

А. А. Назаров, Н. М. Юревич, Исследование явления бистабильности в сети с протоколом АЛОХА для конечного числа станций, Автомат. и телемех., 1996, выпуск 9, 91—

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 3.133.133.18

100

20 ноября 2024 г., 01:59:58

- 7. Малинковский Ю.В. Критерий точечной независимости состояний узлов в открытой стационарной марковской сети обслуживания с одним классом заявок // Теория вероятностей и ее применения. 1990. Т. 35. Вып. 4. С. 779–784.
- Harrison P.G. Transient behaviour of queueing networks // J. Appl. Prob. 1981. V. 18.
 № 2. P. 482-490.
- 9. Маталыцкий М.А. Метод нахождения нестационарных вероятностей состояний марковских сетей массового обслуживания // Проблемы передачи информации. 1994. Т. 30. Вып. 2. С. 104-107.
- Матальцкий М.А. О нахождении вероятностей состояний марковских сетей массового обслуживания в переходном режиме // Автоматика и вычисл. техника. 1994.
 № 3. С. 12–15.
- 11. Kingman J.E.C. Markov population processes // J. Appl. Prob. 1969. V. 6. P. 1-18.
- Матальщкий М.А. Исследование стохастических моделей вычислительных систем и сетей в нестационарном режиме и в условиях большой нагрузки. М., 1989. – Деп. в ВИНИТИ, № 1534-В89.

Поступила в редакцию 17.08.95

УДК 519.216

© 1996 г. А. А. НАЗАРОВ, д-р техн. наук, Н. М. ЮРЕВИЧ

(Сибирский физико-технический институт при ТГУ, Томск)

ИССЛЕДОВАНИЕ ЯВЛЕНИЯ БИСТАБИЛЬНОСТИ В СЕТИ С ПРОТОКОЛОМ АЛОХА ДЛЯ КОНЕЧНОГО ЧИСЛА СТАНЦИЙ

Рассматривается спутниковая сеть связи с протоколом случайного множественного доступа АЛОХА для случая, когда число абонентских станций конечно. Построена математическая модель сети в виде марковской системы массового обслуживания. Изучено явление бистабильности сети.

1. Введение

Протокол случайного множественного доступа АЛОХА предназначен для передачи сообщений через спутниковую сеть связи. Такой вид связи описывается многими авторами [1, 2]. Существуют различные способы применения спутникового канала для передачи данных [2]. Изучение этих способов привело к появлению таких протоколов множественного доступа, как чистая АЛОХА, синхронная АЛОХА, АЛОХА с резервированием [2, 3] и т.д. В работе [4] исследована несинхронная система АЛОХА на устойчивость. В [5] приводятся основные методы анализа производительности и вероятностно-временных характеристик сетей с протоколами случайного множественного доступа, в том числе и с протоколом асинхронная АЛОХА. Там же обсуждаются проблемы устойчивости и анализ устойчивости методами теории катастроф. Также были проведены исследования протокола чистая АЛОХА для пакетов фиксированной длины [2, 3]. Но исследования можно продолжить и для случая сообщений различной длины. Вариант бесконечного числа абонентских станций рассмотрен в работе [6] для протокола АЛОХА без повторной передачи искаженных сообщений и в работе [7] для динамического протокола АЛОХА с повторной передачей искаженных сообщений. В предложенной статье рассматривается протокол

АЛОХА с повторной передачей искаженных сообщений для сети с конечным числом однотипных станций. Применение метода, описанного в статье, позволяет определить вероятности состояний систем связи, а значит, и всевозможные вероятностновременные характеристики сетей.

Рассмотрим спутниковую сеть связи, абонентские станции (АС) которой расположены в географически разнесенных точках. Связь между АС осуществляется через геостационарный спутник-ретранслятор. Каждая АС посылает сообщение в момент его поступления независимо от наличия передачи от других станций. Скорость передачи сообщения равна физической пропускной способности спутникового канала. Спутник работает как простой ретранслятор: повторяет в широковещательном режиме то, что он принимает, направляя передачу обратно к Земле. Это транслируемое сообщение принимают все станции, и каждая АС выделяет пакеты, адресованные ей. Заметим, что все пользователи передают сообщения на одной и той же частоте f_1 (т.е. коллективно используют канал как единое средство), а прием ведут на другой, но общей для всех частоте f_2 . Так как спутник выполняет роль ретранслятора, всегда, когда передача одного пользователя достигает спутника во время трансляции сообщения некоторого другого пользователя, обе передачи накладываются и "разрушают" друг друга. Если спустя время распространения стало известно об искажении сообщений, то принимающие АС "сбрасывают" эти искаженные сообщения, а передающие АС должны произвести повторную передачу. Заметим, что повторная передача должна происходить со случайной задержкой, чтобы разнести во времени вступившие в конфликт сообщения.

