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Abstract. The survey is aimed at providing detailed information about recent results
in the problem of the boundedness in general Morrey-type spaces of various impor-
tant operators of real analysis, namely of the maximal operator, fractional maximal
operator, Riesz potential, singular integral operator, Hardy operator. The main fo-
cus is on the results which contain, for a certain range of the numerical parameters,
necessary and sufficient conditions on the functional parameters characterizing general
Morrey-type spaces, ensuring the boundedness of the aforementioned operators from
one general Morrey-type space to another one. The major part of the survey is dedi-
cated to the results obtained by the author jointly with his co-authores A. Gogatishvili,
M.L. Goldman, D.K. Darbayeva, H.V. Guliyev, V.S. Guliyev, P. Jain, R. Mustafaev,
E.D. Nursultanov, R. Oinarov, A. Serbetci, T.V. Tararykova. In Part I of the survey
under discussion were the definition and basic properties of the local and global gen-
eral Morrey-type spaces, embedding theorems, and the boundedness properties of the
maximal operator. Part II of the survey contains discussion of boundedness properties
of the fractional maximal operator, Riesz potential, singular integral operator, Hardy
operator. All definitions and notation 1 in Part II are the same as in Part I.

7 Riesz potential

Let f ∈ Lloc
1 . The Riesz potential Iα is defined by

Iαf(x) =

∫
Rn

f(y)dy

|x− y|n−α
, 0 < α < n .

1 Local Morrey-type spaces LMpθ,w(·), weak local Morrey-type spaces WLMpθ,w(·) (0 < p, θ ≤
∞, w ∈ Ωθ); global Morrey-type spaces GMpθ,w(·), weak global Morrey-type spaces WGMpθ,w(·)
(0 < p, θ ≤ ∞, w ∈ Ωpθ).

Various applications of Morrey-type spaces are discussed in detail in the survey papers [36], [44],
[46], [47]. Properties of the commutators of singular integrals in Morrey-type spaces are discussed in
[32]. Interpolation theorems in Morrey-type spaces are studied in [9]. Complementary Morrey-type
spaces are considered in [14], [3], [29].
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Let 1 ≤ p1 ≤ p2 ≤ ∞. The classical Hardy-Littlewood-Sobolev result states that
Iα is bounded from Lp1 to Lp2 if and only if

1 < p1 < p2 <∞ and α = n
( 1

p1

− 1

p2

)
. (7.1)

Also Iα is bounded from L1 to WLp2 if and only if

1 < p2 <∞ and α = n
(
1− 1

p2

)
. (7.2)

The boundedness of Iα in Morrey spaces was investigated by S. Spanne, J. Peetre,
and D. Adams. We start with the case α = n( 1

p1
− 1

p2
). In [43] the next result is referred

as Spanne’s result.

Theorem 7.1. ([43])
Let conditions (7.1) be satisfied. Then Iα is bounded from Mλ

p1
to Mλ

p2
for all 0 ≤

λ < n
p2

.
Let conditions (7.2) be satisfied. Then Iα is bounded from Mλ

1 to WMλ
p2

for all
0 ≤ λ < n

p2
.

If λ = 0 then the statement of this theorem reduces to the aforementioned result
by Hardy-Littlewood-Sobolev.

The boundedness of Iα in Morrey spaces for α < n( 1
p1
− 1

p2
) was investigated by D.

Adams.

Theorem 7.2. ([1]) Let 1 < p1 < p2 ≤ ∞, 0 < α < n, 0 ≤ λ1 <
n
p1

, 0 ≤ λ2 <
n
p2

, and

λ1p1 = λ2p2 (7.3)

(hence λ2 < λ1 or λ1 = λ2 = 0).
If p1 > 1 then the operator Iα is bounded from Mλ1

p1
to Mλ2

p2
if and only if

α = λ2 − λ1 + n

(
1

p1

− 1

p2

)
. (7.4)

If p1 = 1 then the operator Iα is bounded from Mλ1
1 to WMλ2

p2
if and only if condition

(7.4) is satisfied with p1 = 1.

If α = n( 1
p1
− 1

p2
) condition (7.4) implies that λ1 = λ2 which by (7.3) can only

happen only in the case λ1 = λ2 = 0 in which M0
p1

= Lp1 and M0
p1

= Lp1 .
T. Mizuhara, E. Nakai, and V.S. Guliyev generalized Theorem 7.1 and obtained for

the case α = n( 1
p1
− 1

p2
) sufficient conditions for the boundedness of Iα from GMp1∞,w1(·)

to GMp2∞,w2(·).

Theorem 7.3. ([30]) Let 1 ≤ p1 < p2 < ∞ and α = n
(

1
p1
− 1

p2

)
. Moreover, let

functions w1 ∈ Ωp∞, w2 ∈ Ωp∞ satisfy the condition∥∥w−1
1 (r) r

− n
p2
−1∥∥

L1(t,∞)
. w−1

2 (t) t
− n

p2 (7.5)

uniformly in t ∈ (0,∞).
Then for p1 > 1 Iα is bounded from GMp1∞,w1(·) to GMp2∞,w2(·) and for p1 = 1 Iα

is bounded from GM1∞,w1(·) to WGMp2∞,w2(·).
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In the [38], [40] this statement was proved under the following additional assump-
tions: it was assumed that w1 = w2 = w and that w was a positive non-increasing
function satisfying the pointwise doubling condition, namely that for some c > 0

c−1w(r) ≤ w(t) ≤ cw(r)

for all t, r > 0 such that 0 < r ≤ t ≤ 2r. . In [30] it was proved without these additional
assumptions. (See also [33], [34], [31].)

Next the most general case will be considered. We start with necessary conditions
on the numerical parameters.

Lemma 7.1. ([15], [16]) Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 < α < n, 0 < θ1, θ2 ≤ ∞,
w1 ∈ Ωθ1, and w2 ∈ Ωθ2. Then the conditions

p1 <∞ and α <
n

p1

are necessary for the boundedness of Iα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

Lemma 7.2. ([15], [16]) Let 1 ≤ p1 <∞, 0 < p2 ≤ ∞, 0 < α < n
p1

, 0 < θ1, θ2 ≤ ∞,
w1 ∈ Ωθ1, and w2 ∈ Ωθ2. Moreover, let w1 ∈ Lθ1(0,∞). Then the condition 2

α ≥ n

(
1

p1

− 1

p2

)
+

is necessary for the boundedness of Iα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

Remark 4. Without the assumption w1 ∈ Lθ1(0,∞) this condition is not necessary.
In particular in Theorem 7.2 α < n( 1

p1
− 1

p2
) excluding the case λ1 = λ2 = 0.

The application of the known results about necessary and sufficient conditions for
the boundedness of the operator Iα in weighted Lebesgue spaces and the relation-
ship between general Morrey-type spaces and weighted Lebesgue spaces, described in
Section 5 of Part I of the survey, immediately imply the following statement for the
case of local Morrey-type spaces, including necessary and sufficient conditions for the
boundedness of Iα from LMp1p1,w1(·) to LMp2p2,w2(·).

Theorem 7.4. Let 0 < α < n, 1 < p1 ≤ p2 <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , w2 ∈ Ωθ2 .
If p1 ≥ θ1, p2 ≤ θ2 and

sup
x∈Rn,r>0

‖Ŵ2‖Lp2 (B(x,r)) ‖ |x− y|α−nŴ1(y)
−1‖

Lp′1
(

{
B(x,r))

<∞ (7.6)

and
sup

x∈Rn,r>0
‖Ŵ−1

1 ‖Lp′1
(B(x,r)) ‖ |x− y|α−nŴ2(y)‖Lp2 ( {B(x,r))

<∞, (7.7)

where p′1 = p1

p1−1
and

Ŵ1(x) = ‖w1‖Lθ1
(|x|,∞), Ŵ2(x) = ‖w2‖Lθ2

(|x|,∞), (7.8)

2 For a ∈ R, a+ is the positive part of a (a+ = max{0, a}).
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for all x ∈ Rn, then the operator Iα is bounded from LMp1θ1,w1(·) to LMp2θ2,w2(·) and
from GMp1θ1,w1(·) to GMp2θ2,w2(·). (In the latter case it is assumed that w1 ∈ Ωp1θ1 ,
w2 ∈ Ωp2θ2.)

