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O HEKOTOPbBIX KAACCAX
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B nacrosmeli cratbe G Beerga obo3HauaeT rpyniy. Ecnn K u H — moarpymmsl rpynnsl G, tae K — HopMaiibHas
noarpymma rpymmsl H, To dakrop-rpynma rpynmnsl H mo K HaspiBaeTcs cexnmeil rpynnsl G. Takas cexius sSBIseTcs
HOpMaJbHOH, eciiu K 1 H — HOpManbHbIe TOATPYNIbl rpynnsl G, U TpUBHAIBHOH, ecau K u H paBHbl. Ha3oBem mpo-
U3BOJIBHOE MHOXECTBO X HOPMAJbHBIX CeKLUH rpynmsl G paccioeHueM rpynisl G, €Clii OHO COAEPIKUT KaxIyro TpHU-
BHAJIBHYIO HOPMaJIBHYIO CEKIUIO TpymnIisl G, 1 Oy/eM TOBOPHTH, YTO paccioeHue X rpymisl G sBisiercs: G-3aMKHYTBIM,
€CJIM X CONIEPXKUT KaXKAYIO TaKy0 HOPMaJIbHYIO CEKIHIO rpynmbl G, KoTopast G-u3oMopdHa HEKOTOPOH HOPMAJIBHON CeK-
uu Tpynnsl G, TpuHAAIeKamed MHOKeCTBY 2. I1ycTh Tenephb X — mpou3BonbHOe G-3aMKHYTOE paccioeHue rpymisl G
U IyCTh L — MHOXKECTBO BCEX TaKHUX MOATPYM A rpynmsl G, 9To dakTop-rpymmna rpynnsl V mo W, rae V — HopMaiabHOE
3aMbIkaHue 4 B G, a W — HopManbHOe A1po 4 B G, MpuHAIISKUT 2. ONUIIEM yCIOBHS Ha X, IPU KOTOPBIX MHOXKECTBO L
SIBJISIETCSI TIOJIPEIISTKON PEIIeTKH BCEX MOArPYII rpymnsl G, a Takke 00CyMM HEKOTOpbIE MPUMEHEHHS ATOH MOJperIeT-
KM B TEOPHU 000OIIEHHBIX KOHEUHBIX 7-IpyIIIL.
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ON SOME CLASSES OF SUBLATTICES
OF THE SUBGROUP LATTICE

A. N. SKIBA*

‘Francisk Skorina Gomel State University,
104 Saveckaja Street, Homiel 246019, Belarus

In this paper G always denotes a group. If K and H are subgroups of G, where K is a normal subgroup of H, then the
factor group of H by K is called a section of G. Such a section is called normal, if K and H are normal subgroups of G,
and trivial, if K and H are equal. We call any set X of normal sections of G a stratification of G, if X contains every trivial
normal section of G, and we say that a stratification X of G is G-closed, if X contains every such a normal section of G,
which is G-isomorphic to some normal section of G belonging X. Now let X be any G-closed stratification of G, and let L
be the set of all subgroups 4 of G such that the factor group of V' by W, where V' is the normal closure of 4 in G and W is
the normal core of 4 in G, belongs to X. In this paper we describe the conditions on X under which the set L is a sublattice
of the lattice of all subgroups of G and we also discuss some applications of this sublattice in the theory of generalized
finite 7-groups.

Keywords: group; subgroup lattice; modular lattice; formation Fitting set; Fitting formation.

Introduction

In this paper G always denotes a group. Moreover, S(G) denotes the set (the lattice) of all subgroups of G
and Sn(G) is the set (the lattice) of all normal subgroups of G. In this paper § is a class of groups containing
all identity groups, M is the class of all finite quasinilpotent groups, I is the class of all finite nilpotent groups
and 4 is the class of all finite supersoluble groups.

A class of groups § is said to be a Fitting formation if the following conditions hold: (1) for every normal
subgroup N of any group G € § both groups N and G/N belong to §; (2) G € § whenever G has normal sub-
groups A and B and either G/4, G/Be FandANnB=1orG=A4ABand 4, B€ 5.

One of the organizing ideas of the group theory is the idea to study the group G depending on the presence
in it a subgroup system £ having desired properties. Such an approach is the most effective in the case when £

forms a sublattice of £(G), thatis, A " B e £ and (4, B) e £ for all 4, B € £. This circumstance makes the
general problem of finding sublattices in S(G) important and interesting.