2. Построение математической модели

Пусть каждая из N AC генерирует пуассоновский поток неповторных сообщений интенсивности λ/N . Число AC, имеющих в момент времени t искаженные ранее сообщения для повторной передачи, обозначим через i(t). Число AC, осуществляющих в момент t передачу (как исходных, так и повторных сообщений), обозначим через $\nu(t)$. Тогда интенсивность объединенного потока неповторных сообщений от всех AC равна $\lambda(N-i(t)-\nu(t))/N$. Спутник моделируется как обслуживающий прибор.

Каждое требование в момент поступления в систему встает на прибор и начинает обслуживаться. На приборе в момент времени t одновременно может находиться $\nu(t)$ требований ($\nu(t)=0,1,\ldots,N$). Обслуживание экспоненциальное с параметром μ , т.е. функция B(x) распределения времени обслуживания $B(x) = 1 - \exp{(-\mu x)}$. Если за время обслуживания какого-либо требования другие заявки не обслуживались, то исходное требование считается обслуженным успешно и покидает систему. Далее успешно обслуженное требование не рассматривается. В противном случае, т.е. когда одновременно обслуживались два или более требований, происходит конфликт. В [6] рассмотрен вариант функционирования сети без повторной передачи искаженных сообщений: найдены вероятность успешной передачи сообщений и такое распределение времени обслуживания, при котором эта вероятность является наибольшей. В [7] рассмотрен динамический протокол с повторной передачей искаженных сообщений. В этом случае в структурную схему сети добавлен новый элемент – источник повторных вызовов (ИПВ), в который переходит заявка, попавшая в конфликт. Здесь, как уже сказано выше, число станций, имеющих сообщение для повторной передачи, обозначено i(t). Эти станции передают сообщения через экспоненциально (с параметром σ/N) распределенную задержку.

3. Исследование математической модели

Надо отметить, что если на приборе стоит одно единственное требование, то необходимо знать, было ли оно ранее искажено. Для этого введем величину k(t), принимающую значения:

$$k(t) = \left\{ egin{array}{ll} 1, & ext{если стоящее на приборе требование} \ & ext{до момента } t ext{ не было искажено}, \ & ext{2} & ext{в противном случае}. \end{array}
ight.$$

Процесс $\{i(t),\, \nu(t),\, k(t)\}$ является марковским, распределение которого

$$P_0(i,t) = P(i(t) = i, \ \nu(t) = 0),$$

$$Y(i,t) = P(i(t) = i, \ \nu(t) = 1, k(t) = 1),$$

$$H(i,t) = P(i(t) = i, \ \nu(t) = 1, k(t) = 2),$$

$$P_{\nu}(i,t) = P(i(t) = i, \ \nu(t) = \nu), \quad \nu = 2, 3, \dots, N,$$

$$P_1(i,t) = Y(i,t) + H(i,t)$$

в стационарном режиме удовлетворяет системе уравнений

$$\left(\lambda \frac{N-i}{N} + \frac{i\sigma}{N}\right) P_{0}(i) = \mu Y(i) + \mu H(i-1),$$

$$\left(\lambda \frac{N-i-1}{N} + \frac{i\sigma}{N} + \mu\right) Y(i) = \lambda \frac{N-i}{N} P_{0}(i) + \frac{(i+1)\sigma}{N} P_{0}(i+1),$$

$$\left(\lambda \frac{N-i-1}{N} + \frac{i\sigma}{N} + \mu\right) H(i) = 2\mu P_{2}(i-1),$$

$$\left(\lambda \frac{N-i-\nu}{N} + \frac{i\sigma}{N} + \nu\mu\right) P_{\nu}(i) = \lambda \frac{N-i-\nu+1}{N} P_{\nu-1}(i) + \frac{(i+1)\sigma}{N} P_{\nu-1}(i+1) + (\nu+1)\mu P_{\nu+1}(i-1), \quad \nu = 2, 3, \dots, N.$$

