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УДК 512.542

О  НЕКОТОРЫХ  КЛАССАХ  
ПОДРЕШЕТОК  РЕШЕТКИ  ВСЕХ  ПОДГРУПП

А. Н. СКИБА1)

1)Гомельский государственный университет им. Франциска Скорины,  
ул. Советская, 104, 246019, г. Гомель, Беларусь

В настоящей статье G всегда обозначает группу. Если K и H – подгруппы группы G, где K – нормальная 
подгруппа группы H, то фактор-группа группы H по K называется секцией группы G. Такая секция является 
нормальной, если K и H – нормальные подгруппы группы G, и тривиальной, если K и H равны. Назовем про-
извольное множество S нормальных секций группы G расслоением группы G, если оно содержит каждую три-
виальную нормальную секцию группы G, и будем говорить, что расслоение S группы G является G-замкнутым, 
если S содержит каждую такую нормальную секцию группы G, которая G-изоморфна некоторой нормальной сек-
ции группы G, принадлежащей множеству S. Пусть теперь S – произвольное G-замкнутое расслоение группы G 
и пусть L – множество всех таких подгрупп A группы G, что фактор-группа группы V по W, где V – нормальное 
замыкание A в G, а W – нормальное ядро A в G, принадлежит S. Опишем условия на S, при которых множество L 
является подрешеткой решетки всех подгрупп группы G, а также обсудим некоторые применения этой подрешет-
ки в теории обобщенных конечных T-групп.

Ключевые слова: группа; решетка подгрупп; модулярная решетка; формационное множество Фиттинга; фор-
мация Фиттинга.



36

Журнал Белорусского государственного университета. Математика. Информатика. 2019;3:35 – 47
Journal of the Belarusian State University. Mathematics and Informatics. 2019;3:35 – 47 

ON  SOME  CLASSES  OF  SUBLATTICES  
OF  THE  SUBGROUP  LATTICE

A. N. SKIBAa

aFrancisk Skorina Gomel State University,  
104 Saveckaja Street, Homiel 246019, Belarus

In this paper G always denotes a group. If K and H are subgroups of G, where K is a normal subgroup of H, then the 
factor group of H by K is called a section of G. Such a section is called normal, if K and H are normal subgroups of G, 
and trivial, if K and H are equal. We call any set S of normal sections of G a stratification of G, if S contains every trivial 
normal section of G, and we say that a stratification S of G is G-closed, if S contains every such a normal section of G, 
which is G-isomorphic to some normal section of G belonging S. Now let S be any G-closed stratification of G, and let L 
be the set of all subgroups A of G such that the factor group of V by W, where V is the normal closure of A in G and W is 
the normal core of A in G, belongs to S. In this paper we describe the conditions on S under which the set L is a sublattice 
of the lattice of all subgroups of G and we also discuss some applications of this sublattice in the theory of generalized 
finite T-groups. 

Keywords: group; subgroup lattice; modular lattice; formation Fitting set; Fitting formation.

Introduction
In this paper G always denotes a group. Moreover, L G( ) denotes the set (the lattice) of all subgroups of G 

and Ln G( ) is the set (the lattice) of all normal subgroups of G. In this paper F is a class of groups containing 
all identity groups, N* is the class of all finite quasinilpotent groups, N is the class of all finite nilpotent groups 
and U is the class of all finite supersoluble groups.

A class of groups F is said to be a Fitting formation if the following conditions hold: (1) for every normal 
subgroup N of any group G ∈ F both groups N and G/N belong to F; (2) G ∈ F whenever G has normal sub-
groups A and B and either G/A, G/B ∈ F and A ∩ B = 1 or G = AB and A, B ∈ F.

One of the organizing ideas of the group theory is the idea to study the group G depending on the presence 
in it a subgroup system L having desired properties. Such an approach is the most effective in the case when L 
forms a sublattice of L G( ), that is, A ∩ B ∈ L and A B, ∈L for all A, B ∈ L. This circumstance makes the 
general problem of finding sublattices in L G( ) important and interesting.

One of the first results in this direction was obtained by Wielandt in his paper [1], where it was proved that 
the set Lsn G( ) of all subnormal subgroups of the group G having a composition series is a sublattice of L G( ). 
In the case when G is finite, an original generalization of the lattice Lsn G( ) was found by Kegel [2]. A sub-
group A of G is called F-subnormal in G in the sense of Kegel [2] or K-F-subnormal in G [3, definition 6.1.4], 
if there is a subgroup chain A A A A Gt= ≤ ≤ … ≤ =0 1  such that either A Ai i− 1   or A Ai i Ai

/ −( ) ∈1 F for all 
i = 1, …, t. Kegel proved [2] that if the class F is closed under extensions, epimorphic images and subgroups, 
then the set LFsn G( ) of all K-F-subnormal subgroups of a finite group G is a sublattice of the lattice L G( ). For 
every set p of primes, we may choose the class F of all p-groups. In this way we obtain infinitely many functors 
LFsn assigning to every finite group G a sublattice of L G( ) containing Lsn G( ). Subsequently, this result was 
generalized (also in the universe of all finite groups) on the basis of methods of the formation theory (see, in 
particular, [4; 5] and chapter 6 in [3]).