If p1 ≤ θ1 and p2 ≥ θ2, then conditions (7.6)–(7.7) are necessary for the boundedness
of Iα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

In particular, if θ1 = p1 and θ2 = p2, then conditions (7.6)–(7.7) are necessary and
sufficient for the boundedness of Iα from LMp1p1,w1(·) to LMp2p2,w2(·).

The following theorem contains necessary and sufficient for the boundedness of Iα
from LMp1θ1,w1(·) to LMp2θ2,w2(·) without the assumptions p1 = θ1 and p2 = θ2.

Theorem 7.5. ([15], [16], [11])
1. If 1 ≤ p1 < ∞, 0 < p2 ≤ ∞, 0 < α < n

p1
, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and

w2 ∈ Ωθ2 , then the condition

t
α− n

p1
+min{n−α, n

p2
}

∥∥∥∥∥w2(r)
r

n
p2

(t+ r)
min{n−α, n

p2
}

∥∥∥∥∥
Lθ2

(0,∞)

. ‖w1‖Lθ1
(t,∞) ,

uniformly in t ∈ (0,∞) is necessary for the boundedness of Iα from LMp1θ1,w1(·) to
LMp2θ2,w2(·).

2. If condition (7.1) or the condition

1 ≤ p1 <∞, 0 < p2 <∞ and n
( 1

p1

− 1

p2

)
+
< α <

n

p1

(7.9)

is satisfied, 0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2, then the condition∥∥∥∥∥w2(r)
r

n
p2

(t+ r)
n
p1
−α

∥∥∥∥∥
Lθ2

(0,∞)

. ‖w1‖Lθ1
(t,∞) .

uniformly in t ∈ (0,∞) is sufficient for the boundedness of Iα from LMp1θ1,w1(·) to
LMp2θ2,w2(·) and from GMp1θ1,w1(·) to GMp2θ2,w2(·). (In the latter case it is assumed that
w1 ∈ Ωp1θ1 , w2 ∈ Ωp2θ2.)

3. In particular, if condition (7.1) is satisfied, 0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1, and
w2 ∈ Ωθ2, then the condition∥∥∥∥∥w2(r)

(
r

t+ r

) n
p2

∥∥∥∥∥
Lθ2

(0,∞)

. ‖w1‖Lθ1
(t,∞) , (7.10)

uniformly in t ∈ (0,∞) is necessary and sufficient for the boundedness of Iα from
LMp1θ1,w1(·) to LMp2θ2,w2(·).

4. Let
1 ≤ p1 < p2 <∞, α = n

(
1

p1

− 1

p2

)
, (1′)

0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1, and w2 ∈ Ωθ2, then condition (7.10) is necessary and
sufficient for the boundedness of Iα from LMp1θ1,w2(·) to WLMp2θ2,w2(·).
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Remark 5. In [15], [16] this statement is proved under the additional assumptions:
either θ1 ≤ 1 or, if w2 satisfies certain regularity conditions, θ1 ≤ p1. In [11] it is proved
without additional assumptions on θ1 by using a different method.

The next theorem contains sufficient conditions on w1, w2 ensuring the boundedness
of Iα from LMp1θ1,w1(·) to LMp2θ2,w2(·) for all values of the parameters satisfying (7.1)
or (7.9), which are close to necessary ones and are necessary ones if p1 = 1.

Theorem 7.6. ([11]) Let condition (7.1) or (7.9) be satisfied. Moreover, let 0 <
θ1, θ2 ≤ ∞, w1 ∈ Ωθ1, w2 ∈ Ωθ2.

1. The operator Iα is bounded from LMp1θ1,w1(·) to LMp2θ2,w2(·) if, and in the case
p1 = 1 only if,

(a) if 1 < θ1 ≤ θ2 <∞, then

B1
1 := sup

t>0

(∫ ∞

t

wθ2
2 (r)r

θ2

(
α−n

(
1

p1
− 1

p2

))
dr

) 1
θ2

(∫ ∞

t

wθ1
1 (r)dr

)− 1
θ1

<∞, (7.11)

and

B1
2 := sup

t>0

(∫ t

0

wθ2
2 (r)r

θ2
n
p2 dr

) 1
θ2

∫ ∞

t

wθ1
1 (r)r

θ′1

(
α− n

p1

)
(∫∞

r
wθ1

1 (ρ)dρ
)θ′1 dr

 1
θ′1

<∞ ;

(b) if 0 < θ1 ≤ 1, 0 < θ1 ≤ θ2 <∞, then B1
1 <∞ and

B2
2 := sup

t>0
t
α− n

p1

(∫ t

0

wθ2
2 (r)r

θ2
n
p2 dr

) 1
θ2
(∫ ∞

t

wθ1
1 (r)dr

)− 1
θ1

<∞ ; (7.12)

(c) if 1 < θ1 <∞, 0 < θ2 < θ1 <∞, θ2 6= 1, then

B3
1 :=

∫ ∞

0

∫∞t wθ2
2 (r)r

θ2

(
α−n

(
1

p1
− 1

p2

))
dr∫∞

t
wθ1

1 (r)dr


θ2

θ1−θ2

wθ2
2 (t)t

θ2

(
α−n

(
1

p1
− 1

p2

))
dt


θ1−θ2
θ1θ2

<∞ ,

and

B3
2 :=


∫ ∞

0

(∫ t

0

wθ2
2 (r)r

θ2
n
p2 dr

) 1
θ2

∫ ∞

t

wθ1
1 (r)r

θ′1

(
α− n

p1

)
(∫∞

r
wθ1

1 (ρ)dρ
)θ′1 dr


θ2−1

θ2


θ1θ2

θ1−θ2

×

× wθ1
1 (t)t

θ′1

(
α− n

p1

)
(∫∞

t
wθ1

1 (ρ)dρ
)θ′1 dt


θ1−θ2
θ1θ2

<∞ ;

(d) if 1 = θ2 < θ1 <∞, then

B4
1 :=

∫ ∞

0

∫∞t w2(r)r
α−n

(
1

p1
− 1

p2

)
dr∫∞

t
wθ1

1 (r)dr

 1
θ1−1

w2(t)t
α−n

(
1

p1
− 1

p2

)
dt


θ1−1

θ1

<∞,
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and

B4
2 :=

∫ ∞

0

∫∞t w2(r)r
α−n

(
1

p1
− 1

p2

)
dr + t

α− n
p1

∫ t

0
w2(r)r

n
p2 dr∫∞

t
wθ1

1 (r)dr

θ′1−1

×

×tα−
n
p1

(∫ t

0

w2(r)r
n
p2 dr

)
dt

t

)θ′1

<∞ ;

(e) if 0 < θ2 < θ1 = 1, then

B5
1 :=

∫ ∞

0

∫∞t wθ2
2 (r)r

θ2

(
α−n

(
1

p1
− 1

p2

))
dr∫∞

t
w1(r)dr


θ2

1−θ2

wθ2
2 (t)t

θ2

(
α−n

(
1

p1
− 1

p2

))
dt


1−θ2

θ2

<∞,

and

B5
2 :=

∫ ∞

0

(∫ t

0

wθ2
2 (r)r

θ2
n
p2 dr

) θ2
1−θ2

(
inf

t<s<∞
s

n
p1
−α

∫ ∞

s

w1(ρ)dρ

) θ2
θ2−1

×

×wθ2
2 (t)t

θ2
n
p2 dt

) 1−θ2
θ2 <∞ ;