Систему (3.1) будем решать асимптотическим методом [8] при $N \to \infty$. Для этого сделаем замену переменных: $x = i\varepsilon$, $\varepsilon = 1/N$, $P_{\nu}(i) = P_{\nu}(x)$, Y(i) = Y(x), H(i) = H(x), $P_0(i) = P_0(x)$, $\pi(x) = \sum_{\nu \geqslant 0} P_{\nu}(x)$. В результате замены производится переход от дискретной переменной $i = 0, 1, \ldots, N$ к непрерывной переменной x (0 $\leqslant x \leqslant 1$). Тогда система (3.1) примет вид

$$(\rho(1-x) + \gamma x)P_{0}(x) = Y(x) + H(x-\varepsilon),$$

$$(\rho(1-x-\varepsilon) + \gamma x + 1)Y(x) = \rho(1-x)P_{0}(x) + \gamma(x+\varepsilon)P_{0}(x+\varepsilon),$$

$$(\rho(1-x-\varepsilon) + \gamma x + 1)H(x) = 2P_{2}(x-\varepsilon),$$

$$(\rho(1-x-\nu\varepsilon) + \gamma x + \nu)P_{\nu}(x) = \rho(1-x-(\nu-1)\varepsilon)P_{\nu-1}(x) + \gamma(x+\varepsilon)P_{\nu-1}(x+\varepsilon) + (\nu+1)P_{\nu+1}(x-\varepsilon), \quad \nu=2,3,\ldots,N,$$

здесь $\rho = \lambda/\mu$, $\gamma = \sigma/\mu$.

В приложении 1 проведено подробное решение системы (3.2) и выведены формулы ($\Pi.2$) – ($\Pi.6$). Можно показать, что уравнение ($\Pi.5$) имеет один корень x в случаях:

- а) $\rho > \gamma$ для любых ρ и γ ;
- б) $\rho < \gamma$ для $\gamma \leqslant \gamma^* \cong 2{,}801;$
- в) $ho < \gamma, \, \gamma > \gamma^*,$ но $ho <
 ho_2$ или $ho >
 ho_1$.

Два корня возможны при $\rho < \gamma$, $\gamma > \gamma^*$, $\rho = \rho_1$ или $\rho = \rho_2$. Здесь ρ_1 и ρ_2 - некоторые значения ρ , определяемые уравнением (П.5). Наконец, при $\rho < \gamma$, $\gamma > \gamma^*$, $\rho_2 < \rho < \rho_1$ уравнение (П.5) имеет три корня.

4. Исследование явления бистабильности

Рассмотрим случай, когда уравнение ($\Pi.5$) имеет более одного корня. Но в окрестности только некоторых из них флуктуирует значение случайного процесса $x(t)=\varepsilon i(t)$. Такие корни будем называть точками стабилизации сети связи. Те точки, в окрестности которых не происходит стабилизации сети, будем называть лишними корнями. Для выявления лишних корней рассмотрим отклонение y(t) процесса x(t) от величины x_0 , являющейся корнем уравнения ($\Pi.5$).

Пусть $y(t)=(i(t)-x_0/\varepsilon)\sqrt{\varepsilon}$. Найдем распределение отклонения y(t), для этого в системе (3.1) произведем замену переменных: $y=(i-x_0/\varepsilon)\sqrt{\varepsilon},\ P_{\nu}(i)=\pi_{\nu}(y),\ Y(i)=\pi_{1Y}(y),\ H(i)=\pi_{1H}(y),\ P_0(i)=\pi_0(y),\ \pi(y)=\sum_{\nu\geqslant 0}\pi_{\nu}(y).$ Тогда система (3.1) примет вид:

$$(\lambda (1 - x_{0} - y\sqrt{\varepsilon}) + \sigma (x_{0} + y\sqrt{\varepsilon})) \pi_{0}(y) = \mu \pi_{1Y}(y) + \mu \pi_{1H} (y - \sqrt{\varepsilon}),$$

$$(\lambda (1 - x_{0} - y\sqrt{\varepsilon} - \varepsilon) + \sigma (x_{0} + y\sqrt{\varepsilon}) + \mu) \pi_{1Y}(y) =$$

$$= (\lambda (1 - x_{0} - y\sqrt{\varepsilon})) \pi_{0}(y) + \sigma (x_{0} + y\sqrt{\varepsilon} + \varepsilon) \pi_{0} (y + \sqrt{\varepsilon}),$$

$$(\lambda (1 - x_{0} - y\sqrt{\varepsilon} - \varepsilon) + \sigma (x_{0} + y\sqrt{\varepsilon}) + \mu) \pi_{1H}(y) = 2\mu \pi_{2} (y - \sqrt{\varepsilon}),$$

$$(\lambda (1 - x_{0} - y\sqrt{\varepsilon} - \nu\varepsilon) + \sigma (x_{0} + y\sqrt{\varepsilon}) + \nu\mu) \pi_{\nu}(y) =$$

$$= \lambda (1 - x_{0} - y\sqrt{\varepsilon} - (\nu - 1)\varepsilon) \pi_{\nu-1}(y) + \sigma (x_{0} + y\sqrt{\varepsilon} + \varepsilon) \pi_{\nu-1} (y + \sqrt{\varepsilon}) +$$

$$+ (\nu + 1)\mu \pi_{\nu+1} (y - \sqrt{\varepsilon}), \quad \nu = 2, 3, ..., N.$$

