

Gülin Ercan, İsmail Ş. Güloğlu, Finite groups admitting a dihedral group of automorphisms, Algebra Discrete Math., 2017, том 23, выпуск 2, 223–229

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 3.135.196.3 20 октября 2024 г., 21:45:52

Algebra and Discrete Mathematics RESEARCH ARTICLE Volume **23** (2017). Number 2, pp. 223–229 c Journal "Algebra and Discrete Mathematics"

Finite groups admitting a dihedral group of automorphisms[∗]

Gülin Ercan and İsmail Ş. Güloğlu

Communicated by A. Yu. Olshanskii

ABSTRACT. Let $D = \langle \alpha, \beta \rangle$ be a dihedral group generated by the involutions α and β and let $F = \langle \alpha \beta \rangle$. Suppose that *D* acts on a finite group *G* by automorphisms in such a way that $C_G(F) = 1$. In the present paper we prove that the nilpotent length of the group *G* is equal to the maximum of the nilpotent lengths of the subgroups $C_G(\alpha)$ and $C_G(\beta)$.

1. Introduction

Throughout the paper all groups are finite. Let *F* be a nilpotent group acted on by a group *H* via automorphisms and let the group *G* admit the semidirect product *FH* as a group of automorphisms so that $C_G(F) = 1$. By a well known result [1] due to Belyaev and Hartley, the solvability of *G* is a drastic consequence of the fixed point free action of the nilpotent group F . A lot of research, $[7, 10, 11, 13-15]$, investigating the structure of *G* has been conducted in case where *F H* is a Frobenius group with kernel *F* and complement *H.* So the immediate question one could ask was whether the condition of being Frobenius for *F H* could be weakened or not. In this direction we introduced the concept of a Frobenius-like group in [8] as a generalization of Frobenius group and investigated the structure of *G* when the group *F H* is Frobenius-like [3],[4],[5],[6]. In particular,

[∗]This work has been supported by the Research Project TÜBİTAK 114F223. **2010 MSC:** 20D10, 20D15, 20D45.

Key words and phrases: dihedral group, fixed points, nilpotent length.

we obtained in [3] the same conclusion as in [10]; namely the nilpotent lengths of *G* and $C_G(H)$ are the same, when the Frobenius group FH is replaced by a Frobenius-like group under some additional assumptions. In a similar attempt in [16] Shumyatsky considered the case where *F H* is a dihedral group and proved the following.

Let $D = \langle \alpha, \beta \rangle$ *be a dihedral group generated by the involutions* α *and β* and let $F = \langle \alpha \beta \rangle$. (Here, $D = FH$ where $H = \langle \alpha \rangle$) Suppose that D *acts on the group G by automorphisms in such a way that* $C_G(F) = 1$ *. If* $C_G(\alpha)$ *and* $C_G(\beta)$ *are both nilpotent then G is nilpotent.*

In the present paper we extend his result as follows.

Theorem. Let $D = \langle \alpha, \beta \rangle$ be a dihedral group generated by the involutions *α and β and let* $F = \langle \alpha \beta \rangle$ *. Suppose that D acts on the group G by automorphisms in such a way that* $C_G(F) = 1$. Then the nilpotent length *of G is equal to the maximum of the nilpotent lengths of the subgroups* $C_G(\alpha)$ *and* $C_G(\beta)$ *.*

After completing the proof we realized that it follows as a corollary of the main theorem of a recent paper [2] by de Melo. The proof we give relies on the investigation of *D*-towers in *G* in the sense of [17] and the following proposition which, we think, can be effectively used in similar situations.

Proposition. Let $D = \langle \alpha, \beta \rangle$ be a dihedral group generated by the invo*lutions α and β. Suppose that D acts on a q-group Q for some prime q and let V be a kQD-module for a field k of characteristic different from q* such that the group $F = \langle \alpha \beta \rangle$ *acts fixed point freely on the semidirect product* VQ *. If* $C_Q(\alpha)$ *acts nontrivially on V then we have* $C_V(\alpha) \neq 0$ $and \text{Ker}(C_Q(\alpha) \text{ on } C_V(\alpha)) = \text{Ker}(C_Q(\alpha) \text{ on } V).$

Notation and terminology are standard unless otherwise stated.

2. Proof of the proposition

We first present a lemma to which we appeal frequently in our proofs.

Lemma. Let $D = \langle \alpha, \beta \rangle$ be a dihedral group generated by the involutions *α and β and let* $F = \langle \alpha \beta \rangle$ *. Suppose that D acts on the group S by automorphisms in such a way that* $C_S(F) = 1$. Then the following hold.