(f) if 0 < θ2 < θ1 < 1, then B3
1 <∞ and

B6
2 :=

∫ ∞

0

sup
t≤s<∞

s

(
α− n

p1

)
θ1θ2

θ1−θ2(∫∞
s
wθ1

1 (ρ)dρ
) θ2

θ1−θ2

(∫ t

0

wθ2
2 (r)r

θ2
n
p2 dr

) θ2
θ1−θ2

×

×wθ2
2 (t)t

θ2
n
p2 dt

) θ1−θ2
θ1θ2 <∞ ;

(g) if 0 < θ1 ≤ 1, θ2 = ∞, then

B7 := ess sup
0<t≤s<∞

w2(t)t
n
p2

s
n
p1
−α (∫∞

s
wθ1

1 (r)dr
) 1

θ1

<∞ ;

(h) if 1 < θ1 <∞, θ2 = ∞, then

B8 := ess sup
t>0

w2(t)t
n
p2

∫ ∞

t

r
θ′1

(
α− n

p1

)
(∫∞

r
wθ1

1 (s)ds
)θ′1−1

dr

r

 1
θ′1

<∞ ;

(i) if θ1 = ∞, 0 < θ2 <∞, then

B10 :=

∫ ∞

0

(
t

n
p1
−α

∫ ∞

t

s
α− n

p1
−1
ds

ess sups<y<∞w1(y)

)θ2

×

×wθ2
2 (t)t

θ2

(
α−n

(
1

p1
− 1

p2

))
dt

) 1
θ2

<∞ ;
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(j) if θ1 = θ2 = ∞, then

B9 := ess sup
t>0

w2(t)t
n
p2

∫ ∞

t

s
α− n

p1
−1

ess sups<y<∞w1(y)
ds <∞ . (7.13)

Moreover, in case (a)

‖Iα‖LMp1θ1,w1(·)→LMp2θ2,w2(·) . B1
1 +B1

2

uniformly in w1 ∈ Ωθ1 and in w2 ∈ Ωθ2, where the sign . should be replaced by ≈ if
p1 = 1, and similar inequalities and equivalencies hold in cases (b)-(j).

2. If p1 = 1, 0 < p2 < ∞ and n
(
1− 1

p2

)
+
< α < n or 1 < p2 < ∞ and

α = n
(
1− 1

p2

)
, then Iα is bounded from LM1θ1,w1(·) to WLMp2θ2,w2(·) if and only if

conditions (a)-(j) are satisfied.
Moreover, in case (a)

‖Iα‖LM1θ1,w1(·)→WLMp2θ2,w2(·) ≈ B1
1 +B1

2

uniformly in w1 ∈ Ωθ1 and in w2 ∈ Ωθ2, and similar equivalencies hold in cases (b)-(j).

Remark 6. Note that two conditions (7.11) and (7.12) are equivalent to one condition
(7.5).

Remark 7. Statement (j) of Theorem 7.6 is stronger than that of Theorem 7.5: first
of all it holds for a wider range of the parameters, but even for the same range of
the parameters as in Theorem 7.3, i. e. for 1 ≤ p1 < p2 < ∞ and α = n( 1

p1
−

1
p2

), condition (7.13) is weaker than condition (7.5). It is obvious that if condition
(7.5) holds, then condition (7.13) holds too. Moreover for non-increasing continuous
functions w1 conditions (7.5) and (7.13) coincide. However, in general, condition (7.13)
does not imply condition (7.5). For example, the functions

w1(r) = χ
(1,∞)

(r)r−β, w2(t) =
1

tβ + 1
, 0 < β <

n

p1

− α

satisfy condition (7.13) but do not satisfy condition (7.5).

Remark 8. Note that under the assumptions on the parameters of the second part of
Theorem 7.6

‖Iα‖LM1θ1,w1(·)→LMp2θ2,w2(·) ≈ ‖Iα‖LM1θ1,w1(·)→WLMp2θ2,w2(·) .

Corollary 7.1. If

1 < p1 < p2 <∞, 0 < θ2 ≤ ∞, α = n

(
1

p1

− 1

p2

)
, and w2 ∈ Ωθ2 ,

or

1 ≤ p1 <∞, 0 < p2 <∞, θ2 = ∞, n

(
1

p1

− 1

p2

)
+

< α <
n

p1

, and w2 ∈ Ω∞,
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then the condition
w2(r)r

α−n
(

1
p1
− 1

p2

)
∈ Lθ2(0,∞) (7.14)

is necessary and sufficient for the boundedness of Iα from Lp1 to LMp2θ2,w2(·) and from
Lp1 to GMp2θ2,w2(·). (In the case of the spaces GMp2θ2,w2(·) it is assumed that w2 ∈ Ωp2θ2 .)

Further information on the properties of the Riesz potential can be found in survey
papers [41], [35].

8 Fractional maximal operator

Let f ∈ Lloc
1 . The fractional maximal operator Mα is defined by

Mαf(x) = sup
t>0

|B(x, t)|−1+ α
n

∫
B(x,t)

|f(y)|dy,

where 0 ≤ α < n. If α = 0, then M ≡M0 is the maximal operator.
Note that, for 0 < α < n,

Mαf(x) ≤ v
α
n
−1

n Iα(|f |)(x), (8.1)

where vn is the volume of the unit ball in Rn, hence the boundedness of the Riesz
potential also implies the boundedness of the fractional maximal operator Mα.

Therefore Theorems 7.1, 7.2 and 7.3 are also valid for the fractional maximal op-
erator. Moreover, they are valid for a wider range of the parameter p2, namely for
p1 ≤ p2 ≤ ∞, which, in the limiting cases p1 = p2 and p2 = ∞, follows by theorems for
the maximal operator formulated in Section 6 of Part I.

There are minor distinctions in necessary conditions on the parameters compared
with the case of the Riesz potential.

Lemma 8.1. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < n, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1,
and w2 ∈ Ωθ2. Then the condition

α ≤ n

p1

is necessary for the boundedness of Mα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

Lemma 8.2. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α ≤ n
p1
, α < n, 0 < θ1, θ2 ≤ ∞,

w1 ∈ Ωθ1, and w2 ∈ Ωθ2. Moreover, let w1 ∈ Lθ1(0,∞). Then the condition

α ≥ n

(
1

p1

− 1

p2

)
+

is necessary for the boundedness of Mα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

Remark 9. If w1 /∈ Lθ1(0,∞) then this condition is not necessary. See Remark 4.

An analogue of Theorem 7.4 takes a different form. The known results on the
boundedness of the fractional maximal operator in general weighted Lebesgue spaces
(see [45], [26], [25], [28]) and the relationship between general Morrey-type spaces and
weighted Lebesgue spaces, described in Section 5 of Part I of the survey, imply the
following statement.
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Theorem 8.1. Let 0 ≤ α < n, 1 < p1 ≤ p2 <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1, w2 ∈ Ωθ2.
If θ1 ≤ p1 and p2 ≤ θ2 and

sup
R>0

Rα−n

∥∥∥∥tn−1
p′1 Ŵ1(t)

−1
∥∥∥∥

Lp′1
(0,R)

∥∥∥tn−1
p2 Ŵ2(t)

∥∥∥
Lp2 (0,R)

<∞. (8.2)

or equivalently ∥∥∥∥Mα

(
χBW

p1
1−p1

1

)∥∥∥∥
Lp2,W2

(B)

.

∥∥∥∥W 1
1−p1
1

∥∥∥∥
Lp1 (B)

, (8.3)

uniformly in balls B ⊂ Rn, where Ŵ1, Ŵ2 are the same as in Theorem 7.4 (formula
(7.8)) and

W1(t) = ‖w1‖Lθ1
(t,∞), W2(t) = ‖w2‖Lθ2

(t,∞)

for all t > 0, then Mα is bounded from LMp1θ1,w1(·) to LMp2θ2,w2(·) and from GMp1θ1,w1(·)
to GMp2θ2,w2(·). (In the latter case it is assumed that w1 ∈ Ωp1θ1 , w2 ∈ Ωp2,θ2).

If p1 ≤ θ1 and p2 ≥ θ2, then condition (8.2), or equivalently (8.3), is necessary for
the boundedness of Mα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

In particular, if θ1 = p1 and θ2 = p2, then condition (8.2), or equivalently (8.3), is
necessary and sufficient for the boundedness of Mα from LMp1p1,w1(·) to LMp2p2,w2(·).