In this paper, we develop a new approach for finding sublattices in L G( ), where G is an arbitrary group, 
and we also discuss some applications of such sublattices.

The main concepts and results
If K H G ≤ , then H/K is called a section of G; such a section is called: normal if H and K are normal 

subgroups of G; trivial if H = K; a chief factor of G provided K < H and for any normal subgroup L of G with 
K ≤ L ≤ H we have either K = L or L = H. We write H K T LG/ /  provided the normal sections H/K and T/L of G 
are G-isomorphic; Ch H KG /( ) denotes the set of all chief factors T/L of G with K ≤ L < T ≤ H; AG is the normal 
closure of the subgroup A in G and A AG

x

x G
=

∈


. If D is any set of chief factors of G (not necessary non-empty), 
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then we write S DG ( ) to denote the set of all normal sections H/K of G such that either K = H or K < H and 
the series K < H can be refined to a chief series of G between K and H (of finite length) with Ch H KG /( ) ⊆ D.

We call a set S of normal sections of G a stratification of G if S contains every trivial normal section of G 
and we say that a stratification S of G is G-closed provided H/K ∈ S whenever H/K is a normal section of G with 
H K T LG/ / ∈S.

Now let S be any stratification of G. Then write LS G( ) to denote the set of all subgroups A of G with 
AG/AG ∈ S.

We will use SG F( ) to denote the set of normal sections H/K of G such that H/K ∈ F.
Definition. We say (by analogy with the definition of the Fitting set of a group [6, p. 537]) that a G-closed 

stratification S of G is a  formation Fitting set of G if the following conditions hold:
(i) for every two normal sections H/K and T/K of G where T/K ∈ S and H ≤ T, we have H/K, T/H ∈ S;

(ii) H K N/ ∩( ) ∈S for every two sections H/K, H/N ∈ S;
(iii) HV K/ ∈S for every two sections H/K, V/K ∈ S.
The usefulness of this concept is primarily based on the following our three results.
Theorem 1. If S S D= ( )G  for some G-closed set D of chief factors of G or S S= ( )G F  for some Fitting  for

mation F, then S is a formation Fitting set of G.
Theorem 2. The set LS G( ) forms a sublattice in L G( ) for each formation Fitting set S of G.
Theorem 3. The inclusion L Ln G G( ) ⊆ ( )S  holds for every formation Fitting set S of G. Moreover, in the 

case when G satisfies the maximality condition the lattice LS G( ) is distributive if and only if L LS G Gn( ) = ( ) 
is distributive.

From theorems 1 and 2 we get the following.
Corollary 1. Let F be either the class of all nilpotent groups, or the class of all soluble groups, or the class 

of all  finite quasinilpotent groups. Then the set L
FSG

G( ) ( ) forms a sublattice in L G( ).
We say that a chief factor H/K of G is F-central in G [7] if 

H K G C H KG/ / /( ) ( )( ) ∈ã F.

Let D M A= ã  and R N B= ã . Then the pairs M A,( ) and R B,( ) are said to be equivalent provided there 
are isomorphisms f M N: →  and g A B: →  such that f a ma g a f m g a− −( ) = ( ) ( ) ( )1 1  for all m ∈ M and a ∈ A.

In fact, the following lemma is known (see, for example, lemma 3.27 in [7]) and it can be proved by the 
direct verification.

Lemma 1. Let D M A= ã  and R N B= ã . If the pairs M A,( ) and R B,( ) are equivalent, then D R .
Lemma 2. Let N, M and K < H ≤ G be normal subgroups of G, where H/K is a chief factor of G:
(1) if N ≤ K, then H K G C H K H N K N G N C H N K NG G N/ / / / / / / / / / /( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )( )ã ã / ;
(2) if T/L is a chief factor of G and H/K and T/L are G-isomorphic, then C H K C T LG G/ /( ) = ( ) and 

H K G C H K T L G C T LG G/ / / / / /( ) ( )( ) ( ) ( )( )ã ã ;
(3) MN N G C MN N M M N G C M M NG G/ / / / / /( ) ( )( ) ∩( ) ∩( )( )ã ã .
P r o o f. (1) In view of the G-isomorphisms H K H N K N/ / / / ( ) ( ) and 

G C H K G N C H K NG G/ / / / / /( ) ( ) ( )( ) ,
the pairs 

H K G C H K H N K N G N C H N K NG G N/ / / / / / / / / / /, , , /( )( ) ( ) ( ) ( ) ( ) ( )( )( )
are equivalent. Hence statement (1) is a corollary of lemma 1.

(2) A direct check shows that C C H K C T LG N G= ( ) = ( )/ / /  and that the pairs H K G C/ /,( ) and T L G C/ /,( ) are 
equivalent. Hence statement (2) is also a corollary of lemma 1.