(i) *For each prime p dividing its order, the group S contains a unique D-invariant Sylow p-subgroup.*

(ii) Let *N* be a normal D-invariant subgroup of *S.* Then $C_{S/N}(F) = 1$, $C_{S/N}(\alpha) = C_S(\alpha)N/N$ and $C_{S/N}(\beta) = C_S(\beta)N/N$. (iii) $S = C_S(\alpha)C_S(\beta)$.

Proof. See the proofs of Lemma 2.6, Lemma 2.7 and Lemma 2.8 in [16]. \Box

We are now ready to prove the proposition.

Notice that $V = C_V(\alpha)C_V(\beta)$ by Lemma (iii) applied to the action of *D* on *V*. Suppose first that $C_V(\alpha) = 0$. Then $[V, \beta] = 0$ whence $[Q, \beta] \le$ $Ker(Q \text{ on } V)$ by the Three Subgroup Lemma. Set $\overline{Q} = Q/Ker(Q \text{ on } V)$. We observe that $C_Q(F) = 1$ implies $C_{\overline{Q}}(F) = 1$ by Lemma (ii). This forces $C_{\overline{Q}}(\alpha) = 1$. As the equality $C_{\overline{Q}}(\alpha) = C_Q(\alpha)$ holds by Lemma (ii), we get $C_Q(\alpha)$ acts trivially on *V*. This contradiction shows that $C_V(\alpha) \neq 0$ establishing the first claim.

To ease the notation we set $H = \langle \alpha \rangle$ and $K = \text{Ker}(C_Q(H)$ on $C_V(H)$). Here $D = FH$. To prove the second claim we use induction on dim_k $V +$ $|QD|$. We choose a counterexample with minimum dim_k $V + |QD|$ and proceed over several steps.

1) We may assume that *k* is a splitting field for all subgroups of *QF H*.

We consider the *QD*-module $\overline{V} = V \otimes_k \overline{k}$ where \overline{k} is the algebraic closure of *k*. Notice that $\dim_k V = \dim_{\bar{k}} \bar{V}$ and $C_{\bar{V}}(H) = C_V(H) \otimes_k \bar{k}$. Therefore once the proposition has been proven for the group QD on V , it becomes true for *QD* on *V* also.

2) *V* is an indecomposable *QD*-module on which *Q* acts faithfully.

Notice that *V* is a direct sum of indecomposable *QD*-submodules. Let *W* be one of these indecomposable *QD*-submodules on which *K* acts nontrivially. If $W \neq V$, then the proposition is true for the group QD on *W* by induction. That is,

$$
Ker(C_Q(H) \text{ on } C_W(H)) = Ker(C_Q(H) \text{ on } W)
$$

and hence

$$
K = \text{Ker}(K \text{ on } C_W(H)) = \text{Ker}(K \text{ on } W)
$$

which is a contradiction with the assumption that *K* acts nontrivially on *W*. Hence $V = W$.

Recall that $\overline{Q} = Q/Ker(Q \text{ on } V)$ and consider the action of the group $\overline{Q}D$ on *V* assuming Ker(*Q* on *V*) \neq 1. An induction argument gives $\text{Ker}(C_{\overline{Q}}(H) \text{ on } C_V(H)) = \text{Ker}(C_{\overline{Q}}(H) \text{ on } V)$. This leads to a contradiction as $C_{\overline{Q}}(H) = C_Q(H)$ by Lemma(ii). Thus we may assume that Q acts faithfully on *V* .

3) Let Ω denote the set of *Q*-homogeneous components of *V* . *K* acts trivially on every element *W* in Ω such that $Stab_H(W) = 1$ and so *H* fixes an element of Ω .

Let *W* be in Ω such that $Stab_H(W) = 1$. Then the sum $X = W + W^{\alpha}$ is direct. It is straightforward to verify that $C_X(H) = \{v + v^{\alpha} : v \in W\}$. By definition, *K* acts trivially on $C_X(H)$. Note also that *K* normalizes both *W* and W^{α} as $K \leq Q$. It follows now that *K* is trivial on *X* and hence on *W*. This shows that *H* fixes at least one element of Ω because otherwise $K = 1$, a contradiction.

4) *F* acts transitively on Ω .

