
Math-Net.Ru
Общероссийский математический портал

M. A. Sadybekov, A. A. Sarsenbi, On one inverse problem of reconstructing a
subdiffusion process with degeneration from nonlocal data, Доклады АМАН, 2019,
том 19, выпуск 1, 31–41

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и

согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 3.144.242.102

28 октября 2024 г., 23:24:05



Доклады Адыгской (Черкесской) Международной академии наук. 2019. Т. 19, No1 31

=========================== МАТЕМАТИКА ===========================
UDK 517.956

On one inverse problem of reconstructing a subdiffusion process with
degeneration from nonlocal data

Sadybekov M.A. – corresponding member of NAS RK, academician of AIAS, Sarsenbi A.

Dedicated to the memory of our Dear Teacher

Nakhushev Adam Maremovich

In recent years, the phenomena of anomalous diffusion has been observed in many fields,
such as turbulence, seepage in porous media, pollution control. The demand for appropriate
mathematical models is high from biomechanics to geophysics passing by acoustics. A most
used approach to depicting a variety of complex anomalous diffusion phenomena is a nonlinear
modeling that is generally mathematically challenging to analyze and computationally very
expensive to simulate. In addition, the nonlinear models often require some parameters unavai-
lable from experiments or field measurements. As alternative approaches, in recent decades,
fractal and fractional derivatives have been found effective in modeling anomalous diffusion
processes. The advantage of the fractal or the fractional derivative models over the standard
integer-order derivative models is in that it can describe accurately the inherent abnormal-
exponential or heavy tail decay processes.

Fractional powers in indicators also arise when describing fractal (multiscale, whole-like)
media. In a fractal environment, unlike a continuous medium, a randomly wandering particle
moves away from the launch site more slowly, since not all directions of motion become
available for it. The slowing down of diffusion in the fractal media is so significant that the
physical quantities begin to change more slowly than the first derivative and this effect can
be taken into account only in an integral-differential equation containing the time derivative
of fractional order:

𝐷𝛼
𝑡 𝑢(𝑥, 𝑡) = 𝐴𝑥𝑢(𝑥, 𝑡) + 𝐹.

In this paper, we consider an inverse problem close to that investigated in [1], [2]. Together
with the solution, it is necessary to find the unknown source term of the equation. The equation
contains a fractional derivative with respect to time and an involution with respect to the
spatial variable. In contrast to [1], [2], we investigate the problem under nonlocal boundary
conditions with respect to the spatial variable. The conditions for determination are initial
and final states.

The second main difference in our problem is that the unknown function enters both in the
right-hand side of the equation and in the conditions of the initial and final overdeterminations.

Let us consider a problem of modeling the thermal diffusion process which is close to that
described in the paper of Cabada and Tojo [2], where an example that describes a concrete
situation in physics is given. Consider a closed metal wire (length 2𝜋) wrapped around a thin
sheet of insulation material in the manner shown in Figure 1.

Assuming that the position 𝑥 = 0 is the lowest of the wire, and the insulation goes up to
the left at −𝜋 and to the right up to 𝜋. Since the wire is closed, points −𝜋 and 𝜋 coincide.

The layer of insulation is assumed to be slightly permeable. Therefore, the temperature
value from one side affects the diffusion process on the other side. For this reason, the standard
heat equation is modified by adding an extra term 𝜀𝜕

2Φ
𝜕𝑥2 (−𝑥, 𝑡) to 𝜕2Φ

𝜕𝑥2 (𝑥, 𝑡) (where |𝜀| < 1).
Here Φ(𝑥, 𝑡) is the temperature at point 𝑥 of the wire at time 𝑡.
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Рис. 1. The closed metal wire wrapped around a thin sheet of insulation material

We consider a process which is so slow that it is described by an evolution equation with
a time fractional derivative:

