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Abstract. The existence and uniqueness of coupled fixed point theorem has been proved under
various contractive condition in a cone metric space. The result is verified with the help of
suitable example.

DOI: https://doi.org/10.32523/2077-9879-2018-9-3-25-32

1 Introduction

In 2006, the concept of a coupled fixed point was given by Bhaskar and Lakshmikantham in [2].
After that several authors proved various coupled and common coupled fixed point theorems in
a partially ordered metric space, G-metric space, b-metric space, fuzzy metric space, cone metric
space etc. Some of the works are noted in [7], [16], [19], [20].

In 2007, Huang and Zhang [9] introduced the concept of a cone metric space, where they
generalized a metric space by replacing the set of real numbers with an ordered Banach space.
Thus, the cone naturally induces a partial order in Banach space. Some of the works are noted
in [12], [13], [17], [18] etc.

The aim of this paper is to establish the existence and uniqueness of coupled fixed point
theorem satisfying some generalized contractive condition in a cone metric space. In this paper
we do not impose the normality condition on the cone. The only assumption is that a cone P
has a nonempty interior.

Definition 1. [9] Let E be a real Banach space and P be a subset of E. P is called a cone if
(i) P is nonempty, closed, and P # {0},
(ii) a,b €R, a,b>0; z,y € P=— ax+by € P,
(i) r € Pand —v € P =2 = 0.
Given a cone P C E, the partial ordering < with respect to P is naturally defined for x,y € F
by x <y if and only if x —y € P. We shall write x < y to indicate that < y but x # y, while
x < y will stand for y — = € int P, where int P denotes the interior of P.
A cone P is said to be normal if there exists a real number K > 0 such that for all z,y € FE,

0<z<y— |zl < Kllyl|

The least positive number K satisfying the above inequality is called the normal constant of P.
A cone P is called regular if every increasing sequence which is bounded from above is
convergent; that is, if {z,} is a sequence such that
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for some y € F, then there is © € E such that ||z, —z|| — 0 as n — oco. Equivalently, a cone
P is regular if and only if every decreasing sequence which is bounded from below is convergent.
It is well known that a regular cone is a normal cone.

In the sequel we always suppose that F is a real Banach space with a cone P in E such that
int P # ¢ and < is the partial ordering with respect to P.

Definition 2. [9] Let X be a nonempty set. Let a mapping d : X x X — F satisfy:
(i) 0 < d(z,y), for all z,y € X and d(z,y) = 0 if and only if z = y;
(i) d(x,y) = d(y, x), for all z,y € X;
(iii) d(x,y) < d(z,z) + d(z,y), for all z,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 3. [9] Let (X, d) be a cone metric space, {z,} a sequence in X and z € X.

(i) If for every ¢ € E with 0 < ¢, there exists ny € N such that for all n > ng, d(z,,z) < ¢,
then {z,} is said to be convergent and {z,} converges to z, and x is the limit of {z,,}. This
limit is denoted by lim,, x, = x or x,, — x as n — oo.

(ii) If for every ¢ € E with 0 < ¢, there exists ny € N such that for all n,m >
no, d(x,,x,) < c, then {x,} is called a Cauchy sequence in X.

(iii) If every Cauchy sequence in X is convergent in X, then X is called a complete cone
metric space.

(iv) If P is a normal cone, then {z,} converges to x if and only if d(z,,z) — 0 as n — oo
and {z,} is a Cauchy sequence if and only if d(z,,z,) — 0 as n,m — oo.

Lemma 1.1. [}/ If P is a normal cone in E, then the following statements hold.
(i) If v,y € E, 0 <x <y and b >0, where b is a real number, then 0 < bx < by.

(ii) If xp,yn € E, 0 <z, <y, forn €N, z,y € E and lim, {z,} = z,lim, {y,} = vy, then
0<z<y.

Lemma 1.2. [}/ Let P be a cone in E and a,b,c € E.
(1) If a < b and b < ¢, then a < c.
(ii) If a < b and b < ¢, then a < c.

