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1 Introduction

In 2006, the concept of a coupled �xed point was given by Bhaskar and Lakshmikantham in [2].
After that several authors proved various coupled and common coupled �xed point theorems in
a partially ordered metric space, G-metric space, b-metric space, fuzzy metric space, cone metric
space etc. Some of the works are noted in [7], [16], [19], [20].

In 2007, Huang and Zhang [9] introduced the concept of a cone metric space, where they
generalized a metric space by replacing the set of real numbers with an ordered Banach space.
Thus, the cone naturally induces a partial order in Banach space. Some of the works are noted
in [12], [13], [17], [18] etc.

The aim of this paper is to establish the existence and uniqueness of coupled �xed point
theorem satisfying some generalized contractive condition in a cone metric space. In this paper
we do not impose the normality condition on the cone. The only assumption is that a cone P
has a nonempty interior.

De�nition 1. [9] Let E be a real Banach space and P be a subset of E. P is called a cone if
(i) P is nonempty, closed, and P 6= {0},
(ii) a, b ∈ R, a, b ≥ 0; x, y ∈ P =⇒ ax+ by ∈ P ,
(iii) x ∈ P and −x ∈ P =⇒ x = 0.

Given a cone P ⊂ E, the partial ordering ≤ with respect to P is naturally de�ned for x, y ∈ E
by x ≤ y if and only if x− y ∈ P . We shall write x < y to indicate that x ≤ y but x 6= y, while
x� y will stand for y − x ∈ int P , where int P denotes the interior of P .

A cone P is said to be normal if there exists a real number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y −→ ‖x‖ ≤ K‖y‖.
The least positive number K satisfying the above inequality is called the normal constant of P .

A cone P is called regular if every increasing sequence which is bounded from above is
convergent; that is, if {xn} is a sequence such that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y,
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for some y ∈ E, then there is x ∈ E such that ‖xn−x‖ −→ 0 as n −→∞. Equivalently, a cone
P is regular if and only if every decreasing sequence which is bounded from below is convergent.
It is well known that a regular cone is a normal cone.

In the sequel we always suppose that E is a real Banach space with a cone P in E such that
int P 6= φ and ≤ is the partial ordering with respect to P .

De�nition 2. [9] Let X be a nonempty set. Let a mapping d : X ×X −→ E satisfy:
(i) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x), for all x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

De�nition 3. [9] Let (X, d) be a cone metric space, {xn} a sequence in X and x ∈ X.
(i) If for every c ∈ E with 0� c, there exists n0 ∈ N such that for all n > n0, d(xn, x)� c,

then {xn} is said to be convergent and {xn} converges to x, and x is the limit of {xn}. This
limit is denoted by limn xn = x or xn −→ x as n −→∞.

(ii) If for every c ∈ E with 0 � c, there exists n0 ∈ N such that for all n,m >
n0, d(xn, xm)� c, then {xn} is called a Cauchy sequence in X.

(iii) If every Cauchy sequence in X is convergent in X, then X is called a complete cone
metric space.

(iv) If P is a normal cone, then {xn} converges to x if and only if d(xn, x) −→ 0 as n −→∞
and {xn} is a Cauchy sequence if and only if d(xn, xm) −→ 0 as n,m −→∞.

Lemma 1.1. [4] If P is a normal cone in E, then the following statements hold.
(i) If x, y ∈ E, 0 ≤ x ≤ y and b ≥ 0, where b is a real number, then 0 ≤ bx ≤ by.

(ii) If xn, yn ∈ E, 0 ≤ xn ≤ yn for n ∈ N, x, y ∈ E and limn {xn} = x, limn {yn} = y, then
0 ≤ x ≤ y.

Lemma 1.2. [4] Let P be a cone in E and a, b, c ∈ E.
(i) If a ≤ b and b� c, then a� c.
(ii) If a� b and b� c, then a� c.

De�nition 4. [19] An element (x, y) ∈ X × X is called a coupled �xed point of the mapping
F : X× X −→ X if x = F (x, y) and y = F (y, x).