𝑡−𝛽𝐷𝛼
𝑡 Φ (𝑥, 𝑡) − Φ𝑥𝑥 (𝑥, 𝑡) + 𝜀Φ𝑥𝑥 (−𝑥, 𝑡) = 𝑓 (𝑥) , 𝛼 + 𝛽 > 0, (1)

in the domain Ω = {(𝑥, 𝑡) : −𝜋 < 𝑥 < 𝜋, 0 < 𝑡 < 𝑇}. Here 𝑓(𝑥) stands for an external source
that does not change with time; 𝑡 = 0 is an initial time point and 𝑡 = 𝑇 is a final one. The
derivative 𝐷𝛼

𝑡 defined, for a differentiable function, as

(𝐷𝛼
𝑡 𝜙) (𝑡) = 𝐼1−𝛼

[︂
𝑑

𝑑𝑡
𝜙 (𝑡)

]︂
, 0 < 𝛼 < 1, 𝑡 ∈ [0, 𝑇 ],

is the Caputo derivative built on the Riemann-Liouville fractional integral

𝐼1−𝛼[𝜙(𝑡)] =
1

Γ(1 − 𝛼)

∫︁ 𝑡

0

𝜙(𝑠)

(𝑡− 𝑠)𝛼
𝑑𝑠, 0 < 𝛼 < 1, 𝑡 ∈ [0, 𝑇 ].

Caputo derivative allows to impose initial conditions in a natural way.
As additional information, we take

Φ (𝑥, 0) = 𝜑 (𝑥) , Φ(𝑥, 𝑇 ) = 𝜓(𝑥), 𝑥 ∈ [−𝜋, 𝜋]. (2)

Since the wire is closed, it is natural to assume that the temperatures at the tips of the
wire are equal at all times:

Φ (−𝜋, 𝑡) = Φ (𝜋, 𝑡) , 𝑡 ∈ [0, 𝑇 ] . (3)

If we consider a process in which the temperature at one end at every time point 𝑡 is
proportional to the (fractional) rate of change speed of the average value of the temperature
throughout the wire, then,

Φ (−𝜋, 𝑡) = 𝛾𝑡−𝛽𝐷𝛼
𝑡

∫︁ 𝜋

−𝜋

Φ (𝜉, 𝑡) 𝑑𝜉, 𝑡 ∈ [0, 𝑇 ] ; (4)

here 𝛾 is the proportionality coefficient.
Thus the investigated process is reduced to the following inverse problem: Find the source

term 𝑓(𝑥) of the subdiffusion equation (1), and its solution Φ(𝑥, 𝑡) subject to the initial and
final conditions (2), the boundary condition (3), and condition (4).

Let us mention the case when 𝛼 = 1, 𝛽 = 0 was examined in [3], [4]. Note that such
problems are considered in our paper [5].
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1. Reduction of the problem Condition (4) is nonlocal. The integral along inner lines
of the domain is present in this condition. Using the idea of Samarskii, we transform this
condition. Taking into account equation (1) from (4), we get

Φ (−𝜋, 𝑡) = 𝛾

∫︁ 𝜋

−𝜋

{︀
Φ𝜉𝜉 (𝜉, 𝑡) − 𝜀Φ𝜉𝜉 (−𝜉, 𝑡) + 𝑓 (𝜉)

}︀
𝑑𝜉, 𝑡 ∈ [0, 𝑇 ] .

Hence

Φ (−𝜋, 𝑡) = 𝛾(1 − 𝜀)[Φ𝑥 (𝜋, 𝑡) − Φ𝑥 (−𝜋, 𝑡)] + 𝛾

∫︁ 𝜋

−𝜋

𝑓 (𝜉) 𝑑𝜉, 𝑡 ∈ [0, 𝑇 ] .

As was shown in our work [5], for the existence of a solution, it is necessary to satisfy the
equality ∫︁ 𝜋

−𝜋

𝑓 (𝜉) 𝑑𝜉 = 0. (5)

In what follows, we will assume this equality to be fulfilled.
Let us set

𝑢(𝑥, 𝑡) = Φ(𝑥, 𝑡).