Приложение 2 содержит решение системы (4.1), откуда видно, что если величина \varkappa_1/\varkappa_2 не отрицательна и не равняется бесконечности, то $\pi(y)$ имеет вид нормального распределения с нулевым средним и дисперсией $D=\varkappa_1/\varkappa_2$. Очевидно, что $\varkappa_1>0$ для всех $G_0>0$. Тогда для выполнения свойств дисперсии необходима строгая положительность величины \varkappa_2 . Но \varkappa_2 совпадает с производной по G функции $\Phi(G)$, которая имеет вид левой части уравнения (П.5)

$$\Phi(G) = \frac{G}{G+1}e^{-G} + G\frac{\rho}{\gamma - \rho} - \frac{\gamma\rho}{\gamma - \rho}$$

и определяет его корни. Следовательно, корни уравнения (П.5), лежащие на убывающей части кривой $\Phi(G)$ или являющиеся точками экстремума, не будут точками стабилизации. Итак, сеть имеет не более двух точек стабилизации, в окрестности которых флуктуируют значения процесса x(t). Таким образом, наблюдается явление бистабильности: система какое-то время находится в окрестности одной из точек стабилизации, затем случайным образом переходит в окрестность другой точки стабилизации, затем опять случайным образом возвращается в окрестность прежней точки стабилизации и т.д. Таким образом, если x_1, x_2, x_3 — корни уравнения (П.5) ($x_1 < x_2 < x_3$), то x_1 и x_3 являются точками стабилизации и в их окрестностях распределение величины отклонения y имеет вид (П.14), а корень x_2 не будет являться точкой стабилизации и в окрестности точки x_2 распределение величины y имеет вид

$$\pi_2(y) = C \exp\left\{\frac{y^2}{2D_2}\right\},$$

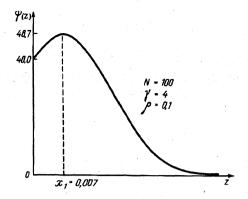
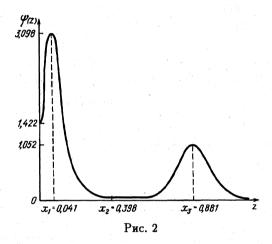


Рис. 1



где $D_2>0$. Поэтому плотность распределения величины отклонения y лучше записать в виде шестипараметрической функции $\varphi(z)$:

$$(4.2) \qquad \varphi(z) = \begin{cases} C_1 \exp\left\{-\frac{(z-x_1)^2}{2D_1\varepsilon}\right\} = N_1(z), & 0 \leqslant z \leqslant a, \\ C_2 \exp\left\{\frac{(z-x_2)^2}{2D_2\varepsilon}\right\} = N_2(z), & a \leqslant z \leqslant b, \\ C_3 \exp\left\{-\frac{(z-x_3)^2}{2D_3\varepsilon}\right\} = N_3(z), & b \leqslant z \leqslant 1. \end{cases}$$

Здесь произведен переход от переменной y к переменной z по формуле $y=(z-x_i)/\sqrt{\varepsilon}$.

На самом деле функция $\varphi(z)$ имеет одиннадцать параметров: C_1 , C_2 , C_3 , D_1 , D_2 , D_3 , x_1 , x_2 , x_3 , a и b. Но неизвестные параметры C_1 , C_2 , C_3 , a и b можно выразить через известные x_1 , x_2 , x_3 и D_1 , D_2 , D_3 из естественного предположения гладкости и непрерывности функции $\varphi(z)$, а также из условия нормировки. Эти условия имеют вид

$$N_1(a) = N_2(a), \quad N_2(b) = N_3(b),$$

 $N'_1(a) = N'_2(a), \quad N'_2(b) = N'_3(b),$

$$\int_{0}^{a} N_{1}(z)dz + \int_{a}^{b} N_{2}(z)dz + \int_{b}^{1} N_{3}(z)dz = 1.$$