(3) This follows from the G-isomorphism MN N M M N/ / ∩  and part (2).
The lemma is proved.
In view of lemma 2, we get from theorems 1 and 2 the following fact.
Corollary 2. Let D be the set of all F-central chief factors of G. Then the set LS D( ) ( )G  forms a sublattice 

in L G( ).
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Remark 1. (i) Let S G( ) be the set of all formation Fitting sets of G. It is clear that S G( ) is partially ordered 
with respect to set inclusion and the formation Fitting set H K H K Gn/ | , ∈ ( ){ }L  is the greatest element in 
S G( ). Moreover, for every set S i i I∈{ } of formation Fitting sets of G the intersection S i

i I∈


 is also a formation 

Fitting set of G and so S i
i I∈


 is the greatest lower bound for S i i I∈{ } in S G( ). Therefore S G( ) is a complete 

lattice. The set H H H G/ | { } is the smallest element in S G( ).
(ii) Let X be any set of normal sections of G. Then the set S i i I∈{ } of all formation Fitting sets of G con-

taining X is non-empty and the intersection S i
i I∈


 is a formation Fitting set of G by part (i). We say that S i
i I∈


 

is the formation Fitting set of G generated by X and denote it by formfit X( ). If X = { }T L/  is a singleton set, we 
write formfit /T L( ) instead of formfit /T L{ }( ) and say that formfit /T L( ) is a one-generated formation Fitting 
set of G.

(iii) Let E and N be subgroups of G, where N is normal in G. Then for any stratification S of G we 
use SN/N and S ∩ E to denote the stratification NH N NK N H K/ / / /( ) ( ) ∈{ }S  of G/N and the stratification 
T E L E T L∩( ) ∩( ) ∈{ }/ / S  of E, respectively. If S is a formation Fitting set of G, then SN/N is a formation 

Fitting set of G/N (see proposition (iv) below).
From theorem 1 we get the following useful result.
Corollary 3. Let X be a set of normal sections of G and T L/ formfit∈ = ( )S X . Then the following state

ments hold:
(i) T/L ∈ F for every Fitting formation F containing X;

(ii) if H K Ch T L/ /∈ ( ), then H K F SG/ /  for some F S Ch V W/ /∈ ( ) and V/W ∈ X.
For any two sections H/K and T/L of G we write H/K ≤ T/L provided K ≤ L and H ≤ T. Then the set of all 

sections of G is partially ordered with respect to ≤.
The proofs of theorems 2 and 3 are based on the following useful observation.
Proposition. Let S be a formation Fitting set of G and let E and N be subgroups of G, where N G . Then:

(i) S, ≤  is a lattice in which HV/KW is the least upper bound and H V K W∩( ) ∩( )/  is the greatest 
lower bound of H K V W/ /,{ } for any two its sections H/K, V/W;

(ii) if T/L ∈ S, then L T L/( ) is isomorphic to the interval T L,[ ] in L S G( );
(iii) if f G G: *→  is an isomorphism, then f T L T Lf fS S( ) = ∈{ }: / /  is a formation Fitting set of G*. More

over, if S is hereditary, then f S( ) is hereditary;
(iv) SN/N is a formation Fitting set of G/N and S SN N H N K N H K N K/ / / / / and= ( ) ( ) ∈ ≤{ }.  
P r o o f. (i) Since H/K ∈ S and K V H K H K∩( ) ≤/ / , we have K V H K∩( ) ∈/ S. Hence from the G-iso-

morphism 
H V K V H V K V H K V H K∩( ) ∩( ) = ∩( ) ∩ ∩( ) ∩( )/ / /

we get that H V K V∩( ) ∩( ) ∈/ S. Similarly, V H W H∩( ) ∩( ) ∈/ S. But then we get that 

H V K V W H H V K W∩( ) ∩( ) ∩ ∩( )( ) = ∩( ) ∩( ) ∈/ / S

since S is a formation Fitting set of G by hypothesis.
From the G-isomorphism 

H KW KW H H KW H K H W( ) ∩( ) = ∩( )/ / /

we get that HKW/KW ∈ S since H W K K H K∩( ) ≤/ / .  Similarly, one can get that VKW/KW ∈ S. Moreover, 

HV KW HKW KW VKW KW/ / /= ( )( )
and so HV/KW ∈ S. Hence statement (i) holds.

(ii) This statement follows from the fact that for every subgroup H of G with L ≤ H ≤ T we have L ≤ HG 
and H  G ≤ T.
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(iii) This assertion can be proved by direct checking.
(iv) First note that, in view of part (i), V/W ∈ S always implies that VN/WN ∈ S, so every normal section of 

G/N in SN/N is of the form V N W N/ / /( ) ( ) for some V/W ∈ S.
(1) SN/N is G N/( )-closed.
Indeed, if 

H N K N V N W N N NG N/ / / / / / //( ) ( ) ( ) ( ) ∈ S ,

then H K V WG/ / ( ) ∈S. Hence H/K ∈ S, so H N K N N N/ / / /( ) ( ) ∈S .
(2) For every two normal sections H N K N/ / /( ) ( ) and T N K N/ / /( ) ( ) of G/N, where H/N ≤ T/N and 

T N K N N N/ / / /( ) ( ) ∈ S  both sections H N K N/ / /( ) ( ) and T N H N/ / /( ) ( ) belong to SN/N. (This assertion is 
evident.)