Then in terms of the new function 𝑢(𝑥, 𝑡), we get the following inverse problem: In the
domain Ω = {(𝑥, 𝑡) : −𝜋 < 𝑥 < 𝜋, 0 < 𝑡 < 𝑇} find a right-hand side 𝑓(𝑥) of the time frac-
tional evolution equation with involution

𝑡−𝛽𝐷𝛼
𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝜀𝑢𝑥𝑥 (−𝑥, 𝑡) = 𝑓 (𝑥) , (6)

and its solution 𝑢(𝑥, 𝑡) that satisfies one initial condition

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ [−𝜋, 𝜋], 𝛼 + 𝛽 > 0, (7)

one final condition
𝑢(𝑥, 𝑇 ) = 𝜓(𝑥), 𝑥 ∈ [−𝜋, 𝜋], (8)

and the boundary condition{︂
𝑢𝑥 (−𝜋, 𝑡) − 𝑢𝑥 (𝜋, 𝑡) − 𝑎𝑢 (𝜋, 𝑡) = 0,

𝑢 (−𝜋, 𝑡) − 𝑢 (𝜋, 𝑡) = 0,
𝑡 ∈ [0, 𝑇 ] , (9)

where 𝜑(𝑥) and 𝜓 (𝑥) are given sufficiently smooth functions, 0 < 𝛼 < 1, 𝜀 is a nonzero real
number such that |𝜀| < 1 and 𝑎 = 1

𝛾(𝜀−1)
. Moreover, we assume that 𝑓(𝑥) satisfies condition

(5).
In the physical sense, the second of conditions (9) means the equality of the distribution

density at the ends of the interval. And the first of conditions (9) means the proportionality
of the difference of fluxes across opposite boundaries to the density value at the boundary. We
note that in [1] the Dirichlet boundary conditions 𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡) = 0 were used instead
of condition (9).

Let us mention that the well-posedness of direct and inverse problems for parabolic equa-
tions with involution is considered in [6]-[8], and the solvability of various inverse problems
for parabolic equations was studied in papers of Anikonov and Belov, Bubnov Prilepko and
Kostin, Monakhov, Kozhanov, Kaliev, Sabitov and many others, see [9] and [10]. In [1], good
references on related issues are cited. We note [5]-[31] from recent papers close to the theme
of our article. In these papers different variants of direct and inverse initial-boundary value
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problems for evolution equations are considered, including problems with nonlocal boundary
conditions and problems for equations with fractional derivatives.

Problem (6)-(9) for 𝑎 = 0 was considered in [30], and for 𝑎 = 𝛽 = 0 in [31].
Let us finally mention that we will use the Fourier method to solve our problem. Here,

we use a spectral problem for ordinary differential operators with involution. Similar spectral
problems are considered in [32]-[43].

Definition. A regular solution of the inverse problem (6)-(9), is a pair of functions
(𝑢(𝑥, 𝑡), 𝑓(𝑥)), 𝑢(𝑥, 𝑡) ∈ 𝐶2,1

𝑥,𝑡 (Ω), 𝑓(𝑥) ∈ 𝐶[−𝜋, 𝜋] satisfying Eq. (6) and conditions (7)-(9).
Definition. A generalised solution of the inverse problem (6)-(9), is a pair of functions

(𝑢(𝑥, 𝑡), 𝑓(𝑥)), 𝑢(𝑥, 𝑡) ∈ 𝑊 2,1
2 (Ω)∩𝐶

(︀
Ω
)︀
, 𝑓(𝑥) ∈ 𝐿2 (−𝜋, 𝜋) that satisfy Eq. (6) and conditions

(7)-(9) almost everywhere.

2. Spectral problem A similar spectral problem was considered in [4].
The use of the Fourier method for solving problem (6)–(9) leads to a spectral problem for

the operator ℒ given by the differential expression

ℒ𝑋 (𝑥) ≡ −𝑋 ′′ (𝑥) + 𝜀𝑋 ′′ (−𝑥) = 𝜆𝑋 (𝑥) , −𝜋 < 𝑥 < 𝜋, (10)

and the boundary conditions{︂
𝑋 ′ (−𝜋) −𝑋 ′ (𝜋) − 𝑎𝑋 (𝜋) = 0,

𝑋 (−𝜋) −𝑋 (𝜋) = 0,
(11)

where 𝜆 is the spectral parameter.
Spectral problems for Eq. (10) were first considered, apparently, in [34]. There was considered

cases of Dirichlet and Neumann boundary conditions, and cases of conditions in the form (11)
for 𝑎 = 0. Here we consider the case 𝑎 > 0.