One of the first results in this direction was obtained by Wielandt in his paper [1], where it was proved that
the set £,(G) of all subnormal subgroups of the group G having a composition series is a sublattice of £(G).
In the case when G is finite, an original generalization of the lattice £,(G) was found by Kegel [2]. A sub-
group A of G is called §-subnormal in G in the sense of Kegel [2] or K-§-subnormal in G [3, definition 6.1.4],
if there is a subgroup chain 4 =4,< 4, <...< 4,= G such that either 4,_, < 4, or Ai/(Ai_l)A € § for all

i=1, ...t Kegel proved [2] that if the class § is closed under extensions, epimorphic images and subgroups,
then the set £, (G) of all K-§-subnormal subgroups of a finite group G is a sublattice of the lattice £(G). For
every set 7 of primes, we may choose the class §§ of all T-groups. In this way we obtain infinitely many functors
£, assigning to every finite group G a sublattice of £(G) containing £ ,(G). Subsequently, this result was
generalized (also in the universe of all finite groups) on the basis of methods of the formation theory (see, in
particular, [4; 5] and chapter 6 in [3]).

In this paper, we develop a new approach for finding sublattices in S(G), where G is an arbitrary group,
and we also discuss some applications of such sublattices.

The main concepts and results

If K< H <G, then H/K is called a section of G; such a section is called: normal if H and K are normal
subgroups of G; trivial if H = K; a chief factor of G provided K < H and for any normal subgroup L of G with
K<L <Hwehave either K=L or L = H. We write H/K = T/L provided the normal sections H/K and 7/L of G

are G-isomorphic; Ch,, (H /K ) denotes the set of all chief factors 7/L of G with K < L < T< H; A is the normal

closure of the subgroup 4 in G and 4; = ﬂ A" If A is any set of chief factors of G (not necessary non-empty),
xeG
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then we write £ (A) to denote the set of all normal sections H/K of G such that either K = H or K < H and
the series K < H can be refined to a chief series of G between K and H (of finite length) with Ch, (H /K ) c A

We call a set X of normal sections of G a stratification of G if £ contains every trivial normal section of G
and we say that a stratification X of G is G-closed provided H/K € ¥ whenever H/K is a normal section of G with
H/IK=;,T/L € %.

Now let Z be any stratification of G. Then write SZ(G) to denote the set of all subgroups 4 of G with
A4, € X.

We will use ZG(S ) to denote the set of normal sections H/K of G such that H/K € §.

Definition. We say (by analogy with the definition of the Fitting set of a group [6, p. 537]) that a G-closed
stratification X of G is a formation Fitting set of G if the following conditions hold:
(1) for every two normal sections H/K and 7/K of G where T/K € £ and H < T, we have H/K, T/H € Z;

(ii) H/(K N N) € X for every two sections H/K, H/N € Z;

(i) HV /K € Z for every two sections H/K, V/K € Z.
The usefulness of this concept is primarily based on the following our three results.

Theorem 1. [f X = ZG(A)for some G-closed set A of chief factors of Gor T=X% (&)for some Fitting for-
mation §, then X is a formation Fitting set of G.

Theorem 2. The set SZ(G) forms a sublattice in S(G) for each formation Fitting set X of G.

Theorem 3. The inclusion SH(G) c EZ(G) holds for every formation Fitting set X of G. Moreover, in the

case when G satisfies the maximality condition the lattice SZ(G) is distributive if and only ifSZ(G) = Sn(G)
is distributive.

From theorems 1 and 2 we get the following.

Corollary 1. Let § be either the class of all nilpotent groups, or the class of all soluble groups, or the class

of all finite quasinilpotent groups. Then the set £y (g)(G) forms a sublattice in E(G)
We say that a chief factor H/K of G is §-central in G [7] if

(H/K)x (G/C,(HIK))€e 3.
Let D= M x 4 and R = N x B. Then the pairs (M, A) and (R, B) are said to be equivalent provided there
are isomorphisms f: M — N and g: A — B such that f(a_lma) = g(a_l)f(m)g(a) forallme Manda e A.

In fact, the following lemma is known (see, for example, lemma 3.27 in [7]) and it can be proved by the
direct verification.
Lemma 1. Let D= M x A and R= N X B. If the pairs (M, A) and (R, B) are equivalent, then D = R.

Lemma 2. Let N, M and K < H < G be normal subgroups of G, where H/K is a chief factor of G:

(1) if N<K, then (HIK) % (G/C4(HIK)) = (HIN)/(KIN)) % ((GIN)/Cq ((HIN)/(KIN)));

(2) if TIL is a chief factor of G and H/K and T/L are G-isomorphic, then CG(H/K) =C; (T/L) and
(HIK)x (G/C4(HIK)) = (T/L)x (G/C4(T/L));

(3) (MN/N) % (G/C4(MNIN)) = (M/M A N)x (G/C4(MIM A N)).