(3) H N K N L N N N/ / / / /( ) ( ) ∩ ( )( ) ∈S  for every two normal sections H N K N H N L N N N/ / / / / / /( ) ( ) ( ) ( ) ∈, .S  
From 

H N K N H N L N N N/ / / / / / /( ) ( ) ( ) ( ) ∈, S

we get that H/K, H/L ∈ S and so H K L/ ∩( ) ∈S, which implies that 

H N K N L N H N K L N N N/ / / / / / / /( ) ( ) ∩ ( )( ) = ( ) ∩( )( ) ∈S .

(4) H N V N K N N N/ / / / /( )( ) ( ) ∈S  for every two normal sections H N K N V N K N N N/ / / / / / /( ) ( ) ( ) ( ) ∈, .S  
From H N K N V N K N N N/ / / / / / /( ) ( ) ( ) ( ) ∈, S  it follows that HV/K ∈ S, which implies that H N V N K N N N/ / / / /( )( ) ( ) ∈S .

H N V N K N N N/ / / / /( )( ) ( ) ∈S .
Hence statement (iv) holds.
The proposition is proved.
Before proceeding, consider some examples.
Example 1. (i) If X = { }G/1 , then 

formfit / /G H K H K G1 ,( ) = { }
and so 

L Lformfit G G G/ .1( ) ( ) = ( )
(ii) If F is the class of all identity groups, then L L

FSG
G Gn( ) ( ) = ( ).

(iii) Let p > q > 2 be primes, where q divides p – 1. Let Q be a non-abelian group of order q3. Then Q 
has a unique minimal normal subgroup, so there exists a simple Fp Q-module P which is faithful for Q. Then 
P p> . Let G P Q C Cp q= ( ) × ( )ã ã , where C Cp qã  is a non-abelian group of order pq. Let D is the set of all 

those chief factors of G on which G induces an abelian group of automorphisms. Then 

L L LP G G AC A G x G
G n q

x( ) ⊆ ( ) = ( ) ∪ ∈{ }( )S D  , .

Therefore for every Fitting formation F we have L L
FS D SG G

G( ) ( )( ) ≠  since otherwise P ∈ F and so 

L L L
F

P G
G G

( ) ⊆ = ( )( ) ( )S S D .

(iv) Let A be a non-abelian simple group and F the class of all groups B such that either B = 1 or B is the direct 
product of isomorphic copies of A. Let G A A K A= =0 ,� �  where A A0   and K A AA= × ×1   is the base 
group of the regular wreath product G. Then K is the unique minimal normal subgroup of G by [6, chapter A, 
proposition 18.5]. Moreover, 

S S: , 1, , , 1 1= ( ) = { }G G K K G G K KF / / / / /

is clearly a formation Fitting set of G, so L
FSG

G( ) ( ) is a sublattice of L G( ). We show that L L
FS S DG G

G( ) ( )≠ ( ) for 
every G-closed set D of chief factors of G. Indeed, assume that L L

FS S DG G
G G( ) ( )( ) = ( ). Then for all subgroups 

L ≤ K and K ≤ R ≤ G we have LG/LG = K/1 and RG/RG = G/K, so L R G, .∈ ( )( )LS D  Therefore R/1, G/K ∈ D and 
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hence G G/1 .∈ ( )S D  Thus L LS DG
G G( ) ( ) = ( ) and so A G

G
∈ ( )( )L

FS . But then G/1 = AG/AG ∈ F, which means that 
G is the direct product of isomorphic copies of A. This contradiction shows that 

L L
FS S DG G

G( ) ( )≠ ( )
for every G-closed set D of chief factors of G.

(v) The class of groups F is called a saturated if F contains every finite group G with G G/F( ) ∈F.
Now let A be a maximal subgroup of a finite group G and let F be a saturated Fitting formation. Let D be 

the set of all F-central chief factors of G. Then G/AG = AG/AG ∈ F if and only if A AG
G G/ ∈ ( )S D  (see lemma 5 

below). Therefore A G
G

∈ ( )( )L
FS  if and only if A G

G
∈ ( )( )LS D .

In conclusion of this section note that some special versions of theorems 2 and 3 were proved in the pa-
pers [8–10]. In particular, in the paper [9], the following results were proved.

Corollary 4 (see theorem 1.4(ii) in [9]). Let G be a finite group and S S D= ( ), where D is the set of all 
central chief factors of G. Then the lattice LS G( ) is distributive if and only if L LS G Gn( ) = ( ) is distributive.

Corollary 5 (see theorem 1.2 in [9]). Let G be a finite group and either S S D= ( ), where D is the set of all 
F-central chief factors of G for some class of groups containing all identity groups F, or S S= ( )G F  for some 
Fitting formation F, then LS G( ) is a sublattice in L G( ).

Some further applications
A group is called primary if it is a finite p-group for some prime p. If s s= ∈{ }i i I  is any partition of the 

set of all primes P, that is, P =
∈

si
i I


 and si ∩ sj = ∅ for all i ≠ j, then we say, following [11], that the group G is: 

s-primary if it is a finite si-group for some i; s-soluble if G is finite and every its chief factor is s-primary; 
s-nilpotent or s-decomposable [12] if G = G1 × … × Gn for some s-primary groups G1, …, Gn. Observe that 
a finite group is primary (respectively soluble, nilpotent) if and only if it is s-primary (respectively s-soluble, 
s-nilpotent), where s = { } { } …{ }2 3, , .

