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Алгебра и анализ 
Том 17 (2005), №2 

A TROPICAL APPROACH 
ТО ENUMERATIVE GEOMETRY 

© Е . S H U S T I N 

"A detailed algebraic-geometric background is presented for the tropical ap­
proach to enumeration of singular curves on toric surfaces, which consists 
of reducing the enumeration of algebraic curves to that of non-Archimedean 
amoebas, the images of algebraic curves by a real-valued non-Archimedean 
valuation. This idea was proposed by Kontsevich and recently realized by 
Mikhalkin, who enumerated the nodal curves on toric surfaces [18]. The 
main technical tools are a refined tropicalization of one-parametric equi-
singular families of curves and the patchworking construction of singular 
algebraic curves. The case of curves with a cusp and the case of real nodal 
curves are also treated. 

§ 1 . Introduction 
The rapid development of tropical algebraic geometry over the recent years 

has led to interesting applications to enumerative geometry of singular alge­
braic curves, proposed by Kontsevich [16]. The first result in this direction 
was obtained by Mikhalkin [18], who counted the curves with a given number 
of nodes on toric surfaces via lattice paths in convex lattice polygons. Our 
main goal in the present paper is to explain this breakthrough result, no­
tably the link between algebraic curves and non-Archimedean amoebas, which 
is the core of the tropical approach to enumerative geometry. Our point of 
view is purely algebraic-geometric and differs from Mikhalkin's one, which is 
based on symplectic geometry techniques. Briefly speaking, we count equisin-
gular families of curves over a punctured disk. The tropicalization procedure 

The author was supported by from the German-Israeli Foundation for Research and Devel­
opment (grant no. G-616-15.6/99), by the Hermann-Minkowski Minerva Center for Geometry 
at Tel Aviv University, and by the Bessel research award from the Alexander von Humboldt 
Foundation. 
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extends such families to the central point, and these tropical limits are ba­
sically encoded by non-Archimedean amoebas. In its turn, the patchworking 
construction restores an equisingular family out of the central fibre. 

Tropicalization. Let А С К 2 be a convex lattice polygon, and let Тогк(Д) 
be the toric surface associated with the polygon A and defined over an al­
gebraically closed field К of characteristic zero. We denote by Лк(А) the 
tautological linear system on Тогк(А) generated by the monomials xly\ 

G А П I?. We would like to count the n-nodal curves belonging to 
Лк(А) and passing through r = dimAic(A) — n— |Д П Z 2 | — 1 - n generic 
points in Тогк(А), i.e., we want to find the degree of the so-called Severi 
variety Ед(пЛх) . Let К be the field of convergent Puiseux series over C, 
i.e., power series of the form b(t) = Х ) т е я С г * Т ' where R с Q is contained 
in an arithmetic progression bounded from below, and 5Гтея1 сг|^ т < 0 0 f ° r 

sufficiently small positive t. The field К is equipped with a non-Archimedean 
valuation Val(b) = - m i n { r € R : cr ф 0}, which takes K* onto Q and 
satisfies 

Val(ab) = Val(a) + Val(b), Val(o + b) ^ max{Val(a), Val(b)}, a, b € K*. 

A curve С 6 Лк (Д) with n nodes is given by a polynomial 

Without loss of generality we can assume that all exponents of t in 
are integral, and thus, polynomial (1.0.1) determines an analytic surface X in 
Y = Tor(A) x (£)\{0}), ' where D is a small disk in С centered at 0, and X is 
such that the fibres XT are complex algebraic curves that belong to the linear 
system Л(А) on the surface Tor(A), and have n nodes (cf. Lemma 2.3 and 
Subsection 2.2). 

With the pair (Тогк(А),С) we associate a certain limit of the family 
(YT,XT) as t -»• 0, where YT = Tor(A) x {t} с Y. The result (Y0,X0) 
of this operation is called the tropicalization (or dequantization) of the 
pair (Тогк(Д), C) . Namely, the surface YQ splits into irreducible components 

• • -,YO,N, corresponding to a subdivision of A into convex lattice poly­
gons, and this subdivision is dual to the non-Archimedean amoeba Af с R 2 

of the polynomial / , which passes through the points (Va l^ i ) , Val(j/i)) € R 2 . 
Next we define a refinement of a tropicalization as the tropicalization of the 
corresponding polynomial / after a certain change of coordinates. This refine­
ment corresponds to blow-ups of the threefold Y — Y U Уо at some singular 

From now on the symbol Tor(*) will always mean a toric variety over C. 

(1.0.1) 
( i j ) e A n z 2 
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points of XQ or along multiple components of XQ; it extends Уо by adding 
exceptional divisors and extends the curve XQ by adding new components, 
which we call deformation patterns. 