Let $\Omega_i, i = 1, \ldots, s$ be all distinct *D*-orbits of Ω . Then $V =$ $\bigoplus_{i=1}^s \bigoplus_{W \in \Omega_i} W$. Since $\bigoplus_{W \in \Omega_i} W$ is *QD*-invariant for each *i* we have $s = 1$ by (2), that is, *D* acts transitively on Ω . Let *W* be an *H*-invariant element of Ω whose existence is guaranteed by (3). Then the *F*-orbit containing *W* in Ω is the whole of Ω .

From now on *W* denotes an *H*-invariant element of Ω . It should be noted that the group $Z(Q/\text{Ker}(Q \text{ on } W))$ acts by scalars on the homogeneous *Q*-module *W*, and so $[Z(Q), H] \leq \text{Ker}(Q \text{ on } W)$. Set $F_1 =$ $Stab_F(W)$ and let *T* be a transversal containing 1 for F_1 in *F*. Then $F = \bigcup_{t \in T} F_1 t$ and so $V = \bigoplus_{t \in T} W^t$. Note that an *H*-orbit on $\Omega = \{W^t :$ $t \in T$ is of length at most 2.

5) The number of *H*-invariant elements in Ω is at most 2, and is equal to 2 if and only if $|F/F_1|$ is even. Furthermore $V = U \oplus X$ where X is a *Q*-submodule centralized by *K* and *U* is the direct sum of all *H*-invariant elements in Ω .

If W^t is *H*-invariant then $W^{t\alpha} = W^t$ implies $t^{\alpha}t^{-1} \in F_1$. On the other hand $t^{\alpha}t^{-1} = t^{-2}$ since α inverts *F*. That is, tF_1 is an element of F/F_1 of order at most 2. If $tF_1 = F_1$ then $t = 1$. Otherwise tF_1 is the unique element of order 2 in F/F_1 . Thus the number of *H*-invariant elements in Ω is at most 2 and if it is equal to 2 then $|F/F_1|$ is even. If conversely F/F_1 is of even order, let yF_1 be the unique element of order 2 in F/F_1 . Then $y^{\alpha}F_1 = yF_1$ and so $(W^y)^{\alpha} = W^{y^{\alpha}} = W^y \neq W$. This shows that there exist exactly two *H*-invariant elements in Ω if and only if F/F_1 is of even order.

6) Since $1 \neq K \leq C_O(H)$, we can choose a nonidentity element $z \in$ $K \cap Z(C_Q(H))$. Set $L = \langle z \rangle$. Then $Q = L^{F_2}C_Q(U)$ where $F_2 = Stab_F(U)$.

It follows from an induction argument applied to the action of *L ^F D* on *V* that $Q = L^F$. Let $F_2 = Stab_F(U)$ and observe that for any $f \in$ $F - F_2$, $U^f \leqslant X$ and hence is centralized by *L* by (5). Thus we get $Q = L^{F_2}C_Q(U) = L^{F_2}C_Q(W).$

7) Set $Y = F_{q'}$. Then $Y \cap F_1 \neq Y \cap F_2$.

Suppose that $Y \cap F_1 = Y \cap F_2$. Pick a simple commutator $c =$ $[z^{f_1}, \ldots, z^{f_m}]$ of maximal weight in the elements $z^f, f \in F_1$ such that $c \notin C_Q(W)$. Since $Q = L^{F_2}C_Q(W)$, the weight of this commutator is equal to the nilpotency class of $Q/C_Q(W)$. It should be noted that the nilpotency classes of $Q/C_Q(W)$ and *Q* are the same, since *Q* can be embedded into the direct product of $Q/C_Q(W^f)$ as f runs through F . Hence $c \in Z(Q)$. Clearly, $C_Q(F) = 1$ implies $C_Q(Y) = 1$ and hence $\prod_{x \in Y} c^x = 1$, as $\prod_{x \in Y} c^x$ is contained in *Z*(*Q*) and is fixed by *Y*. In fact we have

$$
1 = \prod_{x \in Y} c^x = \prod_{x \in Y - F_1} c^x \prod_{x \in Y \cap F_1} c^x.
$$

 $Recall that [Z(Q), F_1] \leqslant C_Q(W)$ and hence $[Z(Q), F_1] \leqslant \bigcap_{f \in F} C_Q(W^f) =$ $C_Q(V) = 1$. This gives $\prod_{x \in Y \cap F_1} c^x = c^{|Y \cap F_1|}$. On the other hand, for any $f \in F_1$ and any $x \in Y - F_1$, $fx \notin F_2$ and so *z* centralizes $W^{(fx)^{-1}}$, that is, $z^{fx} \in C_Q(W)$. Therefore c^x lies in $C_Q(W)$ for any x in $Y - F_1$. It follows that $\prod_{x \in Y - F_1} c^x \in C_Q(W)$. This forces that $c^{|Y \cap F_1|} \in C_Q(W)$ which is impossible as $c \notin C_Q(W)$.