In this section we discuss some applications of the lattice LS G( ) in the theory of finite groups. And we start 
with one application of the lattices L

NSG
G

s( ) ( ) and LS DG
G( ) ( ), where Ns is the class of all s-nilpotent groups 

and D is the set of all s-central, that is, Ns-central chief factors of G, in the theory of generalized T-groups.
Lattice characterizations of finite s-soluble PsT-groups. We say, following [11], that the subgroup A of 

G is s-subnormal in G if it is Ns-subnormal in G in the sense of Kegel. Note that a subgroup A of G is subnor-
mal in G if and only if A is s-subnormal in G, where s = { } { } …{ }2 3, , .

A subgroup A of a finite group G is said to be: quasinormal (respectively S-quasinormal or S-permu
table [13]) in G if A permutes with all subgroups (respectively with all Sylow subgroups) H of G, that is, 
AH = HA; s-permutable in G [11] if A permutes with all Hall si-subgroups of G for all i.

Recall that a finite group G is said to be a T-group (respectively PT-group, PST-group) if every subnormal 
subgroup of G is normal (respectively permutable, S-permutable) in G; G is said to be a PsT-group if every 
s-subnormal subgroup of G is s-permutable in G.

The description of PST-groups, that are groups, in which every subnormal subgroup is S-permutable, was 
first obtained by Agrawal [14], for the soluble case, and by Robinson in [15], for the general case. In the further 
publications, authors (see, for example, the recent papers [16 –25]) have found out and described many other 
interesting characterizations of soluble PST-groups. Some characterizations of PsT-groups were obtained in 
the papers [11; 26]. Theorem 2.4 allows to prove the following result in this line research.

Theorem 4. Suppose that G is a finite s-soluble group. Then G is a PsT-group if and only if 
L L

NS S DG G
G G

s( ) ( )( ) = ( ), where D is the set of all s-central chief factors of G. 
The proof of theorem 4 consists of many steps and it uses theorems 1 and 2 and also the following lemmas.
Lemma 3. Let F be a class of groups, N be a normal subgroup of G and S be a  formation Fitting set of G. 
(1) If S S D= ( )G , where D is the set of all F-central chief factors of G, then S S DN N G N/ /= ( )∗ , where D* is 

the set of all F-central chief factors of G/N.
(2) S SG G NN NF F( ) = ( )/ / .  
P r o o f. (1) This follows from proposition (iv) and the fact that a chief factor H N K N/ / /( ) ( ) is F-central in 

G/N if and only if the chief factor H/K is F-central in G (see lemma 2(1)).
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(2) This follows from proposition (iv).
The lemma is proved.
Lemma 4. Let S be a formation Fitting set of G and let A G∈ ( )LS  and N ≤ H ≤ G, where N G :
(1) AN N G NN N/ //∈ ( )LS ;
(2) if H N G NN N/ //∈ ( )LS , then H G∈ ( )LS ; 
(3) A E EE∩ ∈ ( )∩( )Lformfit S   for every subgroup E of G.

P r o o f. (1) Since A G∈ ( )LS , AG/AG ∈ S and so 

A N N A N N N NG
G/ / / /( ) ( ) ∈S .

On the other hand, we have that 
AN N AN N A N NG N G G/ / /( ) = ( ) =/ ,

where A N N AN NG G N/ /≤ ( ) / . Hence 
AN N AN N N NG N

G N/ / / /( ) ( ) ∈/
/ S

since S N/N is a formation Fitting set of G/N by proposition (iv), so AN N G NN N/ //∈ ( )LS .
(2) Since H N G NN N/ //∈ ( )LS , we have 

H N H N H N H N N NG
G

G N
G N/ / / / / / /( ) ( ) = ( ) ( ) ∈/

/ S

and so H G/HG ∈ S by proposition (i). Hence H G∈ ( )LS .
(3) Let S S0 .= ∩( )formfit E  It is clear that 

A E A E EG
G∩( ) ∩( ) ∈ ∩ ⊆/ S S0.

On the other hand, we have 

A E A E A E A E A EG E
E G∩ ≤ ∩( ) ≤ ∩ ≤ ∩( ) ≤ ∩

and so A E A EE
E∩( ) ∩( ) ∈/ S0  since S0 is a formation Fitting set of E. Hence A E E∩ ∈ ( )LS0

.
The lemma is proved.
Lemma 5. Let F be a saturated formation and G be a finite group: 
(1) if G ∈ F, then every chief factor of G is F-central in G;
(2) if G has a normal subgroup N with G/N ∈ F such that every chief factor of G below N is F-central in G, 

then G ∈ F.
P r o o f. (1) This part directly follows from the Barnes – Kegel result [6, chapter IV, proposition 1.5].
(2) In fact, in view of part (1) and the Jordan – Hölder’s theorem for the chief series, it is enough to show 

that if every chief factor of G is F-central in G, then G ∈ F. Assume that this is false and let G be a counter-
example of minimal order. Then G has a unique minimal normal subgroup, R say, and R G F( ). Moreover, R 
is abelian since otherwise we have G G C R GG / /( ) = ∈1 .F  Hence R C RG= ( ) by [6, chapter A, theorem 15.6] 
and for some maximal subgroup M of G we have G = R ã M. Therefore the map 

f G R G C R R G RG: → ( )( ) = ( )ã ã/ /
with f rm r mR( ) = ( ),  for all r ∈ R and m ∈ M is isomorphism, so G ∈ F since the factor R/1 is F-central in G 
by hypothesis.