Proof. (1) In view of the G-isomorphisms H/K = (H/N)/(K/N) and

G/C,;(HIK)=(GIN)/(C;(HIK)IN),
he pairs
e (H/K, GIC,(HIK)). (HIN)/(KIN), (GIN)/Cq, (H/N)/(K/N)))

are equivalent. Hence statement (1) is a corollary of lemma 1.
(2) A direct check shows that C = C;;,, (H /K )= C,; (T/L) and that the pairs (H/K, G/C) and (T/L, G/C) are

equivalent. Hence statement (2) is also a corollary of lemma 1.
(3) This follows from the G-isomorphism MN/N = M/M N N and part (2).
The lemma is proved.
In view of lemma 2, we get from theorems 1 and 2 the following fact.
Corollary 2. Let A be the set of all §-central chief factors of G. Then the set 22( A)(G) forms a sublattice

in S(G).
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Remark 1. (i) Let £(G) be the set of all formation Fitting sets of G. It is clear that £(G) is partially ordered
with respect to set inclusion and the formation Fitting set {H /K|H, K e En(G)} is the greatest element in
Z(G). Moreover, for every set {Ei |z' el } of formation Fitting sets of G the intersection n %, is also a formation

iel
Fitting set of G and so ﬂ X, is the greatest lower bound for {Zi|i el } in Z(G). Therefore Z(G) is a complete
iel
lattice. The set {H /H|HJ G} is the smallest element in Z(G).
(i1) Let X be any set of normal sections of G. Then the set {Z ,.|i el } of all formation Fitting sets of G con-

taining X is non-empty and the intersection ﬂ X, is a formation Fitting set of G by part (i). We say that ﬂ z,
iel iel

is the formation Fitting set of G generated by X and denote it by formfit(X). If X = {T/L} is a singleton set, we

write formfit (T /L) instead of formfit ({T /L}) and say that forrnﬁt(T /L) is a one-generated formation Fitting
set of G.
(ii1) Let £ and N be subgroups of G, where N is normal in G. Then for any stratification X of G we

use XN/N and £ N E to denote the stratification {(NH /N )/ (NK /N )|H /K € E} of G/N and the stratification
{(T NE )/ (L NE )|T /L e E} of E, respectively. If ¥ is a formation Fitting set of G, then ZN/N is a formation

Fitting set of G/N (see proposition (iv) below).
From theorem 1 we get the following useful result.
Corollary 3. Let X be a set of normal sections of G and T/L € £ = formfit (%) Then the following state-
ments hold:
(i) T/L € § for every Fitting formation § containing X;
(ii) if HIK € Ch(T/L), then H/K = F/S for some F/S € Ch(V/W) and VIW € X.

For any two sections H/K and T/L of G we write H/K < T/L provided K < L and H < T. Then the set of all
sections of G is partially ordered with respect to <.

The proofs of theorems 2 and 3 are based on the following useful observation.

Proposition. Let X be a formation Fitting set of G and let E and N be subgroups of G, where N < G. Then:

(i) <2, S> is a lattice in which HVIKW is the least upper bound and (H N V)/(K N W) is the greatest
lower bound of {H /K, V/ W} for any two its sections H/K, VIW;
(ii) if TIL € &, then £ (T/L) is isomorphic to the interval [T, L] in SZ(G);
(iii) if : G — G is an isomorphism, then f(Z) = {Tf/Lf|T/L € Z} is a formation Fitting set of G". More-
over, if X is hereditary, then f (Z) is hereditary,
(iv) ENIN is a formation Fitting set of GIN and IN/N ={(H/N)/(K/N)H/K € £ and N <K}.

Proof. (i) Since H/K € X and K(Vﬁ H)/K < H/K, we have K(Vﬁ H)/K € X. Hence from the G-iso-
morphism

(HAV)(KnV)=(HNV)(KNnVNH)=K({V N H)/K
we get that (H N V)/(K nV) € Z. Similarly, (V" H)/(W N H) € Z. But then we get that
(HaV)/(KAV)n(WAH)=(HAV)/(KAW)eX

since X is a formation Fitting set of G by hypothesis.
From the G-isomorphism

H(KW)/KW =H/(HNKW)=H/K(HNW)
we get that HKW/KW € X since (H N W)K/K < H/K. Similarly, one can get that VKW/KW e %. Moreover,

HVIKW = (HKW /KW (VKW /KW )

and so HV/KW € XZ. Hence statement (i) holds.
(i1) This statement follows from the fact that for every subgroup H of G with L < H < T we have L < H,
and HO < T.
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(ii1) This assertion can be proved by direct checking.
(iv) First note that, in view of part (i), V/W € X always implies that VN/WN € X, so every normal section of

G/N in ZN/N is of the form (V/N)/(W/N) for some V/W e X.