2 Main results

Theorem 2.1. Let (X, d) be a complete cone metric space with a cone P having nonempty
interior. Let F : X ×X −→ X satisfy the inequality

d(F (x, y), F (u, v)) ≤ l1max[d(x, u), d(x, F (x, y))] + l2max[d(y, v), d(y, F (y, x))]

+ l3max[d(u, F (x, y)), d(u, F (u, v))], (2.1)

for all x, y, u, v ∈ X, where l1, l2, l3 are non-negative real numbers such that l1 + l2 + l3 < 1. Then
F (x, y) has a unique coupled �xed point in X ×X.

Proof. Let x0 and y0 be two arbitrary points in X.
Let

x2k+1 = F (x2k, y2k), y2k+1 = F (y2k, x2k).
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and

x2k+2 = F (x2k+1, y2k+1), y2k+2 = F (y2k+1, x2k+1).

for k = 0, 1, 2, 3, · · · . Then

d(x2k+1, x2k+2) = d(F (x2k, y2k), F (x2k+1, y2k+1))

≤ l1max[d(x2k, x2k+1), d(x2k, F (x2k, x2k))]

+ l2max[d(y2k, y2k+1), d(y2k, F (y2k, x2k))]

+ l3max[d(x2k+1, F (x2k, y2k), d(x2k+1, F (x2k+1, y2k+1))]

= l1max[d(x2k, x2k+1), d(x2k, x2k+1)] + l2max[d(y2k, y2k+1), d(y2k, y2k+1)]

+ l3max[d(x2k+1, x2k+1), d(x2k+1, x2k+2)]

= l1d(x2k, x2k+1) + l2d(y2k, y2k+1) + l3d(x2k+1, x2k+2). (2.2)

Hence

d(x2k+1, x2k+2) ≤ l1
1− l3

d(x2k, x2k+1) +
l2

1− l3
d(y2k, y2k+1). (2.3)

Similarly, we have

d(y2k+1, y2k+2) = d(F (y2k, x2k), F (y2k+1, x2k+1))

≤ l1max[d(y2k, y2k+1), d(y2k, F (y2k, x2k))]

+ l2max[d(x2k, x2k+1), d(x2k, F (x2k, y2k))]

+ l3max[d(y2k+1, F (y2k, x2k), d(y2k+1, F (y2k+1, x2k+1))]

= l1max[d(y2k, y2k+1), d(y2k, y2k+1)] + l2max[d(x2k, x2k+1), d(x2k, x2k+1)]

+ l3max[d(y2k+1, y2k+1), d(y2k+1, y2k+2)]

= l1d(y2k, y2k+1) + l2d(x2k, x2k+1) + l3d(y2k+1, y2k+2). (2.4)

Hence

d(y2k+1, y2k+2) ≤ l1
1− l3

d(y2k, y2k+1) +
l2

1− l3
d(x2k, x2k+1). (2.5)

Adding (2.3) and (2.5) we get

d(x2k+1, x2k+2) + d(y2k+1, y2k+2) ≤ l1 + l2
1− l3

d(x2k, x2k+1) +
l2 + l2
1− l3

d(y2k, y2k+1)

≤ l1 + l2
1− l3

[d(x2k, x2k+1) + d(y2k, y2k+1)]

= r[d(x2k, x2k+1) + d(y2k, y2k+1)], (2.6)

where

0 < r =
l1 + l2
1− l3

< 1.

Similarly to (2.6) we have

d(x2k+2, x2k+3) + d(y2k+2, y2k+3) ≤ r[d(x2k+1, x2k+2) + d(y2k+1, y2k+2)].
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Therefore

d(xn, xn+1) + d(yn, yn+1) ≤ r[d(xn−1, xn) + d(yn−1, yn)]

≤ r2[d(xn−2, xn−1) + d(yn−2, yn−1)]

· · · · · · · · ·
≤ rn[d(x0, x1) + d(y0, y1)]

Now if we take

d(xn, xn+1) + d(yn, yn+1) = βn

then,
βn ≤ rβn−1 ≤ · · · ≤ rnβ0

For m > n we have

d(xn, xm) + d(yn, ym) ≤ βm−1 + βm−2 + · · ·+ βn

≤ (rm−1 + rm−2 + · · ·+ rn)β0

= rn(1 + r + · · ·+ rm−n−1)β0

≤ rn

1− r
β0 (2.7)

Consequently,

d(xn, xm) ≤ rn

1− r
β0

d(yn, ym) ≤ rn

1− r
β0 (2.8)

Let 0� c be given. Choose a natural number N such that rn

1−rβ0 � c for n > N.
Thus d(xn, xm)� c and d(yn, ym)� c for m > n. Therefore both the sequences {xn} and {yn}
are Cauchy sequences.