We search a solution of Eq. (10) in the form:

𝑋 (𝑥) = 𝐴 sin (𝜇1𝑥) +𝐵 cos (𝜇2𝑥) , 𝜇1 =

√︂
𝜆

1 + 𝜀
, 𝜇2 =

√︂
𝜆

1 − 𝜀
,

where 𝐴 and 𝐵 are arbitrary complex numbers. The boundary conditions (11) lead to equations

sin (𝜇1𝜋) = 0 , tan (𝜇2𝜋) =
𝑎

2𝜇2

.

Therefore, the spectral problem (10)-(11) has two series of eigenvalues:

𝜆𝑘,1 = (1 + 𝜀) 𝑘2, 𝑘 ∈ N;

𝜆𝑘,2 = (1 − 𝜀) (𝑘 + 𝛿𝑘)2, 𝛿𝑘 =
𝑎

𝑘 + 1
𝑂 (1) > 0, 𝑘 ∈ N0 ≡ N ∪ {0} ,

with corresponding normalized eigenfunctions given by

𝑋𝑘,1 (𝑥) =
1√
𝜋

sin (𝑘𝑥) , 𝑘 ∈ N; 𝑋𝑘,2 (𝑥) = 𝜈𝑘 cos ((𝑘 + 𝛿𝑘)𝑥) , 𝑘 ∈ N0; (12)

here 𝜈𝑘 is the normalization coefficient:

𝜈−2
𝑘 = ‖ cos ((𝑘 + 𝛿𝑘)𝑥) ‖2 = 𝜋 +

𝑎2

(𝑘 + 𝛿𝑘)
[︀
𝑎2 + (𝑘 + 𝛿𝑘)2 𝜋2

]︀ .



On one inverse problem of reconstructing a subdiffusion process ... 35

It is easy to see that system (12) is simultaneously a system of eigenfunctions for the
Sturm-Liouville operator

ℒ1𝑋 (𝑥) ≡ −𝑋 ′′ (𝑥) = 𝜆𝑋 (𝑥) , −𝜋 < 𝑥 < 𝜋,

with the self-adjoint boundary conditions (11) corresponding to the eigenvalues

�̂�𝑘,1 = 𝑘2, 𝑘 ∈ N; �̂�𝑘,2 = (𝑘 + 𝛿𝑘)2, 𝑘 ∈ N0.

Consequently, system (12) forms an orthonormal basis of 𝐿2 (−𝜋, 𝜋).

3. Uniqueness of the solution Let the pair of functions (𝑢(𝑥, 𝑡), 𝑓(𝑥)) be a solution of
the inverse problem (6)-(9). Let us set

𝑢𝑘,𝑖 (𝑡) =

∫︁ 𝜋

−𝜋

𝑢(𝑥, 𝑡)𝑋𝑘,𝑖 (𝑥) 𝑑𝑥, 𝑓𝑘,𝑖 =

∫︁ 𝜋

−𝜋

𝑓(𝑥)𝑋𝑘,𝑖 (𝑥) 𝑑𝑥, 𝑖 = 1, 2. (13)

We apply the operator 𝑡−𝛽𝐷𝛼 to 𝑢𝑘,𝑖 (𝑡). Then, using Eq. (6) and integrating by parts, we
obtain the problem

𝑡−𝛽𝐷𝛼𝑢𝑘,𝑖 (𝑡) + 𝜆𝑘,𝑖𝑢𝑘,𝑖 (𝑡) = 𝑓𝑘,𝑖, 0 < 𝑡 < 𝑇, 𝑖 = 1, 2; (14)