The following theorem contains necessary and sufficient for the boundedness of Mα

from LMp1θ1,w1(·) to LMp2θ2,w2(·) without the assumptions p1 = θ1 and p2 = θ2.

Theorem 8.2. ([12], [13], [10]) 1. If

1 < p1 ≤ p2 <∞, α = n

(
1

p1

− 1

p2

)
(1′′)

0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1, and w2 ∈ Ωθ2 , then condition (7.10) is necessary and
sufficient for the boundedness of Mα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

2. If

1 ≤ p1 ≤ p2 <∞, α = n

(
1

p1

− 1

p2

)
(1′′′)

0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1, and w2 ∈ Ωθ2, then condition (7.10) is necessary and
sufficient for the boundedness of Mα from LMp1θ1,w2(·) to WLMp2θ2,w2(·).

Remark 10. In [12], [13] this statement is proved under the additional assumption
θ1 ≤ p1, in [10] without this assumption by using a different method.

The next theorem contains sufficient conditions on w1, w2 ensuring the boundedness
of Mα from LMp1θ1,w1(·) to LMp2θ2,w2(·) for all values of the parameters satisfying (7.1)
or (7.9), which are close to necessary ones and are necessary ones if p1 = 1.

Theorem 8.3. Let 1 ≤ p1 < ∞, 0 < p2 < ∞, n
(

1
p1
− 1

p2

)
+
≤ α < n

p1
if p1 > 1, and

n
(
1− 1

p2

)
+
< α < n if p1 = 1. Let also 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , and w2 ∈ Ωθ2.

Then the operator Mα is bounded from LMp1θ1,w1(·) to LMp2θ2,w2(·) if, and in the
case p1 = 1 only if,
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(i) if θ1 ≤ θ2 and θ1 <∞, then

sup
t>0

∥∥∥∥∥w2(r)
r

n
p2

(t+ r)
n
p1
−α

∥∥∥∥∥
Lθ2

(0,∞)

‖w1‖−1
Lθ1

(t,∞) <∞;

(ii) if θ2 < θ1 <∞, then∥∥∥∥w2(t)t
α−n

(
1

p1
− 1

p2

)
‖w2(r)r

α−n
(

1
p1
− 1

p2

)
‖

θ2
θ1−θ2

Lθ2
(t,∞)‖w1‖

− θ1
θ1−θ2

Lθ1
(t,∞)

∥∥∥∥
Lθ2

(0,∞)

<∞

and ∥∥∥∥∥w2(t)t
n
p2 ‖w2(r)r

n
p2 ‖

θ2
θ1−θ2

Lθ2
(0,t) sup

r>t

(
r

α− n
p1 ‖w1‖−1

Lθ1
(r,∞)

) θ1
θ1−θ2

∥∥∥∥∥
Lθ2

(0,∞)

<∞;

(iii) if θ1 = ∞, then∥∥∥∥w2(t)t
n
p2 sup

r>t

(
r

α− n
p1 ‖w1‖−1

L∞(r,∞)

)∥∥∥∥
Lθ2

(0,∞)

<∞.

Corollary 8.1. Let 1 < p1 ≤ p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, α = n
(

1
p1
− 1

p2

)
, w2 ∈ Ωθ2,

and ∥∥∥∥∥w2(r)

(
r

t+ r

) n
p2

∥∥∥∥∥
Lθ2

(0,∞)

<∞ (8.4)

for all t > 0. Moreover, if θ2 = ∞ and θ1 <∞ it is also assumed that

lim
t→∞

∥∥∥∥∥w2(r)

(
r

t+ r

) n
p2

∥∥∥∥∥
L∞(0,∞)

= 0 . (8.5)

Then
1) Mα is bounded from LMp1θ1,w∗

1
to LMp2θ2,w2, where w∗1 is a non-increasing con-

tinuous function on (0,∞) defined by

‖w∗1‖Lθ1
(t,∞) =

∥∥∥∥∥w2(r)

(
r

t+ r

)n/p2

∥∥∥∥∥
Lθ2

(0,∞)

, t ∈ (0,∞). (8.6)

2) If w1 ∈ Ωθ1 and Mα is bounded from LMp1θ1,w1 to LMp2θ2,w2, then

LMp1θ1,w1 ⊂ LMp1θ1,w∗
1
.

(Hence LMp1θ1,w∗
1

is the maximal among spaces LMp1θ1,w1 for which Mα is bounded
from LMp1θ1,w1 to LMp2θ2,w2.)
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Note that equality (8.6), under the assumptions (8.4) and (if θ2 = ∞ and θ1 <∞)
(8.5), defines a non-increasing continuous function w∗1 uniquely. In particular, if θ1 =
∞, then

w∗1(t) =

∥∥∥∥∥w2(r)

(
r

t+ r

)n/p2

∥∥∥∥∥
Lθ2

(0,∞)

, t ∈ (0,∞).

We also note that Corollary 8.1 holds for all 1 ≤ p1 ≤ p2 < ∞ if the space
LMp2θ2,w2(·) is replaced by the space LWMp2θ2,w2(·). So LMp1θ1,w∗

1(·) is the maximal
among spaces LMp1θ1,w1(·) for which Mα is bounded from LMp1θ1,w1(·) to LWMp2θ2,w2(·).

Corollary 8.2. If

1 < p1 ≤ p2 <∞, 0 < θ2 ≤ ∞, α = n

(
1

p1

− 1

p2

)
, and w2 ∈ Ωθ2 ,

or

1 ≤ p1 <∞, 0 < p2 <∞, θ2 = ∞ n

(
1

p1

− 1

p2

)
+

≤ α ≤ n

p1

, and w2 ∈ Ω∞,

then condition (7.14) is necessary and sufficient for the boundedness of Mα from Lp1

to LMp2θ2,w2(·) and from Lp1 to GMp2θ2,w2(·). (In the case of the spaces GMp2θ2,w2(·) we
assume that w2 ∈ Ωp2θ2 .)

9 Anisotropic fractional maximal operator

Let d = (d1, . . . , dn), di ≥ 1, i = 1, . . . , n, |d| =
∑n

i=1 di and tdx ≡ (td1x1, . . . , t
dnxn).

By [5, 27], the function F (x, ρ) =
∑n

i=1 x
2
i ρ
−2di , considered for any fixed x ∈ Rn, is a

decreasing one with respect to ρ > 0 and the equation F (x, ρ) = 1 is uniquely solvable.
This unique solution will be denoted by ρ(x). It is a simple matter to check that
ρ(x− y) defines a distance between any two points x, y ∈ Rn. Thus Rn, endowed with
the metric ρ, defines a homogeneous metric space ([5, 6, 27]). The balls with respect
to ρ, centered at x of radius r, are just the ellipsoids

Ed(x, r) =

{
y ∈ Rn :

(y1 − x1)
2

r2d1
+ · · ·+ (yn − xn)2

r2dn
< 1

}
,

with the Lebesgue measure |Ed(x, r)| = vnr
|d|. If d = 1 ≡ (1, . . . , 1), then clearly ρ(x) =

|x| and E1(x, r) = B(x, r). Note that in the standard parabolic case d = (1, . . . , 1, 2)

ρ(x) =

√
|x′|2 +

√
|x′|4 + 4x2

n

2
, x = (x′, xn).

Let 0 ≤ α < |d| and f ∈ Lloc
1 . The anisotropic fractional maximal function Md

αf is
defined by

Md
αf(x) = sup

t>0
|Ed(x, t)|−1+ α

|d|

∫
Ed(x,t)

|f(y)|dy .
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If α = 0, then Md ≡ Md
0 is the anisotropic maximal operator. If d = 1, then

Mα ≡ M1
α is the fractional maximal operator and M ≡ M1

0 is the Hardy-Littlewood
maximal operator.