We show that the refined tropicalizations (YQ,XQ) of the n-nodal curves 
С e Тогк(А) passing through (xi,yi) E (K*) 2 , i = l,...,r, belong to a 
certain finite set Г . Using our patchworking theorem, we decide how many 
n-nodal curves С G Тогк(Д) passing through (xj,yj) e (Ж*) 2, г = l , . . . , r , 
arise from an element (Y0,Xo) of T; and thus, we obtain degX^ray l i ) as the 
sum of weights of elements of Г . In fact, we seek the family Xt in the form 
(1.0.1) where the tropicalization provides some initial terms in the coefficients 
Oij(t). 

Here we do not touch the merely combinatorial problem of counting the 
elements of T. Mikhalkin [18] did this in a nice elementary way, by tracing 
non-Archimedean amoebas through points on a straight line and attaching the 
dual subdivisions to lattice paths in A. 

Also, we would like to note that the tropical approach can be applied to 
counting curves with other singularities, and here we demonstrate this for a 
relatively simple case of curves with an ordinary cusp. The main difficulty 
in the general case- is to describe the possible tropicalizations, whereas the 
patchworking Theorem 5 applies to curves with arbitrary singularities. 

Furthermore, if the given points in (K*) 2 are invariant with respect to 
complex conjugation, one can count the real tropicalizations, and, thus, the 
real singular curves passing through given points. We discuss this in § 6 in 
connection with the Welschinger invariant [35]. 

Patchworking construction. In 1979-1980, O. Viro [30, 31, 32, 33] invented 
a patchworking construction for real non-singular algebraic hypersurfaces. It 
should be mentioned that almost all known topological types of real non-
singular algebraic curves are realized in this way. 

In general, the initial data of the construction consist of 

• a one-parametric flat family F -» (F,0) of algebraic varieties YT of 
dimension at least 2, with F = С or R, where YQ is assumed to be 
reduced reducible, and YT, t^O, irreducible; 

• a line bundle С on У; 
• the zero locus XQ С УО of some section S of C\Y , which is assumed 

to be a hypersurface in Уо. 
The construction extends S up to a section of C, whose zero locus X с 
У determines a family of hypersurfaces Xt С YT; the latter inherit some 
properties of XQ. In [30, 31, 32, 33], У is a toric variety associated with a 
convex lattice polytope and fibred into toric hypersurfaces YT, t > 0, which 
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degenerate into the union of some divisors on У corresponding to facets of the 
polytope, and Xo is a union of nonsingular real algebraic hypersurfaces. The 
real nonsingular hypersurfaces Xt cYt,t=£ 0, arise as a result of a topological 
gluing (patchworking) of the components of Xo. 

In the early 1990's, the author suggested to use the patchworking construc­
tion for tracing other properties of objects defined by polynomials, for example, 
prescribed singularities of algebraic hypersurfaces [22, 25, 26], critical points 
of polynomials [24, 25], singular points and limit cycles of planar polynomial 
vector fields [10], resultants of bivariate polynomials [23]. For the case where 
d i m F '= 3, dimYi = 2, dimXo = 1, in [22, 25, 26], we always assumed 
that the components of the curve Xo are reduced and meet the intersection 
lines of the components of the surface Yo transversally at their nonsingular 
points. The novelty of the patchworking theorem presented in this paper (The­
orem 5 in Subsection 5.3) is that we allow Xo to be non-reduced and to have 
singularities along Sing(Yb). 

In this connection we would like to note that, in [3] (see also [4]), a 
deformation Y —» (C,0) of surfaces in P 3 with reducible Уо was considered, 
where the components of Xo are nodal curves tangent to the intersection lines 
of the components of Уо. For example, Theorem 2.1 in [3] claims that a point 
on the intersection line of two components of Уо at which nonsingular germs 
of the corresponding components of Xo have contact of order m, gives rise to 
m — 1 nodes of Xt С Yt, t ф 0, and the proof is based on a technically tricky 
result by Caporaso and Harris [1, Lemma 4.1] (see also [2, Lemma 2.8]). 
Our approach is to interpret this as a patchworking, i.e., a replacement of a 
neighborhood of a singular point by some algebraic curve, or more precisely, 
by an affine curve with Newton triangle {(0,0), (0, 2), (m, 1 )} and with an 
arbitrary number 0 < к ^ m - 1 of nodes (cf. [22, Proposition 2.5]). Extensive 
development of this idea, covering a broad class of possible singularities, was 
done in [28]. However, the result of [28] is not sufficient, for example, for the 
patchworking nodal curves, as required in the enumeration problem. 

Organization of the material. In §2 we provide preliminary information on 
non-Archimedean amoebas and tropicalizations of polynomials. The §3 con­
tains Theorem 3, which reduces enumeration of the nodal curves lying in toric 
surfaces and associated with convex lattice polygons to counting the nodal 
non-Archimedean amoebas that pass through the respective number of generic 
points in the real plane. In §4 we prove Theorem 4, which allows us to reduce 
the enumeration of curves with one cusp to the count of appropriate cuspidal 
non-Archimedean amoebas. In the proof of Theorems 3 and 4 we formulate 
explicit patchworking statements, which invert the tropicalization procedure, 
and which follow from the main patchworking Theorem 5 presented in §5. 
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Finally, in §6 we demonstrate an application of our technique to computation 
of the Welschinger number for real nodal curves in toric surfaces. 