𝑢𝑘,𝑖 (0) = 𝜑𝑘,𝑖, 𝑖 = 1, 2; (15)

𝑢𝑘,𝑖 (𝑇 ) = 𝜓𝑘,𝑖, 𝑖 = 1, 2, (16)

where

𝜑𝑘,𝑖 =

∫︁ 𝜋

−𝜋

𝜑(𝑥)𝑋𝑘,𝑖 (𝑥) 𝑑𝑥, 𝜓𝑘,𝑖 =

∫︁ 𝜋

−𝜋

𝜓(𝑥)𝑋𝑘,𝑖 (𝑥) 𝑑𝑥,

It is easy to see that the function �̃�𝑘,1 (𝑡) = (𝜆𝑘,𝑖)
−1𝑓𝑘,𝑖 is a partial solution of the inhomoge-

neous equation (14). Using the general solution of the homogeneous equation (14), which is
constructed in ([44], p. 233) for 𝛼 + 𝛽 > 0, we get

𝑢𝑘,𝑖 (𝑡) =
𝑓𝑘,𝑖
𝜆𝑘,𝑖

+ 𝐶𝑘,𝑖𝐸𝛼,1+ 𝛽
𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑡𝛼+𝛽

)︀
, 0 < 𝑡 < 𝑇, 𝑖 = 1, 2,

where 𝐸𝛼+𝛽,1,1−𝛼 is the generalized Mittag-Leffler function ([43], p. 48):

𝐸𝛼,1+ 𝛽
𝛼
, 𝛽
𝛼
(𝑧) =

∞∑︁
𝑘=0

𝑐𝑘𝑧
𝑘; 𝑐0 = 1, 𝑐𝑘 =

𝑘−1∏︁
𝑗=0

Γ (𝑗 (𝛼 + 𝛽) + 𝛽 + 1)

Γ (𝑗 (𝛼 + 𝛽) + 𝛼 + 𝛽 + 1)
, 𝑘 ∈ N

and the constants 𝐶𝑘,𝑖 and 𝑓𝑘,𝑖 are unknown.
To find these constants, we use conditions (15) and (16). From (15), we obtain a unique

solution of the Cauchy problem (14)-(15) in the form

𝑢𝑘,𝑖 (𝑡) =
[︁
1 − 𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑡𝛼+𝛽

)︀]︁ 𝑓𝑘,𝑖
𝜆𝑘,𝑖

+ (𝜑𝑘,𝑖)𝐸𝛼,1+ 𝛽
𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑡𝛼+𝛽

)︀
. (17)

Since 𝜆𝑘,𝑖 > 0, then by virtue of the well-known asymptotics [44]:⃒⃒⃒
𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(𝑧)
⃒⃒⃒
≤ 𝑀

1 + |𝑧|
, arg (𝑧) = 𝜋, |𝑧| → ∞, 𝑀 = 𝐶𝑜𝑛𝑠𝑡 > 0, (18)
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𝑇 ≫ 1, the estimate
1−𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑇𝛼+𝛽

)︀
≥ 𝑚* > 0, (19)

holds; the constant 𝑚* does not depend on values of the indices 𝑘, 𝑖.
Therefore, using condition (16), we get

𝑓𝑘,𝑖 = 𝜆𝑘,𝑖
𝜓𝑘,𝑖 − 𝜑𝑘,𝑖𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑇𝛼+𝛽

)︀
1 − 𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(−𝜆𝑘,𝑖 𝑇𝛼+𝛽)
. (20)

Lemma. If (19) holds for all values of the indices 𝑘, 𝑖, then the solution (𝑢(𝑥, 𝑡), 𝑓(𝑥)) of
the inverse problem (6)-(9) is unique.

Proof. Suppose that there are two solutions (𝑢1(𝑥, 𝑡), 𝑓1(𝑥)) and (𝑢2(𝑥, 𝑡), 𝑓2(𝑥)) of the
inverse problem (6)-(9). Set

𝑢 (𝑥, 𝑡) = 𝑢1 (𝑥, 𝑡) − 𝑢2 (𝑥, 𝑡) , 𝑓 (𝑥) = 𝑓1 (𝑥) − 𝑓2 (𝑥) .