8) Final contradiction.

By (5) and (7), $|F_2 : F_1| = 2$ and *q* is odd. Now $Z_2(Q) =$ $[Z_2(Q), H]C_{Z_2(Q)}(H)$ as $(|Q|, |H|) = 1$. Notice that $U = W \oplus W^t$ for some $t \in T$ which may be assumed to lie in $F_2 = Stab_F(U)$. We have $[Z_2(Q), L, H] \leq [Z(Q), H] \leq C_Q(W) \cap C_Q(W^t) = C_Q(U)$. We also have $[L, H, Z_2(Q)] = 1$ as $[L, H] = 1$. It follows now by the Three Subgroup Lemma that $[H, Z_2(Q), L] \leq C_Q(U)$. On the other hand $[C_{Z_2(Q)}(H), L] = 1$ by the definition of *L*. Thus $[L, Z_2(Q)] \leq C_Q(U)$. Then we have $[L^{F_2}, Z_2(Q)] \leqslant C_Q(U)$, as *U* is F_2 - invariant, which yields that $[Q, Z_2(Q)] \leq C_Q(U)$. Thus $[Q, Z_2(Q)] \leq \bigcap_{f \in F} C_Q(U)^f = C_Q(V) = 1$ and hence *Q* is abelian.

Now $[Q, F_1H] \leq C_Q(W)$ due to the scalar action of $Q/C_Q(W)$ on W. Notice that $C_W(H) = 0$ because otherwise L is trivial on W due to its action by scalars. So *H* inverts every element of *W*. Since $Stab_F(W^t)$ = $Stab_F(W)^t = F_1^t = F_1$, we can replace *W* by W^t and conclude that *H* inverts every element in *U.* That is, *H* acts by scalars and hence lies in the center of $QF_2H/C_{QF_2}(U)$. On the other hand *H* inverts $F_2/C_{F_2}(U)$. It follows that $|F_2/C_{F_2}(U)| = 1$ or 2. Since $|F_2 : F_1| = 2$, we have $F_1 \leqslant C_{F_2}(U)$. This contradicts the fact that $C_W(F_1) = 0$ as $C_V(F) = 0$.

3. Proof of the theorem

Suppose that $n = f(G) \geqslant f(C_G(\alpha)) \geqslant f(C_G(\beta))$ and set $H = \langle \alpha \rangle$. We may assume by Proposition 5 in [9] that $C_G(F) = 1$ implies $[G, F] = G$. In view of Lemma (i) for each prime *p* dividing the order of *G* there is a unique *D*-invariant Sylow *p*-subgroup of *G*. This yields the existence of an irreducible *D*-tower P_1, \ldots, P_n in the sense of [17] where

- (a) P_i is a *D*-invariant p_i -subgroup, p_i is a prime, $p_i \neq p_{i+1}$, for $i =$ $1, \ldots, n-1;$
- (b) $P_i \leq N_G(P_j)$ whenever $i \leq j$;
- (c) $P_n = P_n$ and $P_i = P_i/C_{\widehat{P}_i}(P_{i+1})$ for $i = 1, \ldots, n-1$ and $P_i \neq 1$ for $i = 1, \ldots, n-1$ $i = 1, \ldots, n;$
- (d) $\Phi(\Phi(P_i)) = 1$, $\Phi(P_i) \leq Z(P_i)$, and $\exp(P_i) = p_i$ when p_i is odd for $i = 1, \ldots, n;$
- (e) $[\Phi(P_{i+1}), P_i] = 1$ and $[P_{i+1}, P_i] = P_{i+1}$ for $i = 1, ..., n-1$;
- (f) $(\Pi_{i \leq i} P_i)FH$ acts irreducibly on $P_i/\Phi(P_i)$ for $i = 1, \ldots, n;$
- (g) $P_1 = [P_1, F].$