(1) EN/N is (G/N )-closed.
Indeed, if

(H/N)/(K/IN) =g, (V/IN)/(W/N)eZNIN,
then H/K = (V/W) e X. Hence H/K € X, so (H/N)/(K/N) e ZN/N.
(2) For every two normal sections (H/N)/(K/N) and (T/N)/(K/N) of G/N, where H/N < T/N and

(T/N)/(K/N) € XN/N both sections (H/N)/(K/N) and (T/N)/(H/N) belong to ZN/N. (This assertion is

evident.)
(3)(H/N)/((K/N) " (LIN)) € ENIN for every two normal sections (H/N)/(K/N), (H/N)/(L/N) € ZN/N.

From
(H/N)/(K/N), (HIN)/(LIN) € EN/N

we get that H/K, H/L €  and so H/(K N L) € X, which implies that
(H/N)/((KIN) " (LIN)) = (HIN)/((K "~ L)/N)e ZNIN.
(4) (H/N)(VIN)/(K/N) e N/N for every two normal sections (H/N)/(K/N), (V/IN)/(K/N)e ZN/N.

From (H/N)/(K/N), (VIN)/(K/N) e ZNJ/N it follows that HV/K € £, which implies that (H/N)(V/N)/

/(K/N) e ZNJN.

Hence statement (iv) holds.
The proposition is proved.
Before proceeding, consider some examples.

Example 1. (i) If X ={G/1}, then
formfit(G/1)= {H/K|H, K < G}
and so
’gformﬁ((c/l)(G) = Q(G)'

(if) If § is the class of all identity groups, then £ o (G)=£,(G).

(iii) Let p > ¢ > 2 be primes, where ¢ divides p — 1. Let O be a non-abelian group of order ¢°. Then Q
has a unique minimal normal subgroup, so there exists a simple I, O-module P which is faithful for Q. Then

|P| >p.Let G= (P X Q) X (Cp xC, ), where C, x C_is a non-abelian group of order pq. Let A is the set of all
those chief factors of G on which G induces an abelian group of automorphisms. Then

2(P) 2 2, (6)=2,(G)o{dc;

Therefore for every Fitting formation § we have 22@ ( A)(G) * ’920(5) since otherwise P € § and so

£(P)c Lo ™ SZG(A)(G)‘
(iv) Let 4 be a non-abelian simple group and § the class of all groups B such that either B =1 or B is the direct
product of isomorphic copies of 4. Let G=A4,1 A=K x A4, where 4,=A4 and K=4, X --- X A‘A‘ is the base

group of the regular wreath product G. Then X is the unique minimal normal subgroup of G by [6, chapter A,
proposition 18.5]. Moreover,

AglG,xeG}.

2=3,(%)={G/K, K/, G/G, KIK,1/1}

is clearly a formation Fitting set of G, so SZG (8)(G) is a sublattice of S(G). We show that 220(3) # SZG ( A)(G) for
every G-closed set A of chief factors of G. Indeed, assume that SZG (3)(G) = SZG ( A)(G). Then for all subgroups

L<Kand K <R <G wehave L9/L; =K/l and R°/R; = G/K, so L, R € £, (G). Therefore R/1, G/K € A and
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hence G/1€ Z;(A). Thus SZG(A)(G) =£(G)andso A€ Q):G(x)(G)' But then G/1 = 49/4,, € §, which means that

G is the direct product of isomorphic copies of A. This contradiction shows that

s, % L5, ()

for every G-closed set A of chief factors of G.

(v) The class of groups § is called a saturated if § contains every finite group G with G/dD(G) ey

Now let A be a maximal subgroup of a finite group G and let § be a saturated Fitting formation. Let A be
the set of all F-central chief factors of G. Then G/A; = A%/A; € § if and only if 4A9/4,; € £;,(A) (see lemma 5
below). Therefore 4 € SZG(&)(G) ifand only if A€ £, A)(G).

In conclusion of this section note that some special versions of theorems 2 and 3 were proved in the pa-
pers [8—10]. In particular, in the paper [9], the following results were proved.

Corollary 4 (see theorem 1.4(ii) in [9]). Let G be a finite group and X = Z(A), where A is the set of all

central chief factors of G. Then the lattice SZ(G) is distributive if and only if,QZ(G) = En(G) is distributive.
Corollary 5 (see theorem 1.2 in [9]). Let G be a finite group and either = = X(A), where A is the set of all

S-central chief factors of G for some class of groups containing all identity groups §, or X = ZG(E ) for some
Fitting formation §, then SZ(G) is a sublattice in S(G)