Then the functions 𝑢(𝑥, 𝑡) and 𝑓(𝑥) satisfy Eq. (6), the boundary conditions (9) and the
homogeneous conditions (7) and (8):

𝑢 (𝑥, 0) = 𝑢(𝑥, 𝑇 ) = 0, 𝑥 ∈ [−𝜋, 𝜋].

Therefore, by using (13) from (20), we find 𝑓𝑘,𝑖 = 0.
Whereupon, from (17) and (20), we find

𝑢𝑘,𝑖 (𝑡) ≡
∫︁ 𝜋

−𝜋

𝑢(𝑥, 𝑡)𝑋𝑘,𝑖 (𝑥) 𝑑𝑥 = 0, 𝑓𝑘,𝑖 ≡
∫︁ 𝜋

−𝜋

𝑓(𝑥)𝑋𝑘,𝑖 (𝑥) 𝑑𝑥 = 0

for all values of the indices 𝑘 ∈ N for 𝑖 = 1 and 𝑘 ∈ N0 for 𝑖 = 2. Furthermore, by the
completeness of system (12) in 𝐿2 (−𝜋, 𝜋), we obtain

𝑢 (𝑥, 𝑡) ≡ 0, 𝑓 (𝑥) ≡ 0 for all (𝑥, 𝑡) ∈ Ω.

The uniqueness of the solution of the inverse problem (6)-(9) is verified.

4. Construction of a formal solution As the eigenfunctions system (12) forms an
orthonormal basis in 𝐿2 (−𝜋, 𝜋), the unknown functions 𝑢(𝑥, 𝑡) and 𝑓 (𝑥) can be formally
represented as

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑢𝑘,1 (𝑡)𝑋𝑘,1 (𝑥) +
∞∑︁
𝑘=0

𝑢𝑘,2 (𝑡)𝑋𝑘,2 (𝑥), (21)

𝑓 (𝑥) =
∞∑︁
𝑘=1

𝑓𝑘,1𝑋𝑘,1 (𝑥) +
∞∑︁
𝑘=0

𝑓𝑘,2𝑋𝑘,2 (𝑥), (22)

where 𝑢𝑘,1 (𝑡) and 𝑢𝑘,2 (𝑡) are unknown functions; 𝑓𝑘,1 and 𝑓𝑘,2 are unknown constants.
Substituting (21) and (22) into equation (6), we obtain the inverse problems (14)-(16). If

the constants 𝜎𝑘,𝑖 are assumed to be given, then the solutions of these inverse problems exist,
are unique and are represented by formulas (17) and (20). Substituting (17) and (20) into
series (21) and (22), we obtain a formal solution of the inverse problem (6)-(9).

Indeed, from (5) and Eq. (1) we have

0 =

∫︁ 𝜋

−𝜋

𝑓 (𝜉) 𝑑𝜉 =

∫︁ 𝜋

−𝜋

𝑡−𝛽𝐷𝛼
𝑡 Φ (𝜉, 𝑡) 𝑑𝜉 −

∫︁ 𝜋

−𝜋

{︁
Φ𝜉𝜉 (𝜉, 𝑡) + 𝜀Φ𝜉𝜉 (−𝜉, 𝑡)

}︁
𝑑𝜉.
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For the first integral, we apply condition (4), and calculate the second integral. Then we
obtain

0 = (1 − 𝜀)

[︂
Φ𝑥 (−𝜋, 𝑡) − Φ𝑥 (𝜋, 𝑡) +

1

𝛾(1 − 𝜀)
Φ (−𝜋, 𝑡)

]︂
.

This means that the boundary conditions (4) and (9) coincide. Hence, problems (6)-(9) and
(1)-(4) also coincide.