The lemma is proved.
Recall that the s-nilpotent residual GNs of a finite groups G is the intersection of all normal subgroups N 

of G with s-nilpotent quotient G/N.
Lemma 6 (see theorem A in  [26]). Let D G= Ns be the s-nilpotent residual of a finite group G. If G is 

s-soluble PsT-group, then the following conditions hold:
(1) G = D ã M, where D is an abelian Hall subgroup of G of odd order, M is s-nilpotent and every element 

of G induces a power automorphism in D;
(2) O D

is ( ) has a normal complement in a Hall si-subgroup of G for all i.
Conversely, if conditions (1) and (2) hold for some subgroups D and M of G, then G is a PsT-group.
Lemma 7. Let N be a normal subgroup of a finite group G such that every chief factor of G below N is 

G-central in G. Then N is s-nilpotent, and if N is a si-group, then O G C Ni
G

s ( ) ≤ ( ). 
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P r o o f. Let 1 = Z0 < Z1 < … < Zt = N be a chief series of G below N and C C Z Zi G i i= ( )−/ 1 . First we show 
that N is s-nilpotent. By hypothesis, Z1 and G/G1 are sj-groups for some  j. Now let H/K be any chief factor 
of N such that H ≤ Z1. From the isomorphism C N N N C N1 1/ / ∩( ) it follows that H/K and N C H KN/ /( ) are 
sj-groups. Therefore every chief factor of N below Z1 is Ns-central in N. On the other hand, N/Z1 is s-nilpotent 
by induction and so N is s-nilpotent by lemma 5, condition (2).

Finally, assume that N is a si-group and let C = C1 ∩ … ∩ Ct. Then G/C is a si-group. On the other hand, 
C C N A Aut NG/ ( ) ≤ ( )  stabilizes the series 1 = Z0 < Z1 < … < Zt = N, so C C NG/ ( ) is a p N( )-group by [6, chap-
ter A, corollary 12.4]. Hence C C NG/ ( ) is a si-group, so O G C Ni

G
s ( ) ≤ ( ). The lemma is proved.

Now consider some applications of theorem 4.
Recall that Z Gs ( ) denotes the s-hypercentre of G [11], that is, the largest normal subgroup of G such that 

every chief factor of G below Z Gs ( ) is s-central in G. We say, following [13, p. 20], that a subgroup H of 
a finite group G is s-hypercentrally embedded in G if H H Z G HG G/ /≤ ( )s  and hypercentrally embedded in G 
if H H Z G HG G/ /≤ ( )∞ .

Corollary 6 (see theorem 4.1 in [11]). Let G be a finite s-soluble group. If every s-subnormal subgroup of 
G is s-hypercentrally embedded in G, then G is a PsT-group. 

In the case where s = { } { } …{ }2 3, ,  we get from theorem 3.1 the following known characterization of 
finite soluble PST-groups.

Corollary 7 (see theorem 1.3 in [10]). Suppose that G is a finite soluble group. Then G is a PST-group if 
and only if L L

NS S DG
G G( ) ( )( ) = ( ), where D is the set of all central chief factors H/K of G, that is, C H K GG /( ) = .  

Corollary 8 (see theorem 2.4.4 in [13]). Let G be a finite group. G is a soluble PST-group if and only if 
every subnormal subgroup H of G is hypercentrally embedded in G (that is H H Z G HG G/ /≤ ( )∞ ).  

Groups with S-normal and S-abnormal subgroups. Let S be a formation Fitting set of G. Then we say 
that a subgroup A of G is: (i) S-normal in G if A G∈ ( )LS ; (ii) S-abnormal in G provided H EE∉ ( )∩( )Lformfit S  
for all subgroups H < E of G, where A ≤ H.

Example 2. (i) A subgroup A of G is normal in G if and only if it is S-normal in G, where S = { }H H H G/  .
(ii) A subgroup A of G is called abnormal in G if g A Ag∈ ,  for all g ∈ G. If G is a soluble finite group, 

then A is abnormal in G if and only if A is S-abnormal in G, where S S= ( )G N , by [12, chapter IV, theo-
rem 1.7.1].

(iii) Let D be the set of all F-central chief factors of G and S S D= ( )G . If G is finite, then a subgroup A of G 
is called: (a) F-normal in G [8] if AG/AG ∈ S, (b) F-abnormal in G [8] if H is not F-normal in E for every two 
subgroups H < E of G such that A ≤ H. Therefore a subgroup A of G is F-normal (F-abnormal) in G if and only 
if it is S-normal (respectively S-abnormal) in G, where S S D= ( )G .

(iv) Let G be finite. If A is s-hypercentrally embedded in G, that is, A A Z G AG G/ /≤ ( )s , then A A Z G AG
G G/ /≤ ( )s . 