In order to investigate the boundedness properties of the anisotropic fractional
maximal function Md

α it is natural to consider anisotropic local and global Morrey-
type spaces.

Definition 6. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on
(0,∞). We denote by LMpθ,w(·),d, GMpθ,w(·),d, the anisotropic local Morrey-type spaces,
the global Morrey-type spaces respectively, the spaces of all functions f measurable on
Rn with finite quasi-norms

‖f‖LMpθ,w(·),d
≡ ‖f‖LMpθ,w(·),d(Rn) =

∥∥w(r)‖f‖Lp(Ed(0,r))

∥∥
Lθ(0,∞)

,

‖f‖GMpθ,w(·),d
= sup

x∈Rn

‖f(x+ ·)‖LMpθ,w(·),d

respectively.

Note that GMpθ,w,1 = GMpθ,w, LMpθ,w,1 = LMpθ,w and

‖f‖LMp∞,1,d
= ‖f‖GMp∞,1,d

= ‖f‖Lp .

Furthermore, GMp∞,r−λ/p,d ≡Mp,λ,d, 0 ≤ λ ≤ |d|.

Lemma 9.1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on
(0,∞).

1. If for all t > 0
‖w(r)‖Lθ(t,∞) = ∞,

then LMpθ,w(·),d = GMpθ,w(·),d = Θ, where Θ is the set of all functions equivalent to 0
on Rn.

2. If for all t > 0
‖w(r)r|d|/p‖Lθ(0,t) = ∞,

then for all functions f ∈ LMpθ,w(·),d, continuous at 0, f(0) = 0, and for 0 < p < ∞
GMpθ,w(·),d = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

Definition 7. Let 0 < p, θ ≤ ∞. We denote by Ωθ the set of all functions w which are
non-negative, measurable on (0,∞), not equivalent to 0 and such that for some t > 0

‖w(r)‖Lθ(t,∞) <∞.

Moreover, we denote by Ωpθ,d the set of all functions w which are non-negative, mea-
surable on (0,∞), not equivalent to 0 and such that for some t > 0

‖w(r)‖Lθ(t,∞) <∞, and ‖w(r)r|d|/p‖Lθ(0,t) <∞.

Keeping in mind Lemma 9.1, when considering the spaces LMpθ,w,d we always as-
sume that w ∈ Ωθ, and when considering the spaces GMpθ,w,d we always assume that
w ∈ Ωpθ,d.
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Lemma 9.2. Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < |d|, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 ,
and w2 ∈ Ωθ2. Then the condition

α ≤ |d|
p1

is necessary for the boundedness of Md
α from LMp1θ1,w1(·),d to LMp2θ2,w2(·),d.

For the isotropic case d = 1 Lemma 9.2 reduces to Lemma 8.1.

Theorem 9.1. Let 1 ≤ p1 <∞, 0 < p2 <∞, |d|
(

1
p1
− 1

p2

)
+
≤ α < |d|

p1
if p1 > 1, and

|d|
(
1− 1

p2

)
+
< α < |d| if p1 = 1. Let also 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , and w2 ∈ Ωθ2.

Then the operator Md
α is bounded from LMp1θ1,w1(·),d to LMp2θ2,w2(·),d if, and in the

case p1 = 1 only if,
(i) if θ1 ≤ θ2 and θ1 <∞, then

sup
t>0

(
t
α− |d|

p1 ‖w2(r)r
|d|
p2 ‖Lθ2

(0,t) + ‖w2(r)r
α−|d|

(
1

p1
− 1

p2

)
‖Lθ2

(t,∞)

)
‖w1‖−1

Lθ1
(t,∞) <∞;

(ii) if θ2 < θ1 <∞, then∥∥∥∥w2(t)t
α−|d|

(
1

p1
− 1

p2

)
‖w2(r)r

α−|d|
(

1
p1
− 1

p2

)
‖

θ2
θ1−θ2

Lθ2
(t,∞)‖w1‖

− θ1
θ1−θ2

Lθ1
(t,∞)

∥∥∥∥
Lθ2

(0,∞)

<∞

and ∥∥∥∥w2(t)t
|d|
p2 ‖w2(r)r

|d|
p2 ‖

θ2
θ1−θ2

Lθ2
(0,t) S

(
r

α− |d|
p1 ‖w1‖−1

Lθ1
(r,∞)

)
(t)

θ1
θ1−θ2

∥∥∥∥
Lθ2

(0,∞)

<∞;

(iii) if θ1 = ∞, then∥∥∥w2(t)t
|d|
p2 S

(
r

α− |d|
p1 ‖w1‖−1

L∞(r,∞)

)
(t)
∥∥∥

Lθ2
(0,∞)

<∞.

Theorem 9.1 contains necessary and sufficient conditions if p1 = 1. If p1 > 1
it contains sufficient conditions. However for θ1 ≤ θ2 and the limiting case α =

|d|
(

1
p1
− 1

p2

)
Theorem 9.1 together with the appropriate necessity condition imply

the following necessary and sufficient conditions.

Theorem 9.2. 1. Let

1 < p1 ≤ p2 <∞, α = |d|
(

1

p1

− 1

p2

)
,

0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1, and w2 ∈ Ωθ2, then the condition∥∥∥∥∥w2(r)

(
r

t+ r

) |d|
p2

∥∥∥∥∥
Lθ2

(0,∞)

. ‖w1‖Lθ1
(t,∞) (9.1)
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uniformly in t ∈ (0,∞) is necessary and sufficient for the boundedness of Md
α from

LMp1θ1,w1(·),d to LMp2θ2,w2(·),d.
2. Let

1 ≤ p1 ≤ p2 <∞, α = |d|
(

1

p1

− 1

p2

)
,

0 < θ1 ≤ θ2 ≤ ∞, w1 ∈ Ωθ1, and w2 ∈ Ωθ2, then condition (9.1) is necessary and
sufficient for the boundedness of Md

α from LMp1θ1,w1(·),d to WLMp2θ2,w2(·),d.

Corollary 9.1. Let 1 < p1 ≤ p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, α = |d|
(

1
p1
− 1

p2

)
, and

w2 ∈ Ωθ2.
Then the statement of Corollary 8.1 holds under the assumption that n is re-

placed by |d| and LMp1θ1,w1(·), LMp1θ1,w∗
1(·), LMp2θ2,w2(·) are replaced by LMp1θ1,w1(·),d,

LMp1θ1,w∗
1(·),d, LMp2θ2,w2(·),d respectively.

The same refers to the comments related to Corillary 8.1.

Remark 11. The assumption made at the beginning of this section di ≥ 1, i = 1, . . . , n,
is not essential. One may assume that di > 0, i = 1, . . . , n. However, under this
assumption the function ρ(x− y), x, y ∈ Rn, is in general a quasi-distance, which does
note cause any problem. The results for arbitrary di > 0, i = 1, . . . , n can be derived
from the results for the case di ≥ 1, i = 1, . . . , n by using the following equality: for
any ν > 0

‖Md
αf‖LMp1θ1,w1(ρ),νd→LMp2θ2,w2(ρ),νd

= ‖M νd
ναf‖LM

p1θ1,w1(ρν )ρ

ν−1
θ1 ,νd

→LM
p2θ2,w2(ρν )ρ

ν−1
θ2 ,νd

.

(See [4], Section 7.)

10 Singular integrals

Let T be a Calderon-Zygmund operator, i.e. a linear operator taking C∞
0 into Lloc

1 ,
bounded on L2 and represented by

Tf(x) =

∫
Rn

K(x, y)f(y) dy a.e. on Rn \ suppf

for every function f ∈ L∞(Rn) with compact support. Here K(x, y) is a continuous
function away from the diagonal and satisfies the standard estimates: for some c1 > 0
and 0 < ε ≤ 1

|K(x, y)| ≤ c|x− y|−n,

for all x, y ∈ Rn, x 6= y and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)|

≤ c1

(
|x− x′|
|x− y|

)ε

|x− y|−n

whenever 2|x−x′| ≤ |x− y| for some constants c > 0, ε ∈]0, 1]. This class of operators
was introduced by R. Coifman and I. Meyers [22].
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The classical results for Calderon-Zygmund operators state that if 1 < p <∞ then
T is bounded from Lp(Rn) to Lp(Rn), and if p = 1 then T is bounded from L1(Rn) to
WL1(Rn) (see, for example, [48], [22]).