Thus, in what follows we shall consider problem (1)-(3) with the boundary condition

Φ𝑥 (−𝜋, 𝑡) − Φ𝑥 (𝜋, 𝑡) − 𝑎Φ (−𝜋, 𝑡) = 0. (23)

Thus, in what follows we will consider the inverse problem (1)-(3), (23).
Similarly, as before, the formal solution of this problem can be constructed in the form of

series

Φ (𝑥, 𝑡) =
∞∑︁
𝑘=1

Φ𝑘,1 (𝑡)𝑋𝑘,1 (𝑥) +
∞∑︁
𝑘=0

Φ𝑘,2 (𝑡)𝑋𝑘,2 (𝑥), (24)

𝑓 (𝑥) =
∞∑︁
𝑘=1

𝑓𝑘,1𝑋𝑘,1 (𝑥) +
∞∑︁
𝑘=0

𝑓𝑘,2𝑋𝑘,2 (𝑥), (25)

where

Φ𝑘,𝑖 (𝑡) =

(︂
𝜑𝑘,𝑖 −

𝑓𝑘,𝑖
𝜆𝑘,𝑖

)︂
𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑡𝛼+𝛽

)︀
+
𝑓𝑘,𝑖
𝜆𝑘,𝑖

, (26)

𝑓𝑘,𝑖 = 𝜆𝑘,𝑖
𝜓𝑘,𝑖 − 𝜑𝑘,𝑖𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(︀
−𝜆𝑘,𝑖 𝑇𝛼+𝛽

)︀
1 − 𝐸𝛼,1+ 𝛽

𝛼
, 𝛽
𝛼

(−𝜆𝑘,𝑖 𝑇𝛼+𝛽)
. (27)

In order to complete our study, it is necessary, to justify the smoothness of the resulting
formal solutions and the convergence of all appearing series.

5. Main results Here we present the existence and uniqueness results for our inverse
problem.

Theorem. Let 𝑎 > 0, 𝛼 + 𝛽 > 0 and 𝑇 be large enough that condition (19) holds for all
values of the indices 𝑘, 𝑖.
(A) Let 𝜑(𝑥), 𝜓(𝑥) ∈ 𝑊 2

2 (−𝜋, 𝜋) and satisfy the boundary conditions (11). Then, for a real
number 𝜀 such that |𝜀| < 1, the inverse problem (1)-(3), (23) has a unique generalized solution,
which is stable in norm:⃦⃦

𝑡−𝛽𝐷𝛼
𝑡 Φ

⃦⃦2

𝐿2(Ω)
+ ‖Φ𝑥𝑥‖2𝐿2(Ω) + ‖𝑓‖2𝐿2(−𝜋,𝜋) ≤ 𝐶

{︁
‖𝜑‖2𝑊 2

2 (−𝜋,𝜋) + ‖𝜓‖2𝑊 2
2 (−𝜋,𝜋)

}︁
,

where the constant 𝐶 does not depend on 𝜑(𝑥), 𝜓(𝑥).
(B) Let 𝜑(𝑥), 𝜓(𝑥) ∈ 𝐶4 [−𝜋, 𝜋] and the functions 𝜑(𝑥), 𝜓(𝑥) and 𝜑′′(𝑥), 𝜓′′(𝑥) satisfy the
boundary conditions (11), then, for a real number 𝜀 such that |𝜀| < 1, the inverse problem
(1)-(3), (23) has a unique regular solution.

Proof. The generalized Mittag-Leffler function’s estimates (18) and (19) are known. There-
fore, from representations (17) и (20), we get estimates

|𝑓𝑘,𝑖| ≤ 𝐶1 |𝜆𝑘,𝑖|
{︁
|𝜑𝑘,𝑖| + |𝜓𝑘,𝑖|

}︁
, (28)

|Φ𝑘,𝑖 (𝑡)| ≤ 𝐶1

{︁
|𝜑𝑘,𝑖| + |𝜓𝑘,𝑖|

}︁
, (29)
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where the constant 𝐶1 does not depend on the indices 𝑘, 𝑖 and on the functions 𝜑(𝑥), 𝜓(𝑥).
Since the eigenfunctions system (12) forms an orthonormal basis in 𝐿2 (−𝜋, 𝜋), then by virtue
of the Parseval equality, it is easy to obtain estimates