Some further applications
A group is called primary if it is a finite p-group for some prime p. If ¢ = {Gi|i el } is any partition of the
set of all primes P, that is, P = U o, and 6, N 0, = for all i # j, then we say, following [11], that the group G is:

iel
o-primary if it is a finite 6,-group for some i; 6-soluble if G is finite and every its chief factor is o-primary;
G-nilpotent or 6-decomposable [12] if G= G, X --- X G, for some G-primary groups G,, ..., G,. Observe that
a finite group is primary (respectively soluble, nilpotent) if and only if it is G-primary (respectively G-soluble,
o-nilpotent), where 6 = {{2}, {31, }
In this section we discuss some applications of the lattice £, (G) in the theory of finite groups. And we start
with one application of the lattices £, )(G) and £; A)(G), where 91_ is the class of all o-nilpotent groups

and A is the set of all 6-central, that is, 91 _-central chief factors of G, in the theory of generalized 7-groups.
Lattice characterizations of finite G-soluble PG7-groups. We say, following [11], that the subgroup 4 of
G is 6-subnormal in G if it is N -~subnormal in G in the sense of Kegel. Note that a subgroup 4 of G is subnor-

mal in G if and only if 4 is 6-subnormal in G, where 6 ={{2}, {3}, ...}

A subgroup A4 of a finite group G is said to be: quasinormal (respectively S-quasinormal or S-permu-
table [13]) in G if 4 permutes with all subgroups (respectively with all Sylow subgroups) H of G, that is,
AH = HA; 6-permutable in G [11] if 4 permutes with all Hall 6,-subgroups of G for all i.

Recall that a finite group G is said to be a T-group (respectively PT-group, PST-group) if every subnormal
subgroup of G is normal (respectively permutable, S-permutable) in G; G is said to be a PoT-group if every
o-subnormal subgroup of G is G-permutable in G.

The description of PST-groups, that are groups, in which every subnormal subgroup is S-permutable, was
first obtained by Agrawal [ 14], for the soluble case, and by Robinson in [15], for the general case. In the further
publications, authors (see, for example, the recent papers [16—25]) have found out and described many other
interesting characterizations of soluble PS7-groups. Some characterizations of PG7-groups were obtained in
the papers [11; 26]. Theorem 2.4 allows to prove the following result in this line research.

Theorem 4. Suppose that G is a finite G-soluble group. Then G is a PcoT-group if and only if

)32((% )(G) = EZF(A)(G), where A is the set of all 6-central chief factors of G.
The proof of theorem 4 consists of many steps and it uses theorems 1 and 2 and also the following lemmas.
Lemma 3. Let § be a class of groups, N be a normal subgroup of G and X be a formation Fitting set of G.
(D) If £= ZG(A), where A is the set of all §-central chief factors of G, then ZN/N =X, (A ) where A is
the set of all §-central chief factors of G/N.
2) Z5(F)NIN=2;,,(3).
Proof. (1) This follows from proposition (iv) and the fact that a chief factor (H /N )/ (K /N ) is §-central in
G/N if and only if the chief factor H/K is §-central in G (see lemma 2(1)).
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(2) This follows from proposition (iv).
The lemma is proved.
Lemma 4. Let X be a formation Fitting set of G and let A € SZ(G) and N < H< G, where N1 G:

(1) ANIN € £;,,x(G/N);
(2) if HIN € £4,,,(GIN), then H € £,(G);
(3) AnEe ’Qformﬁt(ZﬁE)(E) for every subgroup E of G.

Proof. (1) Since 4 € £,(G), A°/4,; € = and so

(4°N/N)/(4,NIN) € ZNIN.
On the other hand, we have that
(AN/N)"™ = (AN)°/N = A°N/N,
where A;N/N < (AN/N)_ ., . Hence

G/N®

(AN/N)"™/(ANIN)_ €ZNIN

G/N
since £ N/N is a formation Fitting set of G/N by proposition (iv), so AN/N € £, (G/N).
(2) Since H/N € £, (G/N), we have
(HOIN)/(H4/N)=(HIN)""/(HIN),,, € ENIN

G/N

and so H°/H, € T by proposition (i). Hence H € SZ(G).
(3) Let £, = formfit(Z N E). It is clear that

(4°NE)/(4, "E)eZnECE,
On the other hand, we have

A, NE<S(ANE), SANE<(ANE) <A°NE

and so (4 N E)E/(A N E)E € X, since X is a formation Fitting set of £. Hence A N E € SZD(E).

The lemma is proved.

Lemma 5. Let § be a saturated formation and G be a finite group:

(1) if G € §, then every chief factor of G is §-central in G;

(2) if G has a normal subgroup N with G/N € § such that every chief factor of G below N is §-central in G,
then G € §.

Proof. (1) This part directly follows from the Barnes — Kegel result [6, chapter IV, proposition 1.5].

(2) In fact, in view of part (1) and the Jordan — Holder’s theorem for the chief series, it is enough to show
that if every chief factor of G is §-central in G, then G € §. Assume that this is false and let G be a counter-
example of minimal order. Then G has a unique minimal normal subgroup, R say, and R £ QD(G). Moreover, R
is abelian since otherwise we have G = G/C; (R)= G/1 € §. Hence R = C;(R) by [6, chapter A, theorem 15.6]

and for some maximal subgroup M of G we have G = R x M. Therefore the map
f:G = Rx(G/C4(R))=R x (GIR)

with f (rm) = (r, mR) for all € R and m € M is isomorphism, so G € § since the factor R/1 is §-central in G
by hypothesis.

