t)dt < cagro(r) (43)
0

for all r > 0. Then for all § € (0

’628)

70 /rgo(t)t‘sdt <(1- 5028)1/T<p(t)dt (44)

for all r > 0.

Theorem 7. Let 1 < p < o0, 0 < b1,0, < o0, wy € Qy, and wy € Qy,. If, for some
Cag > 0, for allr >0

oo ()T |1, ) < ey ()5 TS (45)
and . : . )
ng(r)rp wy ()t » mnleend . ‘ Loy 000 < 00, (46)
or if, for some c3g > 0, for allr >0
o ()0 |1 ) < ooy ()7 e (47)
and for all 6 > 0
ng(r)T%’L‘S wal(t)fa*?*m o) 1o 00 < 00, (48)

then T is bounded from LMy, w, to LMyg, ., and from GMyg, w, to GMpg, .. (In
the latter case we assume that wy € Qpp,, Wo € Qpp,.)
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Proof. 1. Note that regularity condition (45) coincides with condition (41) of
Corollary 2, where p = s and ¢(t) = wl_p(t)f"*m. By Corollary 2 condition
(44) is satisfied for some § > 0 with ¢ = 0, and ¥(t) = w;p(r)'r’_%, which implies
condition (37). Therefore Theorem 6 implies that 7" is bounded from LM, 4, to
LMpp, v, and from G My 1, t0 GMpg, 1, -

2. Let condition (48) be satisfied. Then, in particular, it is satisfied for 0 < ¢ <
(0c30) ™. Next condition (47) implies that

T

Lo (r,00)

<y wa(t)f%*m

Lo (r,00)
n 1 1
S Csowfl(zr)r_é_z_min{l,@l}+;.
(t) = wyl(t)t * » mntiad and

Hence condition (41) is satisfied for p = =
5+5, q = 0 implies condition

o, o(t
cor = c30. Therefore Corollary 2 with (t) = wy(t)t
(38) because

n -1 727%
Wolr)re w t t p min{l,07} ‘
H 2(r) r® Lo (r,00) 1 Lg, (0,00)
_1 nys 1 _y_n_ 1
< (1 —docsg) 7 ||wa(r)r? le ()t " » min{ion] ’ < 00.
Lo (r,00) L92(0,oo)
Therefore Theorem 6 implies that 7" is bounded from LM ., to LM, ., and
from G Moo 1, 10 G My, 1y, - [

Corollary 3. Let 1 < p < 00, 0 <ty < 00, w1 € Qs and wy € $y,. If, for some
c31 >0, for all r >0

n

leﬁl(t)ti%ilHLl(r,oo) < cqwy (r)r e (49)
and for all 6 > 0
”w2<T>T6+% }}wfl(t)t_é_%ﬂ HLp(r,oo)HL92 (0,00) < OO (50)

then T is bounded from LMpoo w, t0 LMpp,w, and from GMpso m, t0 GMpg, 1, (In
the latter case we assume that wy € Qpoo, Wa € ypy,.)

Proof. Note that condition (50) and Holder’s inequality imply condition (48) for all
0 > 0 in the case 6; = oo and therefore Corollary 2 implies Corollary 3. O

Corollary 4. Let 1 < p < 0o and wy, we € Q. If, for some c3o, c33 > 0, for all
r>0

wal(t)t_%_lHLl(mo) < 032w1_1(7“)7“_% (51)
and for some § > 0
_ _§—ntl _ _§—n
le 1(t)t = HLp(r,oo) < 33w, 1(T)T ’ P, (52)

then T is bounded from LMy, 10 LMpoowy and from GMpoo w, 10 G Moo, (In
the latter case we assume that wy € Qpso.)
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Remark 3. We note that condition (52) is weaker than condition (4) in Theorem
2. However in Theorem 2 there is no additional reqularity assumptions on wy. If
wy = we then the statements of Theorem 2 and Corollary 4 coincide, because in this
case by Lemma 6 condition (51), coinciding in this case with condition (4), implies
condition (52).

Remark 4. When proving the results of this section we applied inequalities (24)
and (25) with v = 1. One may trace that inequalities (24) and (25) in fact imply
the statements of this section in a slightly stronger version. Namely the norms in
Ly(r,00) with q equal to s, o, 1 or p of the expressions containing wy ' (t) in formulas
(45)—(52) can be replaced by the norms of the same expressions but in Ly(vyr, 00) with
arbitrary v > 1.