‖𝑓‖2𝐿2(−𝜋,𝜋) ≤ 𝐶
{︁
‖𝜑′′‖2𝐿2(−𝜋,𝜋) + ‖𝜓′′‖2𝐿2(−𝜋,𝜋)

}︁
, (30)

‖Φ𝑥𝑥‖2𝐿2(Ω) ≤ 𝐶
{︁
‖𝜑′′‖2𝐿2(−𝜋,𝜋) + ‖𝜓′′‖2𝐿2(−𝜋,𝜋)

}︁
. (31)

In deriving these inequalities, we use the fact that the functions 𝜑(𝑥), 𝜓(𝑥) satisfy the boundary
conditions (11). Now we can easily obtain an estimate for 𝑡−𝛽𝐷𝛼

𝑡 Φ (𝑥, 𝑡) from Eq. (6). This
together with (30) and (31) gives the necessary estimate for the solution.

From the obtained estimates it also follows that in the constructed formal solution of the
inverse problem all the series converge, they can be term-by-term differentiated, and the series
obtained during differentiation also converge in the metrics of 𝐿2.

From (21) and (29), by using Holder’s inequality, it is easy to justify the inequality

max
(𝑥,𝑡)∈Ω

|Φ (𝑥, 𝑡)|2 ≤ 𝐶
{︁
‖𝜑′′‖2𝐿2(−𝜋,𝜋) + ‖𝜓′′‖2𝐿2(−𝜋,𝜋)

}︁
,

which justifies the continuity of Φ (𝑥, 𝑡) in the closed domain Ω.
From the representation of the solution in the form of series (21), (22) and inequalities

(28), (29), it is easy to justify estimate

|Φ𝑥𝑥 (𝑥, 𝑡)| + |Φ𝑡𝑡 (𝑥, 𝑡)| + |𝑓 (𝑥)| ≤ 𝐶
∞∑︁
𝑘=1

|𝜆𝑘,𝑖|2
{︁
|𝜑𝑘,𝑖| + |𝜓𝑘,𝑖|

}︁
. (32)

Let 𝜑(𝑥), 𝜓(𝑥) ∈ 𝐶4 [−𝜋, 𝜋] and the functions 𝜑(𝑥), 𝜓(𝑥) and 𝜑′′(𝑥), 𝜓′′(𝑥) satisfy the boundary
conditions (11), then the series in the right-hand side of (32) converges. Therefore, in such
case, the formal solution gives the regular solution of the inverse problem (6)-(9). The Theorem
is completely proved.
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ABSTRACT
In this article we consider an inverse problem for one-dimensional degenerate fractional heat

equation with involution and with periodic boundary conditions with respect to a spatial variable.

This problem simulates the process of heat propagation in a thin closed wire wrapped around a

weakly permeable insulation. The inverse problem consists in the restoration (simultaneously with

the solution) of an unknown right-hand side of the equation, which depends only on the spatial

variable. The conditions for redefinition are initial and final states. Existence and uniqueness results

for the given problem are obtained via the method of separation of variables.

Keywords: inverse problem, heat equation, equation with involution, subdiffusion process, equa-

tion with degeneration, periodic boundary conditions, method of separation of variables.
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АННОТАЦИЯ
В этой статье рассматривается одна обратная задача для одномерного вырождающегося

уравнения дробной теплопроводности с инволюцией и с периодическими граничными условиями

относительно пространственной переменной. Эта проблема имитирует процесс распространения

тепла в тонкой замкнутой проволоке, обернутой вокруг слабо проницаемой изоляции. Обрат-

ная задача состоит в восстановлении (одновременно с решением) уравнения неизвестная правая

часть уравнения, зависящая только от пространственная переменная. Условиями переопреде-

ления являются начальное и конечное состояния. Результаты существования и единственности

для данной задачи получены методом разделения переменных.

Ключевые слова: обратная задача, уравнение теплопроводности, уравнение с инволюцией,

субдиффузионный процесс, уравнение с вырождением, периодические граничные условия, метод

разделения переменных.
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