Подставляя явный вид функций $N_j(z)$ (j=1,2,3) в эти формулы, можно получить выражения для неизвестных параметров:

$$a = \frac{x_2 D_1 + x_1 D_2}{D_1 + D_2}, \quad b = \frac{x_3 D_2 + x_2 D_3}{D_2 + D_3},$$

$$C_1 = C_2 \exp\left\{\frac{(a - x_2)^2}{2D_2 \varepsilon} + \frac{(a - x_1)^2}{2D_1 \varepsilon}\right\},$$

$$C_3 = C_2 \exp\left\{\frac{(b - x_2)^2}{2D_2 \varepsilon} + \frac{(b - x_3)^2}{2D_1 \varepsilon}\right\},$$

$$C_2^{-1} = \exp\left\{\frac{(a - x_2)^2}{2D_2 \varepsilon} + \frac{(a - x_1)^2}{2D_1 \varepsilon}\right\} \sqrt{\varepsilon D_1} \int_{-x_1 \sqrt{\varepsilon D_1}}^{(a - x_1)\sqrt{\varepsilon D_1}} \exp\left(-t^2/2\right) dt + \exp\left\{\frac{(b - x_2)^2}{2D_2 \varepsilon} + \frac{(b - x_3)^2}{2D_3 \varepsilon}\right\} \sqrt{\varepsilon D_3} \int_{(b - x_3)\sqrt{\varepsilon D_3}}^{(1 - x_1)\sqrt{\varepsilon D_3}} \exp\left(-t^2/2\right) dt + \sqrt{\varepsilon D_2} \int_{(a - x_2)\sqrt{\varepsilon D_2}}^{(b - x_2)\sqrt{\varepsilon D_2}} \exp\left(-t^2/2\right) dt.$$

Для примера рассмотрим случай, когда N=100, $\rho=0,1$, $\gamma=4$. При этом уравнение (П.5) имеет только один корень, т.е. явление бистабильности не возникает. График функции $\pi(y)$ для указанных значений параметров приведен на рис. 1. Если изменить значения параметров, например взять $\rho=0,19$, то уравнение (П.5) уже будет иметь три корня. В этом случае возникает явление бистабильности (рис. 2). Но точка стабилизации x_3 является нежелательной, так как в ней характеристики сети хуже, чем в точке x_1 . Характеристики для обеих точек стабилизации приведены в таблице. Здесь $S=\rho(1-x)$ – производительность сети, т.е. средний график успешно переданных сообщений за единицу времени, $T=xN/\rho(1-x)$ – среднее время доставки сообщения, $K=\gamma x/\rho(1-x)$ – среднее число повторных попыток до успешной передачи сообщения. Избежать нежелательной точки стабилизации можно двумя способами: либо уменьшать загрузку ρ , либо уменьшать γ .

ρ	0,1	0,19	
x	0,007	0,041	0,882
\boldsymbol{G}	0,082	0,348	3,552
S	0,099	0,182	0,022
T	6,97	22,69	3946
K	0,279	0,908	157,9

5. Заключение

Исследован протокол случайного множественного доступа АЛОХА с конечным числом станций. Найдена асимптотическая плотность распределения числа требований в ИПВ $\pi(x)$, которая имеет вид дельта-функции или линейной комбинации двух (в силу бистабильности) дельта-функций с ядрами в точках стабилизации, определяемых уравнением (П.5). Кроме того, найдена плотность распределения значений отклонения y(t) процесса x(t) от величин x_1, x_2, x_3 , являющихся корнями уравнения (П.5), которая имеет вид шестипараметрической функции $\varphi(z)$. Проведено сравнение характеристик сети в разных точках стабилизации. Предложены методы избавления от нежелательной точки стабилизации.

ПРИЛОЖЕНИЕ 1

Получим вид решения системы (3.2), которую будем решать в два этапа. На первом этапе положим $\varepsilon = 0$, тогда система (3.2) перейдет в систему

(II.1)
$$GP_0(x) = P_1(x), (G+\nu)P_{\nu}(x) = GP_{\nu-1}(x) + (\nu+1)P_{\nu+1}(x), \quad \nu = 1, 2, \dots, N-1,$$

решение которой имеет вид

(II.2)
$$\begin{split} P_0(x) &= e^{-G}\pi(x), \quad P_{\nu}(x) = \frac{G^{\nu}}{\nu!}e^{-G}\pi(x), \quad \nu \geqslant 1, \\ Y(x) &= \frac{G}{G+1}e^{-G}\pi(x), \quad H(x) = \frac{G^2}{G+1}e^{-G}\pi(x), \end{split}$$

где
$$\pi(x)=\sum\limits_{
u=0}^{N}P_{
u}(x).$$

Осталось найти вид функции $\pi(x)$. Для этого перейдем ко второму этапу.