Definition 4. [19] An element (x,y) € X x X is called a coupled fixed point of the mapping
F:Xx X —Xifz=F(z,y) and y = F(y, ).

2 Main results

Theorem 2.1. Let (X,d) be a complete cone metric space with a cone P having nonempty
wnterior. Let F': X x X — X satisfy the inequality

d(F(z,y), F(u,v)) < hmazld(z, u), d(z, F(z,y))] + lamazld(y, v), d(y, F(y, ©))]
+ Igmazld(u, F(x,y)),d(u, F(u,v))], (2.1)

for all x,y,u,v € X, where l1, 5, l3 are non-negative real numbers such that 1 +1s+13 < 1. Then
F(z,y) has a unique coupled fized point in X x X.

Proof. Let xy and yy be two arbitrary points in X.
Let

Tof4+1 = F(Sﬁzk’ yzk), Y2k+1 = F(y%, ka)~
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and

Toky2 = F(fﬁ2k+1a y2k+1), Yok+2 = F(y2k+1, 372k+1)-
for k=0,1,2,3,---. Then

d(Zopq1, Tony2) = Ad(F (Tor, Yor ), F(Tort1, Yor+1))
< hmax[d(zor, Tarr1), Aok, F(Tok, Tor))]
+ lomax|(d(yar, Yor+1)s d(Yors F (Yor, Tar))]
+ lsmax[d(zopr1, F(2or, Yor ), d(opsr, F(Tor+1, Yort1))]
= limax([d(2o, Topt1), d(Tok, Tors1)] + lomax|d(yor, Yor+1), d(Yor, Yor+1)]
+ lsmax[d(@op i1, Torr1), d(Tort1, Tort2)]
= lLid(2ok, Torg1) + lod(Yar, Yors1) + [3d(Topgr, Topy2). (2.2)

Hence

l
d(Tok+1, Tokto) < (Lo, Topsn) + d(Y2ks Yoks1)- (2.3)

1 2
T 1—1 1—15

Similarly, we have

d(Yar+1, Yort2) = d(F(Yor, Tor), F(Y2r+1, T2rs1))
< himax|[d(Yor, Yor+1), A(Yar, F(yor, Tor))]
+ lomax[d(wor, Tor+1), d(Tor, F(Tor, Yor))]
+ Ismax[d(yorr1, F'(Y2r, Tor), d(Y2r+1, F(Yors1, Tart1))]
= Limax([d(Yar, Yor+1)s A(Yor, Yor+1)] + lomax[d(wog, Tapt1), d(Tok, Top+1)]
+ lsmax[d(Yort1, Yor+1) d(Yor+1, Yort2)]

= hd(Yor; Yak+1) + lod(Tok, Torsr) + 13d(Y2rt1, Y2rt2)- (2.4)
Hence
d(yan+1; Yosz) < l_l L d(yak, Yor+1) + 1 _2l3d($2k,$2k+1)- (2.5)
Adding (2.3) and (2.5) we get
Iy + 1y ly + 1y

d(y%, y21€+1)

d(Tog+1, Topre) + d(Yor+1, Yor+2) d(xok, Togt1) +

1—13

L +1
< 11 l2[d<$2k79’72k+1) + d(yak, Yokt1)]
— 3
= r[d(Zor, Tort1) + d(Yor, Yor+1)), (2.6)
where
L+ 1y
= 1.
0<r 11, <

Similarly to (2.6) we have

d($2k+27 Izk+3) + d(y2k+2, y2k+3) < T[d(x%—i-l’ $2k+2) + d<y2k+1> y2k+2)]-
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Therefore

d(xn—lv l‘n) + d(yn—lv yn)]
2[d($n—27 Tp-1) + d(Yn—2, Yn—1)]

d(fL‘n, ZL‘n+1) + d(yna yn-i-l)

Now if we take

d(2pn, Tpi1) + d(Yn, Ynt1) = B

then,
Bn S Tﬁnfl S Tt S Tnﬁ(]

For m > n we have

d(xn7xm) + d(yna ym) S Bm—l + Bm—Q + -+ 671
el e e e )
— 7"”(1 L4 Tm_n_l)ﬁ()

rTL

< 2.
1 Tﬁo ( 7)
Consequently,
ny 4m <
d(l‘ T ) 11—, 130
(ynu Y ) =1 r 0 ( 8)

Let 0 < ¢ be given. Choose a natural number N such that l%nrﬁo < cforn > N.
Thus d(zp, z) < ¢ and d(Yn, Ym) < ¢ for m > n. Therefore both the sequences {z,} and {y,}
are Cauchy sequences.