6 Necessary and sufficient conditions

For the majority of cases the necessary and sufficient conditions for the validity of
the inequality

||HS0||L92’U2(O,OO) < C ||()0||L91’v1(0,oo) ) (53)

where ¢34 > 0 is independent of ¢, for all non-negative non-increasing functions ¢
are known; for detailed information see [23], [24]. Application of Theorem 5 and of
any of those conditions gives sufficient conditions for the boundedness of Calderon-
Zygmund operators from LMpg, ., to LMyp, ., and from G Mg, ., 10 GMpg, 1, -

However, there is no guarantee that the application of the necessary and sufficient
conditions on v; and vy ensuring the validity of (53) will imply the necessary and
sufficient conditions for the boundedness of 17" from LM, ., to LMpg, v, -

Fortunately for certain values of the parameters this is the case, namely for
1<p<ooand0<01§02§oo,91§1.

Theorem 8. Let 1 < p < o0, 0 <8y, Oy <00, wy € Qy, and wsy € (y,.
1. If T is a genuine Calderon-Zygmund operator, then the condition

wa(r) (tir)n/p

where cg5 > 0 is independent of t > 0, is necessary for the boundedness of T from
LMp91,w1 to LMp@g,wg-

2. If T is a Calderon-Zygmund operator, 01 < 05 and 6, < 1, then condition (54)
is sufficient for the boundedness of T' from LMyp, ., to LMyp, v, and from G Mg, .,
to GMyp, wy- (In the latter case we assume that wy € Qup, and wy € Qpy,.)

3. In particular, if T is a genuine Calderon-Zygmund operator, 6, < 0y and
0, < 1, then condition (54) is necessary and sufficient for the boundedness of T
from LMyg, 1, to LMpp, 1, .

Proof. 1. Let T be an operator (1) where K(z,y) is a continuous function away
from the diagonal which satisfies condition (5). Assume that, for some c3s > 0 and
for all f € LMy, .,

< s [l g, (100 » (54)
Lg, (0,00)

||TJC||L1\4,,9W2 < C36 HfHLMp

61 ,wq :
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Consider ‘piece-of-cake’ test functions, i. e. take here

f(x) = X(B20)\BO))RBC)(T), T €R",

where sufficiently small 5 > 0 will be chosen later.
Then as in [5] for some ¢37 > 0

”fHLMP@wl < cart? HWIHL(91 (t,00) *
Moreover
750, = 2| | K(z,)dy >
(B(0,20\B(0,0)"R(5C) L0 1, 0,00
> Jlws(r) ' / K (e, y)dy |
(B(0,2t)\B(0,t))NR(BC)

Lp(B0,2)R(BEN 1l L, (0,00)

where p = fmin{r,¢}. Assume that 3 > 0 is such that for all ¢ > 0 and for all
x € B(0,t/2) NR(BC) we have
B(0,t/2)NR(BC) C x4+ R(C) = C,.

Then by condition (5) for all = € B(0,p) N R(BC) and for all y €
(B(0,2t)\B(0,t)) NR(BC) we have K (z,y) > —= > 2 hence

|z—yl

n

K<x,y>dy\ > 2% (B(0,20)\B(0.1)) N R(5C)| > exs

tn

‘ [B(O,Zt)\B(O,t))ﬁR(;@C)

where c3g > 0 is independent of ¢.

Therefore
1 . -
||Tf||LMpe2,w2 > (33 ng(r) |B(0, p) NR(BC)|» o0 > C39 HWQ(T) min {r,t}» Loy (00)
Thus
Jostrymin € S ol
Lo, (0,00) €39 o1 (1)
Since

min{t,l} > r , 0<t,r <o,
t t+r
this implies condition (54).

2. It is known [24] that the necessary and sufficient condition for the boundedness
of the operator H from Ly, 4, (0,00) to Lg, 4,(0,00) on the cone of all non-negative
non-increasing on (0, co) functions ¢, where #; < 1, has the form: for some ¢4y > 0,
for allt > 0

) min{t, 7}z, 000y < €10 1911, 00 (55)
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where 0; and 09 are defined by (33) and (34). This condition is equivalent to condition
(54). Indeed, replacing 7= by p and = by 7, we get an equivalent form of (55) for
some ¢4y >0 forall¢ >0

<cp Hw1”L91 (T,00) "

n/p _n  _n ’
w min{7 »,p »
H 2(p)p fre e Lo, (0,00)

In its turn this condition is equivalent to (54) since there exist c¢y9, c43 > 0 such that

r » _n  _mn r »
042( ) Sr"/pmin{T P, P}§c43( )

r+T r+T

for all , 7 > 0. Hence by Theorem 5 the second statement of the theorem follows.
O

Theorem 9. Let 1 <p < oo, 0<8; <6y <00, 0, <p, wy €Ny, and wy € Qy,.
1. If T is a Calderon-Zygmund operator, then the condition: for some 0 < 6 < %,
cy >0, forallt >0

ws(r) (tir)z5

is sufficient for the boundedness of T' from LMyp, ., to LMyp, v, and from G Mg, .,
to GMpg, w,- (In the latter case we assume that wy € Qup, and wy € Qpg,.)