From the completeness of X, there exist x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y

Now we prove that F (x, y) = x and F (y, x) = y. Substituting x2k+1 = F (x, y) and y2k+1 =
F (y, x) in (2.6), we obtain

d(F (x, y), x2k+2) + d(F (y, x), y2k+2) ≤ r[d(x2k, F (x, y)) + d(y2k, F (y, x))]

Letting k −→∞ we obtain

d(F (x, y), x) + d(F (y, x), y) ≤ r[d(x, F (x, y)) + d(y, F (y, x))]

or

(1− r)[d(F (x, y), x) + d(F (y, x), y)] ≤ 0.

Since 0 < r < 1

d(F (x, y), x) + d(F (y, x), y) ≤ 0.

Since d(F (x, y), x) ≥ 0, d(F (y, x), y) ≥ 0, it follows that
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d(F (x, y), x) = 0 and d(F (y, x), y) = 0,

Hence
F (x, y) = x and F (y, x) = y.

In order to prove the uniqueness let (x′, y′) be another point of X ×X such that x′ = F (x′, y′)
and y′ = F (y′, x′). Then

d(x, x′) = d(F (x, y), F (x′, y′))

≤ l1max[d(x, x′), d(x, F (x, y))] + l2max[d(y, y′), d(y, F (y, x))]

+ l3max[d(x′, F (x, y)), d(x′, F (x′, y′))]

= l1max[d(x, x′), d(x, x)] + l2max[d(y, y′), d(y, y)]

+ l3max[d(x′, x), d(x′, x′)]

= l1d(x, x′) + l2d(y, y′) + l3d(x′, x).

Hence

d(x, x′) ≤ l2
1− l1 − l3

d(y, y′). (2.9)

Similarly, we can prove that

d(y, y′) ≤ l2
1− l1 − l3

d(x, x′). (2.10)

Adding (2.9) and (2.10) we get

d(x, x′) + d(y, y′) ≤ l2
1− l1 − l3

[d(x, x′) + d(y, y′)],

or

(1− l2
1− l1 − l3

)[d(x, x′) + d(y, y′)] ≤ 0,

which implies

d(x, x′) + d(y, y′) = 0,

hence d(x, x′) + d(y, y′) = 0 ⇐⇒ x = x′ and y = y′.

If we take l3 = 0 in Theorem 2.1. we get the following results as corollaries.

Corollary 2.1. Let (X, d) be a complete cone metric space with a cone P having nonempty
interior. Let F : X ×X −→ X satisfy the inequality

d(F (x, y), F (u, v)) ≤ l1max[d(x, u), d(x, F (x, y))] + l2max[d(y, v), d(y, F (y, x))]

for all x, y, u, v ∈ X, where l1, l2, are non-negative real numbers such that l1 + l2 < 1.

Then F (x, y) has a unique coupled �xed point in X ×X.

Corollary 2.2. Let (X, d) be a complete cone metric space with a cone P having nonempty
interior. Let F : X × X −→ X be such that max[d(x, u), d(x, F (x, y))] = d(x, u) and
max[d(y, v), d(y, F (y, x))] = d(y, v) and satisfy the inequality

d(F (x, y), F (u, v)) ≤ l1d(x, u) + l2d(y, v)

for all x, y, u, v ∈ X, where l1, l2, are non-negative real numbers such that l1 + l2 < 1.

Then F (x, y) has a unique coupled �xed point in X ×X.
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Corollary 2.3. Let (X, d) be a complete cone metric space with a cone P having nonempty
interior. Let F : X × X −→ X be such that max[d(x, u), d(x, F (x, y))] = d(x, F (x, y)) and
max[d(y, v), d(y, F (y, x))] = d(y, F (y, x)) and satisfy the inequality

d(F (x, y), F (u, v)) ≤ l1d(x, F (x, y)) + l2d(y, F (y, x))

for all x, y, u, v ∈ X, where l1, l2, are non-negative real numbers such that l1 + l2 < 1.

Then F (x, y) has a unique coupled �xed point in X ×X.
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