In particular, if A is hypercentrally embedded in G, then A A Z G AG
G G/ /≤ ( )∞ . Therefore A is s-hypercentrally 

(hypercentrally) embedded in G if and only if it is S-abnormal in G, where S S D= ( )G  and D is the set of all 
s-central (respectively central) chief factors of G.

Recall that a finite group G is a DM-group [8] if G = D ã M and the following conditions hold: (1) D G= ′ ≠ 1 
is abelian; (2) M x=  is a cyclic abnormal Sylow p-subgroup of G, where p is the smallest prime dividing G ; 

(3) M x Z GG
p= = ( ); (4) x induces a fixed-point-free power automorphism on D.

In the paper [27], Fattahi defined B-groups to be a finite groups in which every subgroup is either normal 
or abnormal and he showed that a non-nilpotent finite group G is a B-group if and only if G is a DM-group. 
As a generalization of this result, Ebert and Bauman classified the group in which every subgroup is either 
subnormal or abnormal [28]. In further, the results in [27] have been developed in many other directions (see, 
for example, the recent papers [8; 29–33]).

We say that G is a S NA-group if every subgroup of G is either S-normal or S-abnormal in G for some for-
mation Fitting set S of G.

The results in [8; 27–33] and also many other known results of this type are the motivation for the following 
question.
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Question 1. Let S be a formation Fitting set of a finite group G. What we can say about the structure of 
G in the case when at least one of the following conditions holds: (i) every subgroup of G is S-normal in G; 
(ii) G is a S NA-group, where S S D= ( )G  for some G-closed set D of chief factors of G or S S= ( )G F  for some 
hereditary (in the sense of Mal’cev [34] ) Fitting formation F?

Note that the answer to question 1 for some special S is known. Let, for example, S = { }H H H G/  . 
Then: (i) every subgroup of G is S-normal in G if and only if G is a Dedekind group; (ii) G is a S NA-group if 
and only if G is a P-group by example 2(i) and 2(ii) since every P-group is clearly soluble.

Now let D be the set of all F-central chief factors of a finite group G and S S D= ( )G , where F is a hereditary 
saturated formation containing all nilpotent groups. Then G is a S NA-group if and only if every subgroup of G 
is either F-normal or F-abnormal in G by example 2(iii). Such a class of finite groups is also known.

Theorem 5 (see theorem 1.4 in [8]). Let F be a hereditary saturated formation containing all nilpotent 
groups. If every subgroup of a finite group G is either F-normal or F-abnormal in G, then G is of either of the 
following types:

(I) G ∈ F;
(II) G = D ã M is a DM-group, where D = G F, and M is an F-abnormal subgroup of G with M Z GG = ( )F .
Conversely, in a group G of type (I) or (II) every subgroup is either F-normal or F-abnormal.
In this theorem Z GF ( ) denotes the F-hypercentre of G, that is the product of all normal subgroups N of G 

such that either N = 1 or N ≠ 1 and every chief factor of G below N is F-central in G.
Finite groups G with modular lattices LS G( ) and Lsn G( ). A subgroup A of G is called: subnormal in G 

if there exists a subgroup series A A A A A Gt t= = ( )− ∗0 1 1 ;     composition in G if every factor Ai /Ai – 1 
of the series ∗( ) is a simple group. Note that a subgroup A of a finite group G is subnormal in G if and only if 
it is composition in G.

Now let S be a formation Fitting set of G. We say a subgroup A of G is S-subnormal in G if there 
exists a subgroup series A A A A A Gt t= =−0 1 1     of G such that Ai – 1 is Si-normal in Ai , where 
S Si iA= ∩( )formfit , for all i = 1, …, t.

By classical Wielandt’s result [35, theorem 1.1.5], the set Lsn G( ) of all composition subgroups of G forms 
a sublattice of L G( ).

Question 2. Let G be finite. For which conditions on the formation Fitting set S of G the set of all S-subnor-
mal subgroups of G forms a sublattice of L G( )?

In some special cases the answer to question 2 is known. Indeed, L Ln G G( ) = ( )S , where S = { }H H H G/  , 
is modular. In the paper [9] the following result in this direction was obtained.

Theorem 6 (see theorem 1.4 in [9]). Let G be finite and S S D= ( )G , where D is the set of all central chief 
factors of G. Then the lattice LS G( ) is modular if and only if every two subgroups A B G, ∈ ( )LS  are permu-
table, that is AB = BA. 