J. Peetre [42] studied the boundedness of singular integral operators in Morrey
spaces, and his results imply the following statement for Calderon-Zygmund operators
T .

Theorem 10.1. Let 1 < p < ∞, 0 ≤ λ < n
p
. Then Calderon-Zygmund operators T

are bounded from Mλ
p to Mλ

p .

If λ = 0, the statement of Theorem 10.1 reduces to the aforementioned result for
Lp.

In [17], [18] the class of genuine Calderon-Zygmund operators was introduced: an
operator T belongs to this class if it is a Calderon-Zygmund operator and for n ≥ 2
there exists c1, c2 > 0 n ≥ 2 and a rotation R such that

K(x, y) ≥ c1
|x− y|n

for all x ∈ Rn and y ∈ Cx where

Cx = x+R(C)

and
C =

{
y = (y, yn) ∈ Rn : yn > c2 |y| , y ∈ Rn−1

}
.

If n = 1 then it is assumed that there exists c1 > 0 such that

K(x, y) ≥ c1
|x− y|

for all x ∈ R and for all y > x or for all x ∈ R and for all y < x.
The Hilbert transform in which case K(x, y) = 1

x−y
and an operator of the form

K(x, y) =
Ω
(

x−y
|x−y|

)
|x− y|n

where Ω is a continuous function on the unit sphere homogeneous of order zero
whose modulus of continuity satisfies the Dini condition and such that Ω 6≡ 0 and∫

Sn−1 Ω(η)dη = 0, are examples of genuine Calderon-Zygmund operators.

Theorem 10.2. ([17], [18]) Let 1 < p <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2 .
1. If T is a genuine Calderon-Zygmund operator, then the condition∥∥∥∥∥w2(r)

(
r

t+ r

)n/p
∥∥∥∥∥

Lθ2
(0,∞)

. ‖w1‖Lθ1
(t,∞) (10.1)

uniformly in t ∈ (0,∞) is necessary for the boundedness of T from LMpθ1,w1(·) to
LMpθ2,w2(·).
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2. If T is a Calderon-Zygmund operator, θ1 ≤ θ2 and θ1 ≤ 1, then condition
(10.1) is sufficient for the boundedness of T from LMpθ1,w1(·) to LMpθ2,w2(·) and from
GMpθ1,w1(·) to GMpθ2,w2(·). (In the latter case we assume that w1 ∈ Ωpθ1 and w2 ∈ Ωpθ2.)

3. In particular, if T is a genuine Calderon-Zygmund operator, θ1 ≤ θ2 and θ1 ≤
1, then condition (10.1) is necessary and sufficient for the boundedness of T from
LMpθ1,w1(·) to LMpθ2,w2(·).

4. If T is a genuine Calderon-Zygmund operator, 1 ≤ p < ∞, θ1 ≤ θ2 and θ1 ≤
1, then condition (10.1) is necessary and sufficient for the boundedness of T from
LMpθ1,w1(·) to WLMpθ2,w2(·).

Remark 12. If w2 has certain regularity, namely if∥∥∥w2(r)r
n
p

∥∥∥
Lθ2

(0,t)
. w2(t)t

n
p
+ 1

θ2

uniformly in t ∈ (0,∞), then the assumption θ1 ≤ 1 in Theorem 10.2 can be replaced
by θ1 ≤ p.

Remark 13. Recall that for 1 < p <∞, 0 < θ1, θ2 ≤ ∞ condition (10.1) is necessary
and sufficient for the boundedness of the maximal operator M from LMpθ1,w1(·) to
LMpθ2,w2(·), and for 1 ≤ p < ∞, 0 < θ1, θ2 ≤ ∞ it is necessary and sufficient for the
boundedness of M from LMpθ1,w1(·) to WLMpθ2,w2(·) (Section 7 in Part I of the survey).

11 Hardy operator

We consider, for −∞ < α <∞, the Hardy operatorHα ≡ Hn,α defined for f ∈ Lloc
1 (Rn)

by

(Hαf)(x) =
1

|B(0, |x|)|1−
α
n

∫
B(0,|x|)

f(y)dy, x ∈ Rn .

This operator has certain relationship with the fractional maximal operator Mα defined
for 0 ≤ α < n.

One can easily verify that

(Mαf)(x) = sup
z∈Rn

(Hα(|f(·+ x)|))(z), x ∈ Rn ,

and
(Hα(|f |))(x) ≤ 2n−α(Mα(f))(x), x ∈ Rn . (11.1)

However the latter estimate is rather rough. It may easily happen that (Mαf)(x) = +∞
for all x ∈ Rn whilst (Hα(|f |)(x) < +∞ for all x ∈ Rn. (For example, this happens if
f(x) = 0 for |x| ≤ 1 and f(x) = |x|β for |x| > 1 where β > −α.) The reason for that
is that, for a fixed x ∈ Rn, the definition of (Mαf)(x) takes into account the values of
f(y) for all y ∈ Rn while the definition of (Hαf)(x) takes into account the values of
f(y) only for y ∈ B(0, |x|).
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Let, for 1 ≤ p1, p2 ≤ ∞ and for functions u1, u2 of one variable measurable on
(0,∞), for 3 p1 ≤ p2

I(u1, u2) =
∥∥∥∥∥u2(τ)τ

α−n+ n−1
p2

∥∥
Lp2 (t,∞)

∥∥u1(τ)
−1τ

n−1
p′1
∥∥

Lp′1
(0,t)

∥∥∥
L∞(0,∞)

and for p2 < p1

I(u1, u2) =
∥∥∥∥∥u2(τ)τ

α−n+ n−1
p2

∥∥
Lp2 (t,∞)

Λ(t)
∥∥∥

Ls(0,∞)
,

where 4

Λ(t) =
∥∥∥u1(τ)

−1τ
n−1
p′1

∥∥∥ p′1
p′2

Lp′1
(0,t)

u1(t)
− p′1

s t
n−1

s

and s is defined by
1

s
=

1

p2

− 1

p1

.

Direct application of the results of [49], [51], [37], where necessary and sufficient
conditions ensuring the boundedness of the Hardy operator from one Lebesgue space
to another one were obtained and the relationship between general Morrey-type spaces
and weighted Lebesgue spaces, described in Section 5 of Part I of the survey, imply the
following statement for the case of local Morrey-type spaces.

Theorem 11.1. Let 1 ≤ p1, p2 ≤ ∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1, and w2 ∈ Ωθ2 .
If p1 ≥ θ1 and p2 ≤ θ2, then the condition

I
(
‖w1‖Lp1 (t,∞), ‖w2‖Lp2 (t,∞)

)
<∞ (11.2)

is sufficient for the boundedness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·).
If p1 ≤ θ1 and p2 ≥ θ2, then this condition is necessary for the boundedness of Hα

from LMp1θ1,w1(·) to LMp2θ2,w2(·).
In particular, if θ1 = p1 and θ2 = p2, then this condition is necessary and sufficient

for the boundedness of Hα from LMp1p1,w1(·) to LMp2p2,w2(·).

Under certain regularity assumptions on w1 or w2 necessary and sufficient conditions
ensuring the boundedness of the Hardy operator from LMp1θ1,w1(·) to LMp2θ2,w2(·) can
be simplified. (See [19] for details.)

Corollary 11.1. If p1 ≥ θ1, p2 ≤ θ2, α <
n
p′2

for p2 <∞, and α ≤ n for p2 = ∞, then
the condition ∥∥tα−n( 1

p1
− 1

p2
)− 1

s ‖w1‖−1
Lθ1

(t,∞) ‖w2‖Lθ2
(t,∞)

∥∥
Ls(0,∞)

<∞ , (11.3)

3 If p1 = 1, then the factor
∥∥u1(τ)−1τ

n−1
p′1
∥∥

Lp′1
(0,t)

should be replaced by u1(t)−1 and if p2 = ∞,

then the factor
∥∥u2(τ)τα−n+ n−1

p2
∥∥

Lp2 (t,∞)
should be replaced by u2(t)tα−n.