The lemma is proved.

Recall that the G-nilpotent residual G of a finite groups G is the intersection of all normal subgroups N
of G with G-nilpotent quotient G/N.

Lemma 6 (see theorem A in [26]). Let D = G be the G-nilpotent residual of a finite group G. If G is
o-soluble PcT-group, then the following conditions hold:

(1) G=D x M, where D is an abelian Hall subgroup of G of odd order, M is G-nilpotent and every element
of G induces a power automorphism in D;

(2) 00,(D) has a normal complement in a Hall 6 ~subgroup of G for all i.

Conversely, if conditions (1) and (2) hold for some subgroups D and M of G, then G is a P6T-group.
Lemma 7. Let N be a normal subgroup of a finite group G such that every chief factor of G below N is

G-central in G. Then N is 6-nilpotent, and if N is a 6-group, then O° (G) <Cg, (N)
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Proof. Let1 =Z2,<Z <... <Z = N be a chief series of G below N and C, = CG(ZI./ZFI). First we show
that N is o-nilpotent. By hypothesis, Z, and G/G, are 6,-groups for some j. Now let H/K be any chief factor

of N such that /7 < Z,. From the isomorphism C,N/N = N/(C1 M N) it follows that H/K and N/C,(H/K) are

o -groups. Therefore every chief factor of N below Z, is N -central in N. On the other hand, N/Z, is 6-nilpotent
by induction and so N is G-nilpotent by lemma 5, condition (2).
Finally, assume that N is a 6-group and let C=C, ... n C,. Then G/C is a 6,-group. On the other hand,

C/C;(N)= A < Aut(N ) stabilizes the series 1 = Z, < Z, < ... <Z,= N, so C/C;(N) is a ©(N)-group by [6, chap-
ter A, corollary 12.4]. Hence C/C;(N) is a G,-group, so O%(G) < C;(N). The lemma is proved.

Now consider some applications of theorem 4.

Recall that ZG(G) denotes the G-hypercentre of G [11], that is, the largest normal subgroup of G such that
every chief factor of G below ZG(G) is o-central in G. We say, following [13, p. 20], that a subgroup H of
a finite group G is 6-hypercentrally embedded in G if H/H ; < ZG(G/H G) and hypercentrally embedded in G
if H/H; < Z_(G/Hy).

Corollary 6 (see theorem 4.1 in [11]). Let G be a finite G-soluble group. If every 6-subnormal subgroup of
G is 6-hypercentrally embedded in G, then G is a PGT-group.

In the case where ¢ = {{2}, {3}, } we get from theorem 3.1 the following known characterization of

finite soluble PST-groups.
Corollary 7 (see theorem 1.3 in [10]). Suppose that G is a finite soluble group. Then G is a PST-group if

and only ifﬂy_u(m)(G) = EE(A)(G), where A'is the set of all central chief factors H/K of G, that is, C,, (H/K) =G.
Corollary 8 (see theorem 2.4.4 in [13]). Let G be a finite group. G is a soluble PST-group if and only if
every subnormal subgroup H of G is hypercentrally embedded in G (that is H/H; < Z, (G/H G ) ).
Groups with Z-normal and X-abnormal subgroups. Let X be a formation Fitting set of G. Then we say

that a subgroup 4 of G is: (i) X-normal in G if 4 € SZ(G); (i1) Z-abnormal in G provided H ¢ £ E )
for all subgroups H < E of G, where 4 < H.
Example 2. (i) A subgroup 4 of G is normal in G if and only if it is Z-normal in G, where X = {H /H | H< G}.

(i1) A subgroup 4 of G is called abnormal in G if g € <A, Ag> for all g € G. If G is a soluble finite group,

then 4 is abnormal in G if and only if 4 is Z-abnormal in G, where £ =X . (‘ﬁ), by [12, chapter IV, theo-
rem 1.7.1].
(ii1) Let A be the set of all §-central chief factors of G and £ = ZG(A). If G is finite, then a subgroup 4 of G

is called: (a) §-normal in G [8] if A°/4, € X, (b) F-abnormal in G [8] if H is not F-normal in E for every two
subgroups H < E of G such that 4 < H. Therefore a subgroup 4 of G is §-normal (F-abnormal) in G if and only
if it is X-normal (respectively X-abnormal) in G, where £ =X ; (A)

(iv) Let G be finite. If 4 is 6-hypercentrally embedded in G, that is, 4/4; < Z(G/A4;), then 4°/4; < Z (G/A;).
In particular, if 4 is hypercentrally embedded in G, then 49/4,, < ZM(G/AG). Therefore 4 is 6-hypercentrally

(hypercentrally) embedded in G if and only if it is X-abnormal in G, where £ = EG(A) and A is the set of all
o-central (respectively central) chief factors of G.
Recall that a finite group G is a DM-group [8] if G = D x M and the following conditions hold: (1) D = G" # 1

is abelian; (2) M = <x> is a cyclic abnormal Sylow p-subgroup of G, where p is the smallest prime dividing |G

formfit(2 N E) (

By M;= <x"> =Z (G); (4) x induces a fixed-point-free power automorphism on D.