На втором этапе в системе (3.2) все функции с аргументом $x \pm \varepsilon$ разложим в ряд по степеням ε , ограничиваясь слагаемыми порядка ε , получим систему

$$\begin{split} &(\rho(1-x)+\gamma x)P_{0}(x)=P_{1}(x)-\varepsilon H'(x),\\ &(\rho(1-x)+\gamma x+1)Y(x)=(\rho(1-x)+\gamma x)P_{0}(x)+\varepsilon\big[\rho Y(x)+\gamma (xP_{0}(x))'\big],\\ &(\rho(1-x)+\gamma x+1)H(x)=2P_{2}(x)+\varepsilon\big[\rho H(x)-2P_{2}'(x)\big],\\ &(\rho(1-x)+\gamma x+\nu)P_{\nu}(x)=(\rho(1-x)+\gamma x)P_{\nu-1}(x)+(\nu+1)P_{\nu+1}(x)+\\ &+\varepsilon\big[\rho\nu P_{\nu}(x)-\rho(\nu-1)P_{\nu-1}(x)+\gamma (xP_{\nu-1}(x))'-(\nu+1)P_{\nu+1}'(x)\big]. \end{split}$$

Сложив все уравнения системы, получим

(II.3)
$$\varepsilon \frac{d}{dx} \left[\pi(x) \gamma x + Y(x) - \sum_{\nu \geqslant 1} \nu P_{\nu}(x) \right] = 0.$$

В это уравнение входят три неизвестные функции: $\pi(x), Y(x), \sum \nu P_{\nu}(x)$. Выразим функции Y(x) и $\sum \nu P_{\nu}(x)$ через $\pi(x)$, используя формулы (II.2):

$$Y(x) = \frac{G}{G+1}e^{-G}\pi(x), \quad \sum_{\nu=1}^{N} \nu P_{\nu}(x) = \sum_{\nu=1}^{N} \nu \frac{G^{\nu}}{\nu!}e^{-G}\pi(x) = G\pi(x).$$

Подставим эти выражения в уравнение (П.3):

$$\frac{d}{dx}\left[\pi(x)\left(\frac{G}{G+1}e^{-G}+G\frac{\rho}{\gamma-\rho}-\frac{\gamma\rho}{\gamma-\rho}\right)\right]=0$$

или

(II.4)
$$\pi(x) \left[\frac{G}{G+1} e^{-G} + G \frac{\rho}{\gamma - \rho} - \frac{\gamma \rho}{\gamma - \rho} \right] = C,$$

где C – произвольная постоянная. Необходимо найти константу C. Нетрудно заметить, что при x=0 выражение в квадратных скобках не положительно, следовательно, $C\leqslant 0$, а при x=1 — $C\geqslant 0$. Итак, C=0. Таким образом, произведение двух функций равно нулю, следовательно, $\pi(x)$ может принимать какое-либо ненулевое значение лишь в тех точках, в которых выражение в скобках равно нулю. Получили функцию $\pi(x)$, везде равную нулю, за исключением точек, являющихся корнями уравнения

(II.5)
$$\frac{G}{G+1}e^{-G} + G\frac{\rho}{\gamma - \rho} - \frac{\gamma\rho}{\gamma - \rho} = 0.$$

Кроме того, должно выполняться условие нормировки $\int\limits_0^1 \pi(x) dx = 1$. Этим условиям удовлетворяет лишь функция вида

(II.6)
$$\pi(x) = \sum_{k=1}^{n} \alpha_k \delta(x - x_k),$$

где
$$\sum_{k=1}^{n} \alpha_k = 1, n$$
 – число корней уравнения (П.5), $\alpha_k \geqslant 0, x_k$ – корни уравнения (П.5).

ПРИЛОЖЕНИЕ 2

Решение системы (4.1) в некоторой степени аналогично решению системы (3.2), но проводится в три этапа.

На первом этапе, положив $\varepsilon=0$, решение системы (4.1) найдем в виде

$$\pi_0(y) = e^{-G}\pi(y), \quad \pi_{\nu}(y) = \frac{G^{\nu}}{\nu!}e^{-G}\pi(y), \quad \nu \geqslant 1,$$
(II.7) $\pi_{1y}(y) = \frac{G}{G+1}e^{-G}\pi(y), \quad \pi_{1H}(y) = \frac{G^2}{G+1}e^{-G}\pi(y),$

где $G = \rho (1-x) + \gamma x$.