2. If T is a genuine Calderon-Zygmund operator and for some cy5 > 0 for all
t>0

< cu ||, (1,00 (56)
Lg2 (0700)

n, 1

S c45w2(t)t5+92 s (57)

w T’I"%
o],

then condition (54) is necessary and sufficient for the boundedness of T from
LMp91,w1 to LMp@g,wg-

Proof. 1. Since % < %2 and %1 < 1, the operator H is bounded from Ls, (0,00)
p b

1,6

to Lo, 5(0’ o0) on the cone of non-negative non-increasing functions if and only if
P

[v26(r) min{t, 731, (0 00y < €20 0157, (0 - (58)
p P

An argument similar to the one used in the proof of statement 2 of Theorem 8 shows
that this condition is equivalent to condition (56).
2. Assume that conditions (54) and (57) are satisfied. By (57) and Lemma 7
there exist 0 < 0 < % and ¢4 > 0 such that for all t > 0
r P
ws{r) (t + r)

< cy(2t)7

£ ng(r)r%ﬂ; < C46

’w2(r)7“%

L02 (Ovt) L92 (Ovt)
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Hence by (54) and (59)

L92(07OO)
(-1 ro\P ro\P
s2Zn ws(r) t+r t[[wa(r) t+r
LGQ (07t) L92 (tvoo)
<20 5 () +20||un(r) [ —— )
Lo, (0,t) t+r
L92(t,oo)
r o\ » r o\ »
< aar | |lwa(r) (t+r) *[[wa(r) <t+r)
Lg2 (0,¢) Lg2 (t,00)

< 2cqress lwillz, o)

where a, denotes the positive part of ¢ € R and c47 > 0 is independent of ¢,
which implies condition (56). Therefore by the first statement of the theorem T
is bounded from LMy, , to LMy, .,- Thus condition (54), under the assumption
(57), is sufficient for the boundedness of T' It is also necessary by the first statement
of Theorem 8. u

Theorem 10. Let T be a Calderon-Zygmund operator, 1 < p < oo, 0 < 0y < o0
and wy € Qg,. Then the condition

wy € Ly, (0, 00) (60)

18 sufficient, and for a a genuine Calderon-Zygmund operator is also necessary, for
the boundedness of T from L, to LMyp, ., and from L, to GMy, w,. (In the latter
case we assume that wy € Qpy,.)

Proof. First consider the case of spaces LM, v, -
By the first statement of Theorem 9 with w; = 1 and 6; = oo the condition

wa(r) (t—:'r’)z

is necessary for the boundedness T from LM, .,, to LM, ., Hence it suffices to
notice that by the Monotone Convergence Theorem

wa(r) (t—:'r’)z

The sufficiency of (60) follows by the boundedness of 1" from L, to L,:

I =sup

t>0

< o0

L02 (0,00)

||w2||L62(07OO) = lim =1 < o0.

t—0+

L02 (0700)

I 12800y, = (|02 1T 0 < cas w1 0.y 1112,

‘ L92 (0700)
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where ¢48 > 0 is independent of f.
In the case of the spaces GM,g, ., the necessity of condition (60) follows since
IT flleMyppy y = 1T fll20,, ., » and the sufficiency of this condition follows since
1T Fllentyay uy = s | (TF) (@ + )| 201y,
zeR”
< casllwa| 14, (0,00) sUP || f(2 + )1,
zeR”
= cas||wal[ Ly, 0,001 f Il -

O

7 The case of weak Morrey-type spaces

Next we consider the local and global weak Morrey-type spaces and study the
boundedness of Calderon-Zygmund operators in these spaces.

Definition 3. Let 0 < p,0 < 0o and let w be a non-negative measurable function on
(0,00). Denote by LWMyg., and GWMyg.,, the local weak Morrey-type spaces, the
global weak Morrey-type spaces respectively, the spaces of all functions f € L;’C(R")
with finite quasinorms

||f||LWMp9’w = ||f||LWMp9,w - Hw(T)HfHWLp(B(Oﬂ"))HLe(o,oo)’

£ letwnt, = 50 17+ Vg,

respectively, where

I llwrysom) = supt (meas { € B(0,r) - [f(z)] > ',
>

if p< oo and || fllwrwBor) = IIf | LeB0r)-

The spaces LWM,g.,, GWMp,, are aimed at describing the behaviour of

| fllwr,Bos), | flwL,(B@r) respectively, for small > 0.
Note that for any 0 < p, 0 < oo

W lwn < loags s W llewar, . < 1Fla,.

for all functions f € LM, f € GMyp,, respectively.
We shall use the following theorem stating necessary and sufficient conditions
for the validity of the following inequality

ITfllwery., < caollfllz,., (61)

where v; and v, are functions non-negative and measurable on R™ and c49 > 0 is
independent of f € L)**(R") (see [10] and [21]).
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Theorem 11. Let 1 < p < oco. Then inequality (61) holds if, and only if, inequality
(16) holds. Moreover, the sharp (minimal possible) constant ¢4 in (61), satisfies the
inequality

501 < cg < 510,

where csg, 51 > 0 are independent of vy and vs.