In the paper [27], Fattahi defined B-groups to be a finite groups in which every subgroup is either normal
or abnormal and he showed that a non-nilpotent finite group G is a B-group if and only if G is a DM-group.
As a generalization of this result, Ebert and Bauman classified the group in which every subgroup is either
subnormal or abnormal [28]. In further, the results in [27] have been developed in many other directions (see,
for example, the recent papers [8; 29-33]).

We say that G is a ZNA-group if every subgroup of G is either Z-normal or Z-abnormal in G for some for-
mation Fitting set X of G.

The results in [8; 27-33] and also many other known results of this type are the motivation for the following
question.
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Question 1. Let X be a formation Fitting set of a finite group G. What we can say about the structure of
G in the case when at least one of the following conditions holds: (i) every subgroup of G is X-normal in G;

(ii) G is a XNA-group, where X = ZG(A)for some G-closed set A of chief factors of G or X=X (S)for some
hereditary (in the sense of Mal cev [34]) Fitting formation §?

Note that the answer to question 1 for some special X is known. Let, for example, X = {H /H | H<« G}.
Then: (i) every subgroup of G is Z-normal in G if and only if G is a Dedekind group; (ii) G is a ZNA-group if
and only if G is a P-group by example 2(i) and 2(ii) since every P-group is clearly soluble.

Now let A be the set of all §-central chief factors of a finite group Gand £ =X ; (A), where § is a hereditary

saturated formation containing all nilpotent groups. Then G is a ZNA-group if and only if every subgroup of G

is either §-normal or §-abnormal in G by example 2(iii). Such a class of finite groups is also known.
Theorem 5 (see theorem 1.4 in [8]). Let § be a hereditary saturated formation containing all nilpotent

groups. If every subgroup of a finite group G is either §-normal or §-abnormal in G, then G is of either of the

following types:
DGes;
(II) G =D x M is a DM-group, where D = G¥, and M is an F-abnormal subgroup of G with M, = ZS(G).

Conversely, in a group G of type (1) or (Il) every subgroup is either §-normal or §-abnormal.

In this theorem Z,(G) denotes the F-hypercentre of G, that is the product of all normal subgroups N of G
such that either N=1 or N # 1 and every chief factor of G below N is §-central in G.

Finite groups G with modular lattices £,(G) and £_(G). A subgroup 4 of G is called: subnormal in G
if there exists a subgroup series A=A, I 4, <---< 4,_, < 4, = G (+); composition in G if every factor 4,/4; ,
of the series (+) is a simple group. Note that a subgroup 4 of a finite group G is subnormal in G if and only if
it is composition in G.

Now let X be a formation Fitting set of G. We say a subgroup 4 of G is X-subnormal in G if there
exists a subgroup series 4=4, <4, <-4, _, < A4,=G of G such that 4, | is Z-normal in 4,, where
X = formﬁt(Z N Ai), foralli=1, ..., ¢

By classical Wielandt’s result [35, theorem 1.1.5], the set £_,(G) of all composition subgroups of G forms
a sublattice of S(G).

Question 2. Let G be finite. For which conditions on the formation Fitting set Z of G the set of all X-subnor-
mal subgroups of G forms a sublattice of £(G)?

In some special cases the answer to question 2 is known. Indeed, £, (G) = SZ(G), where X = {H /H | H« G},
is modular. In the paper [9] the following result in this direction was obtained.

Theorem 6 (see theorem 1.4 in [9]). Let G be finite and T = ;(A), where A is the set of all central chief

factors of G. Then the lattice SZ(G) is modular if and only if every two subgroups A, B € SZ(G) are permu-
table, that is AB = BA.
Zappa, in his paper [36], described conditions under which the lattice £, (G), where G is finite, is modular.

Theorem 7 (see theorem 9.2.3 in [35]). The following properties of the finite group G are equivalent:
(a) the lattice £, (G) is modular;
(b) if T < S, where S is subnormal in G and S/T is a p-group, p a prime, then S(S/T) is modular;

(c) if T < S, where S is subnormal in G and |S/T| = p’, p a prime, then S(S/T) is modular.

A new characterization of finite groups with modular lattice of the subnormal subgroups was given in the
paper [9].