4 If p2 = 1, then the factor
∥∥∥u1(τ)−1τ

n−1
p′1

∥∥∥ p′1
p′2

Lp′1
(0,t)

should be omitted.
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is sufficient for the boundedness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·).
If p1 ≤ θ1 and p2 ≥ θ2, then for any µ > 1 both conditions∥∥tα−n( 1

p1
− 1

p2
)− 1

s ‖w1‖−1
Lθ1

( t
µ

,∞) ‖w2‖Lθ2
(t,∞)

∥∥
Ls(0,∞)

<∞ ,

and ∥∥tα−n( 1
p1
− 1

p2
)− 1

s ‖w1‖−1
Lθ1

(t,∞) ‖w2‖Lθ2
(µt,∞)

∥∥
Ls(0,∞)

<∞

are necessary for the boundedness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·).
In particular, if θ1 = p1, θ2 = p2, α <

n
p′2

for p2 < ∞, α ≤ n for p2 = ∞ and, for
some µ > 1, one of the conditions

‖w1‖Lp1 (t,∞) . ‖w1‖Lp1 (µt,∞) or ‖w1‖Lp2 (t,∞) . ‖w2‖Lp2 (µt,∞)

uniformly in t ∈ (0,∞) is satisfied, then condition (11.3) is necessary and sufficient
for the boundedness of Hα from LMp1p1,w1(·) to LMp2p2,w2(·).

Lemma 11.1. Let α ∈ R, 1 ≤ p1 ≤ ∞, 0 < p2, θ1, θ2 ≤ ∞.
If w1 ∈ Ωθ1 and w2 ∈ Ωθ2, then the condition: for all t > 0

‖w2(r)r
α− n

p′2 ‖Lθ2
(t,∞) <∞ (11.4)

is necessary for the boundedness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·).
If w1 ∈ Ωp1θ1 and w2 ∈ Ωp2θ2, then this condition is also necessary for the bounded-

ness of Hα from GMp1θ1,w1(·) to GMp2θ2,w2(·).

Remark 14. For w2 ∈ Ωθ2 condition (11.4) implies that ‖w2‖Lθ2
(t,∞) < ∞ not only

for some t > 0 (which is the meaning of the condition w2 ∈ Ωθ2) but also for all t > 0.

Lemma 11.2. Let α ∈ R, 1 ≤ p1 ≤ ∞, 0 < p2, θ1, θ2 ≤ ∞, w1 ∈ Ωp1θ1, and w2 ∈ Ωp2θ2.
Then the condition

α ≤ n

p1

is necessary for the boundedness of Hα from GMp1θ1,w1(·) to GMp2θ2,w2(·).

Moreover, if in addition ‖w2(r)r
n
p2 ‖Lθ2

(0,∞) = ∞, then the condition

α <
n

p1

is necessary for the boundedness of Hα from GMp1θ1,w1(·) to GMp2θ2,w2(·).

In [19] the investigation of the boundedness of Hα in local and global Morrey-type
spaces was carried out under the following assumptions on the parameters:

α ≥ n

(
1

p1

− 1

p2

)
if 1 < p1 ≤ p2 ≤ ∞ or p1 = 1 and p2 = ∞ (11.5)

and

α > n

(
1

p1

− 1

p2

)
if p1 = 1 ≤ p2 <∞ or 0 < p2 < p1 ≤ ∞ . (11.6)
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Theorem 11.2. Let 1 ≤ p1 ≤ ∞, 0 < p2, θ1, θ2 ≤ ∞, and conditions (11.5), (11.6) be
satisfied.

1. Assume that w1 ∈ Ωθ1, w2 ∈ Ωθ2 and condition (11.4) is satisfied. Then for
θ1 ≤ θ2 the condition 5∥∥∥‖w2(t)t

α−n( 1
p1
− 1

p2
)‖Lθ2

(t,∞)‖w1‖−1
Lθ1

(t,∞)

∥∥∥
L∞(0,∞)

<∞ (11.7)

and for θ2 < θ1 <∞ the condition∥∥∥‖w2(t)t
α−n( 1

p1
− 1

p2
)‖Lθ2

(t,∞)‖w1‖
− θ1

θ2

Lθ1
(t,∞)w1(t)

θ1
σ

∥∥∥
Lσ(0,∞)

<∞ , (11.8)

where σ is defined by
1

σ
=

1

θ2

− 1

θ1

,

are sufficient for the boundedness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·).
2. Assume that w1 ∈ Ωp1θ1 , w2 ∈ Ωp2θ2, condition (11.4) is satisfied, the function

w2(r)r
n
p2 is almost increasing, 6 α ≤ n

p1
, and α < n

p1
if ‖w2(r)r

n
p2 ‖Lθ2

(0,∞) = ∞.
Then conditions (11.7) and (11.8) are sufficient for the boundedness of Hα also from
GMp1θ1,w1(·) to GMp2θ2,w2(·).

Remark 15. In contrast to the operators Mα and Iα, the operator Hα does not possess
property

(Hα(f(·+ h)))(x) = (Hαf)(x+ h), x, h ∈ Rn.

This is the reason why in the second part of this theorem there are additional assump-
tions on w2 which allow passing from the case of local Morrey-type spaces to the case
of global Morrey-type spaces.

Theorem 11.3. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 < θ1 ≤ θ2 ≤ ∞, and conditions
(11.5), (11.6) be satisfied.

1. Assume that w1 ∈ Ωθ1, w2 ∈ Ωθ2 and condition (11.4) is satisfied. If for p1 = 1,
for some γ > 1,

‖w2(r)r
α−n( 1

p1
− 1

p2
)‖Lθ2

(t,∞) . ‖w2(r)r
α−n( 1

p1
− 1

p2
)‖Lθ2(γt,∞)

(11.9)

uniformly in t ∈ (0,∞) or for p1 > 1, for some ε > 0, γ > 1,

‖w2(r)r
α−n( 1

p1
− 1

p2
)‖Lθ2

(t,∞) . tε‖w2(r)r
α−n( 1

p1
− 1

p2
)−ε‖Lθ2(γt,∞)

(11.10)

uniformly in t ∈ (0,∞), then condition (11.7) is necessary and sufficient for the bound-
edness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·).

2. Assume that w1 ∈ Ωp1θ1 , w2 ∈ Ωp2θ2, condition (11.4) is satisfied, the function
w2(r)r

n
p2 is almost increasing, α ≤ n

p1
, and α < n

p1
if ‖w2(r)r

n
p2 ‖Lθ2

(0,∞) = ∞. If, in
addition to (11.9) and (11.10)

t
− n

p1 ‖w1(r)r
n
p1 ‖Lθ1(0,t)

. ‖w1(r)‖Lθ1
(t,∞) (11.11)

uniformly in t ∈ (0,∞), then condition (11.7) is also necessary and sufficient for the
boundedness of Hα from GMp1θ1,w1(·) to GMp2θ2,w2(·).

5 If α = n
(

1
p1
− 1

p2

)
, then it coincides with condition (11.3).

6 i. e., for some c ≥ 1, w(r)r
n
p2 ≤ cw(%)%

n
p2 for all 0 < r < % < ∞.
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Remark 16. Let us compare the necessary and sufficient conditions ensuring the
boundedness of the operators Hα, Mα, and Iα in general local Morrey-type spaces.

This can be done if

1 < p1 < p2 <∞, 0 < θ1 ≤ θ2 ≤ ∞, α = n
( 1

p1

− 1

p2

)
,

w1 ∈ Ωθ1 , w2 ∈ Ωθ2 and conditions (11.4), (11.10) are satisfied, when the necessary and
sufficient conditions for all three operators Hα, Mα, and Iα are known.