Lemma 8. [11], [14] Let 1 < p < o0 and v > 1, then there exists cso > 0 such that

o0

\T fllw L, Bos) < 0527“5/ t v fln, B0 dt (62)

yr
for all v > 0 and for all f € WL(R™).

Consequently, Corollary 1 holds if L,(B(0,r)) is replaced by W L,(B(0,r)) and
the condition 1 < p < oo is replaced by 1 < p < oo, and Lemmas 3 — 4 and Theorem
5 hold if LM, ., and GM,p ,, are replaced by LWM,.,, GWM,y ., respectively, and
the condition 1 < p < oo is replaced by 1 < p < oco.

Theorem 12. Let 1 < p <00, 0 < by, O3 < 00, wy € g, and wy € Qy,.

1. If T is a genuine Calderon-Zygmund operator, then the condition (54) is
necessary for the boundedness of T from LMyg, v, to LW Mpg, v, .

2. If T is a Calderon-Zygmund operator, 61 < 0y and 0; < 1, then condition
(54) is sufficient for the boundedness of T from LMy, w, to LW Myp, ., and from
GMpg, wy to GW Mg, 0, (In the latter case we assume that wy € Sy, and wy €
Qp92')

3. In particular, if T is a genuine Calderon-Zygmund operator, 6, < 0y and
0, < 1, then condition (54) is necessary and sufficient for the boundedness of T
from LMpg, v, to LW My, 4, -

Proof. Sufficiency follows by Theorem 5 for the weak case as in the proof of Theorem
8. The proof of necessity is also essentially the same as in the proof of Theorem 8,
because (with the same notation as in the proof of Theorem 8)

17wy, ., = [w2(r)

fg,wg T

K (z, y)dy'

'/(B(O,Qt)\B(O,t))ﬁR(BC) W Lyp(B(0,r)NR(BE) [l L, (0,00)

> cas |walr) | B(0, p) N R(BC) 7

> C39 HwQ(T) min {7, t}%

Lg2 (0,00 L02 (0,00)

g

Theorem 13. Let T be a Calderon-Zygmund operator, 1 < p < 0o, 0 < 0y < oo and
wy € Qy,. Then condition (60) is sufficient, and for a genuine Calderon-Zygmund
operator is also necessary, for the boundedness of T' from L, to LW Mg, ., and from
L, to GW Mg, w,- (In the latter case we assume that wy € yp,.)

Proof. The proof is similar to the proof of Theorem 10. U
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8 Concluding remark

When defining the global Morrey-type spaces, it may make sense to consider a weight
function w depending not only on r > 0, but also on z € R", and consider the space
of all functions f € Li*°(R") for which

H Hw(:c,'f’)HfHLp(B(xﬂ)HLQ(O,OO)HLDO = oo

For the case § = oo such quasinorms were considered in [18]. Moreover, it is also
reasonable to replace Lo, by L, where 0 < n < oo, thus assuming that

76ty = |10 1 2000 0 |

< Q.
Ln

Let in Theorem 5 formulas (31) and (32) be replaced by
1\ 1 1P
U1,5<.§L’,7’) = [U}l (.I‘, 7‘517*71) r (6p—n)fy 01:| 7

p
va,s(x, 1) = [wz (:c,'rap;—n> . (;—M%}%}

and formulas (33) and (34) be replaced by

. _p\ —-p _.L
Ul(l‘,r) =w (l‘,r n) r no1 01

Og(, 1) = Wy <ZL‘,T_%) R (5t5.) 75

An argument similar to the one of the proof of Theorem 5 shows that if

H < 0
H || ||C’OL%’UI’&(%T)(O,OO)—»CHL%’v2’6(x’r)(0,oo) Ly P
H HHHCngl,@1(m(O,w)HCﬂLeaﬁg(z,r)(O’w) ) L <
n

respectively, where C' is the cone of all non-negative functions ¢ non-increasing on
(0, 00) satisfying tli+m ©(t) =0, then T is bounded from GM,g,, w, t0 GMpgyy 1, -
——+00

Similar remarks refer to all other inequalities of the paper involving global
Morrey-type spaces or global weak Morrey-type spaces.
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