Theorem 8 (see theorem 1.3 in [9]). Let G be a finite group. Then the lattice £Sn(G) is modular if and only

if for every two subnormal subgroups L < T of G, where L € SE(T ) and ¥ = zr(m*), L permutes with every
subnormal subgroup M of T.

Finite groups factorized by X-normal subgroups. It is well-known that the product G = 4B of two nor-
mal finite supersoluble groups 4 and B is not supersoluble in general. Nevertheless, such a product is su-

persoluble if the indices |G :A| and |G :B| are coprime [37, chapter 4, theorem 3.4]. Moreover, by Doerk’s
result [38], the finite group G is supersoluble if it has four supersoluble subgroups 4,, 4,, 45, A, whose indices
G:4].|G:4,]. |G:4,
research.

b b b

G: 4 4‘ are pairwise coprime. In this paper, we prove the following result in this line
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Theorem 9. Suppose that G is finite and let A is the set of all cyclic chief factors of G and £ = EG(A).
Then G is supersoluble if and only if G has three X-normal supersoluble subgroups A,, A, A; whose indices
‘G :Al‘, ‘G :Az‘, ‘G:A3‘ are pair coprime.

Lemma 8 (see lemma 4.5 in [6, chapter IV]). Let G be a finite group in §, where § is a saturated Fitting
formation and let p € n(G). If X= G/OP,’p(G) and R is an irreducible IF, X-module, then R X X € §.

Proof of theorem 9. We need only to show that the sufficiency of the condition of the theorem holds.
Assume that this is false and let G be a counterexample of minimal order. Then G # 4, # 1 for all i and G is

soluble by Wielandt’s theorem [6, chapter I, theorem 3.4]. Moreover, from (‘G 4., |G :Aj‘) =1 for i #J it fol-
lows that G = 4,4, = 4,4, = 4,4,

Let R be a minimal normal subgroup of G. Then R is a p-group for some prime p. Note also that ZR/R =
=2 /R(A* ), where A is the set of all cyclic chief factors of G/R by lemma 3(1). On the other hand, the sub-

group 4,R/R belongs the lattice £, ,(G) by lemma 4(1), so 4,R/R € SZG/R(A*)(G/R)' Note also that 4,R/R =
=4,/ (A,. N R) is supersoluble. Therefore the hypothesis hods for G/R. Hence G/R is supersoluble, so R is the
unique minimal normal subgroup of G and R £ ®(G). Thus R = C;(R) = O, (G) for some prime p by [6, chap-

ter A, theorem 15.6]. Let G, be a Sylow p-subgroup of G.
From the hypothesis it follows that for some i #j and some x,y € Gwehave R< G, < 4, and R<G) < 4.

Since R = C,4(R), F(Ai) = Op(Ai). On the other hand, 4, is supersoluble and so Ai/F(Al.) =Ai/OP(Ai) is abe-

b

lian. Hence 4, < NG(G;)' It follows that Affl < NG<GP ) Similarly, Afl < NG(GP ) Then

G=A,4,=4] 4 <N,(G,)
and so
R=0,(G)=G,=0,(4,)=0,(4,)

Now we show that R < 4,, where j # k # i. Assume that R £ 4,. Then (Ak )G =1and 47 # 1 since 4, # 1.
Hence R < A7, which implies that R/1 is cyclic and so G is supersoluble. This contradiction shows that R < 4.,
so0 R=G,=0,(4,)=F(4,).

Therefore 4,R/R, A,R/R, A;R/R are abelian subgroup of G/R whose indices

|GIR: A,R/R|, |G/R : A,RIR|, |G/R : A,R/R

b b

are pair coprime, so G/R is nilpotent by Kegel’s theorem [39]. Moreover, for every Sylow subgroup O/R of
G/R we have that O/R < 4,/R or Q/R < A/./R. Hence for some subgroups A/R < A./R and B/R < Aj/R we have

G/R = (A/R) x (B/R). It is clear that the subgroups 4 and B are supersoluble and so the group 4 x B is super-
soluble. It is clear also that O,, ,(4)=R =0, ,(B). Hence

X=(4xB)/0, (AxB)=(A/R)x(B/R)=G/R.
But then G is supersoluble by lemma 8. This contradiction completes the proof of the result.
A subgroup M of G is called modular in G if M is a modular element (in the sense of Kurosh [35, p. 43]) of
the lattice S(G). It is known that [35, theorem 5.2.3] for every modular subgroup 4 of G all chief factors of G

between 4, and 4 are cyclic. Therefore we get from theorem 9 the following result.
Corollary 9. If G is finite and G has three modular supersoluble subgroups A,, A,, A; whose indices ‘G t 4,

>

‘G :Az‘, ‘G :A3‘ are pair coprime, then G is supersoluble.
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