Under these assumptions by Theorem 11.3 Hn( 1
p1
− 1

p2
) is bounded from LMp1θ1,w1(·)

to LMp2θ2,w2(·) if and only if

sup
t>0

‖w2‖Lθ2
(t,∞)‖w1‖−1

Lθ1
(t,∞) <∞ ,

by Theorem 8.2 Mn( 1
p1
− 1

p2
) is bounded from LMp1θ1,w1(·) to LMp2θ2,w2(·) if and only if

sup
t>0

(
t
− n

p2 ‖w2(r)r
n
p2 ‖Lθ1

(0,t) + ‖w2‖Lθ2
(t,∞)

)
‖w1‖−1

Lθ1
(t,∞) <∞ ,

and by Theorem 7.5 this condition is also necessary and sufficient for the boundedness
of In( 1

p1
− 1

p2
) from LMp1θ1,w1(·) to LMp2θ2,w2(·).

Moreover, if

p1 = 1, 0 < p2 <∞, 0 < θ1 ≤ θ2 <∞, n
(
1− 1

p2

)
+
< α < n ,

w1 ∈ Ωθ1 , w2 ∈ Ωθ2 and conditions (11.4), (11.9) are satisfied, then by Theorem 11.3
Hα is bounded from LM1θ1,w1(·) to LMp2θ2,w2(·) if and only if

sup
t>0

‖w2(r)r
α−n(1− 1

p2
)‖Lθ2

(t,∞)‖w1‖−1
Lθ1

(t,∞) <∞

and by Theorem 8.3 Mα is bounded from LM1θ1,w1(·) to LMp2θ2,w2(·) if and only if

sup
t>0

(
tα−n‖w2(r)r

n
p2 ‖Lθ2

(t,∞) + ‖w2(r)r
α−n(1− 1

p2
)‖Lθ2

(t,∞)

)
‖w1‖−1

Lθ1
(t,∞) <∞ . (11.12)

If 0 < θ1 ≤ 1, then condition (11.12) is also necessary and sufficient for the bound-
edness of Iα from LM1θ1,w1(·) to LMp2θ2,w2(·). If θ1 > 1, then Iα is bounded from
LM1θ1,w1(·) to LMp2θ2,w2(·) if and only if apart from condition (11.12) also

sup
t>0

‖w2(r)r
n
p2 ‖Lθ2

(0,t)

∥∥∥∥wθ1−1
1 (r)rα−n

‖w1‖θ1

Lθ1
(r,∞)

∥∥∥∥
Lθ′1

(t,∞)

<∞ .

(See Theorem 7.6.)
Clearly the conditions for the boundedness of Hα are in general weaker than for

Mα and the conditions for the boundedness of Mα are in general weaker than for Iα
which conforms with inequalities (8.1) and (11.1), though sometimes they coincide.
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In [21] further necessary and sufficient conditions are obtained ensuring the bound-
edness of Hα from LMp1θ1,w1(·) to LMp2θ2,w2(·) for the case θ1 = p1. Recall that
LMp1p1,w1(·) = Lp1,u1(·) where

u1(x) = ‖w1‖Lp1 (|x|,∞),

so in this case the problem under consideration is a problem of boundedness of the
operator Hα from a weighted space Lp1,u1(·) with a radially symmetric non-negative
non-increasing weight u1 to a local Morrey-type space LMp2θ2,w2(·).

In [21] this problem is considered for a more general multi-dimensional Hardy op-
erator Hϕ(·) defined for all functions f ∈ Lloc

1 by

(Hϕ(·)f)(x) = ϕ(|x|)
∫

B(0,|x|)

f(y)dy, x ∈ Rn,

where ϕ is a fixed non-negative measurable function on (0,∞) which is not equivalent to
0, and for radially symmetric non-negative weights u1, not necessarily non-increasing.
Clearly H|B(0,|x|)|

α
n−1 ≡ Hα.

Lemma 11.3. Let 1 ≤ p ≤ ∞, 0 < p2, θ ≤ ∞, w ∈ Ωθ, u(x) = v(|x|), x ∈ Rn, where
v is a non-negative measurable function on (0,∞), and c1 > 0.

The inequality
‖Hϕ(·)f‖LMp2θ,w(·) ≤ c1‖f‖Lp1,u(·)

for all functions f ∈ Lp1,u(·) is equivalent to the inequality( ∞∫
0

wθ(r)

( r∫
0

(Hϕ̃g)
p2dt

) θ
p2

dr

) 1
θ

≤ c2‖g‖Lp1,ũ(0,∞)

for all non-negative functions g ∈ Lp1,ũ(·)(0,∞), where

(Hϕ̃(·)g(t) = ϕ̃(t)

t∫
0

g(s)ds,

ϕ̃(t) = ϕ(t)t
n−1
p2 , ũ(t) = v(t)t

−n−1
p′1 , c2 = c1σ

−( 1
p′1

+ 1
p2

)

n ,

and σn = nvn is the surface area of the unit sphere Sn−1 in Rn.

Theorem 11.4. Let 1 < p1 ≤ p2 ≤ θ <∞ or 1 < p1 ≤ θ < p2 <∞, and let u,w be as
in Lemma 11.3. Then the operator Hϕ(·) is bounded from Lp1,u(·) to LMp2θ,w(·) if and
only if

B1 = sup
β>0

( ∞∫
β

wθ(r)

( r∫
β

ϕ̃p2ds

) θ
p2

dr

) 1
θ
( β∫

0

ũ−p′1dr

) 1
p′1
<∞ . (11.13)

Moreover,

σ
1

p′1
+ 1

p2
n B1 ≤ ‖Hϕ(·)‖Lp1,u(·)→LMp2θ,w(·) ≤ 4σ

1
p′1

+ 1
p2

n B1.
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Remark 17. Since the functions w and ϕ are not equivalent to 0 on (0,∞) it follows
from (11.13) that ũ−p′1 ∈ L1(0, β) for all β > 0.

Theorem 11.5. Let 0 < p2 < p1 ≤ θ <∞ , p1 > 1, and ũ−p′1 ∈ L1(0, β) for all β > 0
or p2 > 1. Then the operator Hϕ(·) is bounded from Lp1,u(·) to LMp2θ,w(·) if and only if
max{B1, B2} <∞, where

B2 = sup
β>0

( ∞∫
β

wθdr

) 1
θ
( β∫

0

( β∫
t

ϕ̃p2dr

) p2
p1−p2

ϕ̃p2(t)

( t∫
0

ũ−p′1dr

) p2(p1−1)
p1−p2

dt

) p1−p2
p1p2

.

Moreover,
‖Hϕ(·)‖Lp1,u(·)→LMp2θ,w(·) ≈ max{B1, B2}

uniformly in u and w.

Theorem 11.6. Let 0 < p2 < θ < p1 < ∞ , θ > 1, and ũ−p′1 ∈ L1(0, β) for all β > 0
or p2 > 1. Then the operator Hϕ(·) is bounded from Lp1,u(·) to LMp2θ,w(·) if and only if
max{B3, B4} <∞, where

B3 =

( ∞∫
0

( ∞∫
β

wθ(r)

( r∫
β

ϕ̃(s)ds

) θ
p2

dr

) p1
p1−θ

( β∫
0

ũ−p′1dt

) p1(θ−1)
p1−θ

ũ−p′1(β)dβ

) p1−θ
p1θ

,

B4 =

( ∞∫
0

( ∞∫
β

wθ(r)dr

) θ
p1−θ

Λ(β)wθ(β)dβ

) p1−θ
p1θ

,

and

Λ(β) =

( β∫
0

( β∫
t

ϕ̃(s)ds

) p2
p1−p2

( t∫
0

ũ−p′1dτ

) p2(p1−1)
p1−p2

dt

) θ(p1−p2)
p2(p1−θ)

.

Moreover,
‖Hϕ(·)‖Lp1,u(·)→LMp2θ,w(·) ≈ max{B3, B4},

uniformly in u and w.
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