From the completeness of X, there exist z,y € X such that

lim x, =2 and lim y, =y
n—oo n—oo

Now we prove that F'(z,y) = x and F(y,z) = y. Substituting xer1 = F(z,y) and yop11 =
F(y,z) in (2.6), we obtain

d(F(z,y), Topra) + d(F(y, ), Yarso) < rld(zor, F(7,y)) + d(yor, F'(y, 7))]
Letting k — oo we obtain
d(F(z,y),z) + d(F(y,z),y) < rld(z, F(z,y)) + d(y, F(y, z))]

(1 =n)[d(F(z,y),z) +d(F(y,z),y)] <0.

Since0<r <1
d(F(z,y),z) +d(F(y,z),y) < 0.

Since  d(F(x,y),x) >0, d(F(y,z),y) > 0, it follows that
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d(F(z,y),z) =0 and d(F(y,x),y) =0,

Hence
F(z,y) =z and F(y,x) =y.

In order to prove the uniqueness let (2,%3') be another point of X x X such that 2’ = F(2/,¢')
and ¢y = F(y/,2'). Then

+ lsmax(d(z', F(z,y)),d(z', F(z',y'))]
)] + lamax[d(y, y'), d(y, y)]

+ I3d(2, x)
Hence
[
d(w,a') < ———d(y, /). (2.9)
1—1 =13
Similarly, we can prove that
l
dly,y) < ———d(z,2'). (2.10)
1—10 =13
Adding (2.9) and (2.10) we get
l
d(l’, IL‘/) + d<y7 y/> S ﬁ[d(xv I’l) + d(ya y/)]7
— b — 13
or
l2 / /
(1= ——)d(z,2") + d(y,y")] <0,
1—1 =13

which implies
d(z,2") +d(y,y’) =0,
hence d(z,2')+d(y,y) =0 < z=2'" and y=1y. 0

If we take I3 = 0 in Theorem 2.1. we get the following results as corollaries.

Corollary 2.1. Let (X,d) be a complete cone metric space with a cone P having nonempty
interior. Let F': X x X — X satisfy the inequality

d(F(z,y), F(u,v)) < limagld(z, u), d(z, F(z, y))] + lomazld(y, v), d(y, F(y, z))]
for all x,y,u,v € X, where l1, s, are non-negative real numbers such that l; + 1o < 1.
Then F(z,y) has a unique coupled fized point in X x X.

Corollary 2.2. Let (X,d) be a complete cone metric space with a cone P having nonempty
interior. Let F' : X x X — X be such that maz|d(z,u),d(z, F(x,y))] = d(z,u) and
max[d(y,v),d(y, F(y,z))] = d(y,v) and satisfy the inequality

d(F(z,y), F(u,v)) < hd(x,u) + lad(y,v)

for all z, y, u, v € X, where ly,ls, are non-negative real numbers such that [y + 1o < 1.

Then F(z,y) has a unique coupled fized point in X x X.
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Corollary 2.3. Let (X,d) be a complete cone metric space with a cone P having nonempty
interior. Let F @ X x X — X be such that maz|d(z,u),d(x, F(x,y))] = d(z, F(z,y)) and
mazx[d(y,v),d(y, F(y,z))] = d(y, F(y,z)) and satisfy the inequality

d(F('ra y)v F(“? U)) < l1d<I, F(I‘, y)) + le(y7 F(yv ZIJ))
for all x,y,u,v € X, where ly, s, are non-negative real numbers such that l; + Il < 1.
Then F(z,y) has a unique coupled fized point in X x X.
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