Перейдем ко второму этапу. В системе (4.1) все функции с аргументом $y \pm \sqrt{\varepsilon}$ разложим в ряд по степеням $\sqrt{\varepsilon}$, ограничиваясь слагаемыми порядка $\sqrt{\varepsilon}$:

$$G\pi_{0}(y) = \pi_{1}(y) + \sqrt{\varepsilon} \left[(\rho - \gamma)y\pi_{0}(y) - \pi'_{1H}(y) \right],$$

$$(G+1)\pi_{1y}(y) = G\pi_{0}(y) + \sqrt{\varepsilon} \left[(\rho - \gamma)y\pi_{1y}(y) + (\rho - \gamma)y\pi_{0}(y) + \gamma x\pi'_{0}(y) \right],$$

$$(G+1)\pi_{1H}(y) = 2\pi_{2}(y) + \sqrt{\varepsilon} \left[(\rho - \gamma)y\pi_{1H}(y) - 2\pi'_{2}(y) \right],$$

$$(G+\nu)\pi_{\nu}(y) = G\pi_{\nu-1}(y) + (\nu+1)\pi_{\nu+1}(y) + \sqrt{\varepsilon} \left[(\rho - \gamma)y\pi_{\nu}(y) - (\rho - \gamma)y\pi_{\nu-1}(y) + \gamma x\pi'_{\nu-1}(y) - (\nu+1)\pi'_{\nu+1}(y) \right], \quad \nu \geqslant 2.$$

Подставляя в слагаемые, содержащие $\sqrt{\varepsilon}$, выражения, найденные на первом этапе, получим систему, решение которой с помощью производящей функции $F(z) = \pi_0(y) + z\pi_1(y) + \dots$ запишем в виде

(II.9)
$$F(z) = \pi_0(y)e^{Gz} + \sqrt{\varepsilon}e^{G(z-1)}[bz + e^{-G}a\phi(z)],$$

где $\phi(z)=\int\limits_{1-2}^{1} \frac{1-e^{Gt}}{t}dt$. Нетрудно заметить, что $F(1)=\pi(y)$. Из этого условия находится $\pi_0(y)$:

$$(\Pi.10) \qquad \pi_0(y) = \pi(y)e^{-G} - \sqrt{\varepsilon}e^{-G} \left[b + e^{-G}a\phi(1) \right].$$

Формулы (Π .9) и (Π .10) полностью определяют решение системы (Π .8) на втором этапе.

На третьем этапе в системе (4.1) все функции разложим в ряд по степеням $\sqrt{\varepsilon}$, ограничиваясь слагаемыми порядка ε , получим

$$G\pi_{0}(y) = \pi_{1}(y) + \sqrt{\varepsilon} \left[(\rho - \gamma)y\pi_{0}(y) - \pi'_{1H}(y) \right] + \frac{\varepsilon}{2}\pi''_{1H}(y),$$

$$(G+1)\pi_{1}(y) = G\pi_{0}(y) + 2\pi_{2}(y) + \sqrt{\varepsilon} \left[(\rho - \gamma)y\pi_{1}(y) - (\rho - \gamma)y\pi_{0}(y) + \gamma x\pi'_{0}(y) - 2\pi'_{2}(y) \right] + \varepsilon \left[\rho \pi_{1}(y) + \gamma \pi_{0}(y) + \gamma y\pi'_{0}(y) + \frac{1}{2}\gamma x\pi''_{0}(y) + \pi''_{2}(y) \right],$$

$$(II.11) \qquad (G+\nu)\pi_{\nu}(y) = G\pi_{\nu-1}(y) + (\nu+1)\pi_{\nu+1}(y) + +\sqrt{\varepsilon} \left[(\rho-\gamma)y\pi_{\nu}(y) - (\rho-\gamma)y\pi_{\nu-1}(y) + \gamma x\pi'_{\nu-1}(y) - (\nu+1)\pi'_{\nu+1}(y) \right] + \varepsilon \left[\nu \rho \pi_{\nu}(y) - (\nu-1)\rho \pi_{\nu-1}(y) + \gamma \pi_{\nu-1}(y) + \gamma y\pi'_{\nu-1}(y) + \frac{1}{2}\gamma x\pi''_{\nu-1}(y) + \frac{\nu+1}{2}\pi''_{\nu+1}(y) \right].$$