Zappa, in his paper [36], described conditions under which the lattice Lsn G( ), where G is finite, is modular.
Theorem 7 (see theorem 9.2.3 in [35]). The following properties of the finite group G are equivalent:
(a) the lattice Lsn G( ) is modular;
(b) if T S , where S is subnormal in G and S/T is a p-group, p a prime, then L S T/( ) is modular;
(c) if T S , where S is subnormal in G and S T p/ = 3, p a prime, then L S T/( ) is modular.
A new characterization of finite groups with modular lattice of the subnormal subgroups was given in the 

paper [9].
Theorem 8 (see theorem 1.3 in [9]). Let G be a finite group. Then the lattice Lsn G( ) is modular if and only 

if for every two subnormal subgroups L ≤ T of G, where L T∈ ( )LS  and S S= ( )∗
T N , L permutes with every 

subnormal subgroup M of T.
Finite groups factorized by S-normal subgroups. It is well-known that the product G = AB of two nor-

mal finite supersoluble groups A and B is not supersoluble in general. Nevertheless, such a product is su-
persoluble if the indices G A:  and G B:  are coprime [37, chapter 4, theorem 3.4]. Moreover, by Doerk’s 
result [38], the finite group G is supersoluble if it has four supersoluble subgroups A1, A2, A3, A4 whose indices 
G A G A G A G A: , : , : , :1 2 3 4  are pairwise coprime. In this paper, we prove the following result in this line 
research.
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Theorem 9. Suppose that G is finite and let D is the set of all cyclic chief factors of G and S S D= ( )G . 
Then G is supersoluble if and only if G has three S-normal supersoluble subgroups A1, A2, A3 whose indices 
G A G A G A: : :1 2 3, ,  are pair coprime.

Lemma 8 (see lemma 4.5 in [6, chapter IV]). Let G be a finite group in F, where F is a saturated Fitting 
formation and let p G∈ ( )p . If X G O Gp p= ( )′/ ,  and R is an irreducible Fp X-module, then R ã X ∈ F.

P r o o f  o f  t h e o r e m 9. We need only to show that the sufficiency of the condition of the theorem holds. 
Assume that this is false and let G be a counterexample of minimal order. Then G ≠ Ai ≠ 1 for all i and G is 
soluble by Wielandt’s theorem [6, chapter I, theorem 3.4]. Moreover, from G A G Ai j: , :( ) = 1 for i ≠ j it fol-
lows that G = A1 A2 = A1 A3 = A2  A3.

Let R be a minimal normal subgroup of G. Then R is a p-group for some prime p. Note also that S S DR R G R/ /= ( )∗ ,
S S DR R G R/ /= ( )∗ , where D* is the set of all cyclic chief factors of G/R by lemma 3(1). On the other hand, the sub-

group Ai R /R belongs the lattice LSR R G/ ( ) by lemma 4(1), so A R R G Ri G R
/ /

/
∈ ( )∗( )LS D

. Note also that A R R A A Ri i i/ / ∩( )
A R R A A Ri i i/ / ∩( ) is supersoluble. Therefore the hypothesis hods for G/R. Hence G/R is supersoluble, so R is the 

unique minimal normal subgroup of G and R GF( ). Thus R C R O GG p= ( ) = ( ) for some prime p by [6, chap-
ter A, theorem 15.6]. Let Gp be a Sylow p-subgroup of G.

From the hypothesis it follows that for some i ≠ j and some x, y ∈ G we have R G Ap
x

i≤ ≤  and R G Ap
y

j≤ ≤ . 

Since R C RG= ( ), F A O Ai p i( ) = ( ). On the other hand, Ai is supersoluble and so A F A A O Ai i i p i/ /( ) = ( ) is abe-

lian. Hence A N Gi G p
x≤ ( ). It follows that A N Gi

x
G p

−

≤ ( )1

. Similarly, A N Gj
y

G p
−

≤ ( )1

. Then 

G A A A A N Gi j i
x

j
y

G p= = ≤ ( )− −1 1

and so 
R O G G O A O Ap p p i p j= ( ) = = ( ) = ( ).

Now we show that R ≤ Ak, where j ≠ k ≠ i. Assume that R Ak . Then Ak G( ) = 1 and Ak
G ≠ 1 since Ak ≠ 1. 

Hence R Ak
G≤ , which implies that R/1 is cyclic and so G is supersoluble. This contradiction shows that R ≤ A3, 

so R G O A F Ap p k k= = ( ) = ( ).
Therefore A1 R /R, A2 R/R, A3 R/R are abelian subgroup of G/R whose indices 

G R A R R G R A R R G R A R R/ / / / / /: , : , :1 2 3

are pair coprime, so G/R is nilpotent by Kegel’s theorem [39]. Moreover, for every Sylow subgroup Q/R of 
G/R we have that Q/R ≤ Ai /R or Q/R ≤ Aj /R. Hence for some subgroups A R A Ri/ /  and B R A Rj/ /  we have 
G R A R B R/ / /= ( ) × ( ). It is clear that the subgroups A and B are supersoluble and so the group A × B is super-
soluble. It is clear also that O A R O Bp p p p′ ′( ) = = ( ), , . Hence 

X A B O A B A R B R G Rp p= ×( ) ×( ) ( ) × ( )′/ / / /, . 

But then G is supersoluble by lemma 8. This contradiction completes the proof of the result.
A subgroup M of G is called modular in G if M is a modular element (in the sense of Kurosh [35, p. 43]) of 

the lattice L G( ). It is known that [35, theorem 5.2.3] for every modular subgroup A of G all chief factors of G 
between AG and AG are cyclic. Therefore we get from theorem 9 the following result.

Corollary 9. If G is finite and G has three modular supersoluble subgroups A1, A2, A3 whose indices G A G A G A: : :1 2 3, ,
G A G A G A: : :1 2 3, ,  are pair coprime, then G is supersoluble.
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