Set now $X = \prod_{i=1}^n \hat{P}_i$. As $P_1 = [P_1, D]$ by *(g)*, we observe that $X = [X, D]$. If *X* is proper in *G*, by induction we have $n = f(X)$ $f(C_X(H))$ and so the theorem follows. Hence $X = G$. Notice that *G* is nonabelian and hence $C_G(H) \neq 1$, that is $f(C_G(H)) \geq 1$. Therefore the theorem is true if $G = F(G)$. We set next $\overline{G} = G/F(G)$. As \overline{G} is a nontrivial group such that $\overline{G} = [\overline{G}, F]$, it follows by induction that $f(G) = n - 1 = f(C_{\overline{G}}(H))$. This yields that [*C* P_{n-1} \cdot $(H), \ldots, C$ P_1 (*H*)] is nontrivial. Since $C_{\overline{\widehat{P}_i}}(H) = C_{\widehat{P}_i}(H)$ for each *i* by Lemma (ii), we have P_i $Y = [C_{\widehat{P}_{n-1}}(H), \ldots, C_{\widehat{P}_1}(H)] \nleq F(G) \cap P_{n-1} = C_{\widehat{P}_{n-1}}(P_n).$

By the Proposition applied to the action of the group $P_{n-1}FH$ on the module $P_n/\Phi(P_n)$ we get

$$
\text{Ker}(C_{\widehat{P}_{n-1}}(H) \text{ on } C_{\widehat{P}_n/\Phi(\widehat{P}_n)}(H)) = \text{Ker}(C_{\widehat{P}_{n-1}}(H) \text{ on } \widehat{P}_n/\Phi(\widehat{P}_n)).
$$

It follows now that *Y* does not centralize $C_{\widehat{P}_n}(H)$ and hence $f(C_G(H))$ = $n = f(G)$. This completes the proof.

References

- [1] V. V. Belyaev and B. Hartley, Centralizers of finite nilpotent subgroups in locally finite groups, Algebra Logika 35 (1996) 389–410; English transl., Algebra Logic 35 (1996) 217–228.
- [2] E. de Melo, Fitting height of a finite group with a metabelian group of automorphisms, Comm. Algebra 43 no. 11 (2015) 4797—4808.
- [3] G. Ercan and İ. Ş. Güloğlu, Action of a Frobenius-like group with fixed-point-free kernel, J. Group Theory 17 no. 5 (2014) 863—873.
- [4] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Rank and Order of a Finite Group admitting a Frobenius-like Group of Automorphisms, Algebra and Logic 53 no.3 (2014) 258–265.
- [5] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Derived length of a Frobenius-like Kernel, J. Algebra 412 (2014) 179—188.
- [6] G. Ercan, İ. Ş. Güloğlu, and E. I. Khukhro, Frobenius-like groups as groups of automorphisms, Turkish J. Math. 38 no.6 (2014) 965-976.
- [7] G. Ercan, İ. Ş. Güloğlu, and E. Öğüt, Nilpotent length of a Finite Solvable Group with a coprime Frobenius Group of Automorphisms, Comm. Algebra 42 (2014) no. 11 4751—4756.
- [8] İ. Ş. Güloğlu and G. Ercan, Action of a Frobenius-like group, J. Algebra 402 (2014) 533–543.
- [9] I. M. Isaacs, Fixed points and characters in groups with non-coprime operator groups, Canad. J. Math. 20 (1968) 1315—1320.
- [10] E. I. Khukhro, Fitting height of a finite group with a Frobenius group of automorphisms, J. Algebra 366 (2012) 1–11.
- [11] E. I. Khukhro, Rank and order of a finite group admitting a Frobenius group of automorphisms, Algebra Logika 52 (2013) 99–108; English transl., Algebra Logic 52 (2013) 72–78.
- [12] E. I. Khukhro and N. Yu. Makarenko, Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms, J. Algebra 386 (2013) 77–104.
- [13] E. I. Khukhro and N. Yu. Makarenko, Finite *p*-groups admitting a Frobenius groups of automorphisms with kernel a cyclic *p*-group, Proc. Amer. Math. Soc., 143 no. 5 (2015) 1837–1848.
- [14] E. I. Khukhro, N. Y. Makarenko, and P. Shumyatsky, Frobenius groups of automorphisms and their fixed points, Forum Math.26 (2014) 73–112.
- [15] N. Y. Makarenko and P. Shumyatsky, Frobenius groups as groups of automorphisms, Proc. Amer. Math. Soc. 138 (2010) 3425–3436.
- [16] P. Shumyatsky, The dihedral group as a group of automorphisms, J. Algebra 375 (2013) 1—12.
- [17] A. Turull, Fitting Height of Groups and of Fixed Points, J. Algebra 86 (1984) 555–556. α

İsmail Ş. Güloğlu Department of Mathematics, Doğuş University, Istanbul, Turkey *E-Mail*(*s*): iguloglu@dogus.edu.tr

Received by the editors: 23.11.2016.