Просуммировав все уравнения системы (П.11), получим равенство для нахождения $\pi(y)$:

$$(\Pi.12) \qquad \frac{\varepsilon}{2} \left[2\gamma (y\pi(y))' + \gamma x \pi''(y) + \sum_{\nu \geqslant 1} \nu \pi''_{\nu}(y) - \pi''_{1Y}(y) \right] +$$

$$+ \sqrt{\varepsilon} \left[\gamma x \pi'(y) - \sum_{\nu \geqslant 1} \nu \pi'_{\nu}(y) + \pi'_{1Y}(y) \right] = 0.$$

В уравнение (П.12) входят три неизвестные функции: $\pi(y)$, $\sum \nu \pi_{\nu}(y)$ и $\pi_{1Y}(y)$. Поэтому для нахождения $\pi(y)$ функции $\sum \nu \pi_{\nu}(y)$ и $\pi_{1Y}(y)$ выразим через $\pi(y)$, используя результаты второго этапа. Подставляя найденные выражения в (П.12), для $\pi(y)$ получим линейное дифференциальное уравнение

(II.13)
$$\varkappa_1 \pi''(y) + \varkappa_2 (y\pi(y))' = 0,$$

где

$$\begin{split} \varkappa_1 &= \left(\frac{G_0}{G_0+1}e^{-G_0}\right)^2 \left(\phi\left(1\right)+1\right) + \frac{G_0^2+G-Ge^{-G_0}}{(G_0+1)^2}e^{-G_0},\\ \varkappa_2 &= \rho - (\gamma-\rho)\frac{G_0^2+G_0-1}{(G_0+1)^2}e^{-G_0}. \end{split}$$

Решение уравнения (П.13) можно найти в виде

(II.14)
$$\pi(y) = C \exp\left\{-y^2/2\frac{\varkappa_1}{\varkappa_2}\right\}.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Бертсекас Д., Галлагер Р. Сети передачи данных. М.: Мир, 1989.
- 2. Клейнрок Л. Вычислительные системы с очередями. М.: Мир, 1979.
- 3. Шварц М. Сети ЭВМ. Анализ и проектирование. М.: Радио и связь. 1981.
- Цыбаков Б. С., Бакиров В. Л. Устойчивость несинхронной системы АЛОХА // Проблемы передачи информации. 1984. № 1. С. 82-94.
- 5. Башарин Г. П., Ефимушкин В. А. Методы анализа локальных информационновычислительных сетей // Итоги науки и техники. Сер. "Связь". М.: ВИНИТИ, 1988. Т. 2. С. 60-109.
- 6. Назаров А. А., Юревич Н. М. Исследование сети с протоколом случайного множественного доступа АЛОХА без повторной передачи искаженных сообщений // Автоматика и вычисл. техника. 1993. № 3. С. 52-56.
- 7. Назаров А. А., Юревич Н. М. Исследование сети с динамическим протоколом случайного множественного доступа АЛОХА с повторной передачей искаженных сообщений // Математические методы исследования систем и сетей массового обслуживания. Минск: Изд-во Бел. гос. ун-та, 1993. С. 84–85.
- 8. *Назаров А. А.* Асимптотический анализ марковизируемых систем. Томск: Изд-во Том. ун-та, 1991.

Поступила в редакцию 11.07.95

УДК 519.872

© 1996 г. А.В. ПЕЧИНКИН, д-р физ.-мат. наук (Московский государственный технический университет)

СИСТЕМА $M_k/G/1$ С НЕНАДЕЖНЫМ ПРИБОРОМ

Рассматривается система массового обслуживания с пуассоновским второго рода входящим потоком требований и ненадежным прибором. Найдены стационарные вероятности состояний и стационарное распределение времени ожидания начала обслуживания требования.

1. Введение

Рассмотрим однолинейную систему массового обслуживания, в которую поступает пуассоновский второго рода входящий поток требований с интенсивностью λ_k , зависящей от числа k находящихся в системе требований. Время обслуживания каждого требования имеет функцию распределения B(x) со средним значением b=

$$=\int\limits_0^\infty x\,dB(x).$$

Обслуживающий прибор ненадежен, т.е. может выходить из строя (отказывать) и ремонтироваться. Дисциплина выходов из строя и ремонтов следующая.

Во-первых, предположим, что начальный момент 0 совпадает с моментом освобождения системы, т.е. в этот момент оканчивается обслуживание требования или ремонт прибора (если прибор находился в неисправном состоянии) и в системе отсутствуют требования. Тогда через случайное время, распределенное по закону F(x),