Acknowledgment. I am very grateful to G. Mikhalkin and I. Itenberg for 
useful discussions. Also, I wish to thank Universitat Kaiserslautern for hospi­
tality and excellent working conditions. 

2 . 1 . Preliminaries. Amoebas of complex algebraic hypersurfaces were intro­
duced in [7] and studied further in [6, 7, 8, 15, 16, 17, 20, 21]. We are 
interested in "non-Archimedean amoebas", i.e., those defined over fields with 
a non-Archimedean valuation [14, 16]. The field К of convergent Puiseux se­
ries over С serves as an example. For a nonempty finite set / С Ък, let F&(I) 
denote the set of Laurent polynomials 

We put Zf = {/ = 0} С (K*)k and define the amoeba Af of / as the closure 
of the set V a l ( Z / ) С Rk, where Val (z i , ...,zk) = ( V a l ( z i ) , . . . , Vah> n ) ) . The 
set of amoebas Af, / G F%(I), is denoted by A(I). If / is the set of all integral 
points in a convex lattice polygon Д, we write A(A). 

The following simple observation is due to Kapranov [12] (see also [27]). 

Theorem 1. The amoeba Af coincides with the corner locus of the piecewise 
linear convex function 

Nf(x) = m&x(u>x + V a l ( q w ) ) , x G Rk. 

(Here and in what follows, the product of vectors means the standard scalar 
product.) 

The non-Archimedean amoebas unexpectedly reveal many properties com­
mon to algebraic varieties. For example [16], there is one and only one amoeba 
of a straight line through two generic points in the plane (see Fig. 1). Sim­
ilarly, there exists one and only one amoeba of a conic curve through five 
generic points in the plane. To introduce the reader to the subject, we extend 
this existence and uniqueness result to amoebas of polynomials in any number 
of variables and with arbitrary support. 

Theorem 2 . For any integers к ^ 2, n ^ 1, any a finite set I cZk consisting 
of n + 1 points, and any generic n-tuple (xx,.. .,xn) G (Q.k)n, there exists 
one and only one amoeba A G A(I) passing through x\,..., xn. 

§ 2 . Non-Archimedean amoebas 



Fig. 1 . Plane amoebas of the first order 

Proof. The existence part is trivial: simply take the amoeba of a polynomial 
/ € F&(I) with Zf passing through any n-tuple (w±,wn) G V a l - 1 ( a : i , . . . , 
xn) С ((K*)k)n. 

To prove uniqueness, we impose the following condition on xi,...,xn. 
Consider the (n x (n + l))-matrix M whose zth row entries are хц*), w G J. 
Assume that all the sums of n entries of M taken one from each row and one 
from each but one column, are distinct. Clearly, this excludes a finite number 
of hyperplanes in (Шк)п. Given n points wi,.. .,wn G (K*)k, we can find the 
coefficients c^, w G / , of the polynomial / G F^(I) vanishing at these points 
as the (n x n) -minors (with signs) of the (n x (n + l))-matrix N whose ith 
row entries are wf, ш G / . If Val(tt>i,.. .,wn) = (xi,...,xn), then УаЦс^) 
will be the maximal sum of n entries of M taken one from each row and one 
from each but the arth column. Thus, V a l ^ ) does not depend on the choice of 
(wi,wn) in V a l _ 1 ( a ; i , . . . , ж п ) ; hence, by Theorem 1, all such polynomials 
produce the same amoeba. • 

2.2. Amoebas and subdivisions of the Newton polytope. Any polyno­
mial / G j F k ( / ) allows us to define a subdivision of the Newton polytope 
A = conv(J) into convex polytopes with vertices in / . Namely, we take the 
convex hull A of the set {(w, - V a l ^ ) ) G Rh+1 : ш € 1} and introduce the 
function 

Vf : A —» Ш, Vf{w) = min{a; : (UJ, X) G A } . 
This is a convex piecewise linear function. Its linearity domains are convex 
polytopes with vertices in I, which form a subdivision Sj of Д . The following 
result is easy to deduce, e.g., from the fact that the functions Nf and vf are 
dual to each other with respect to the Legendre transformation. 

Lemma 2.1 . The subdivision Sf of A is combinatorially dual to the pair 
(Rk,Af). 
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Observe that, in general, the geometry of an amoeba A e A(A) determines 
the dual subdivision S-of-A not uniquely, but up to a combinatorial isotopy in 
which all edges remain orthogonal to the corresponding edges of A, and vice 
versa. The combinatorially isotypic amoebas form a subset 2 in A(I), whose 
dimension we call the rank of an amoeba (or the rank of a subdivision) and 
denote rk(A/) = rk (S / ) . 

Lemma 2.2. If k = 2 and Sf : A = A i U • • • U AN, then 

N 

rk(S,) ^ vkv(Sf) Q\V{Sf)\ - 1 - £ ( 1 П Д < ) 1 - 3), (2.2.2) 
i=l 

where V(Sf) is the set of vertices of Sf, V(Aj) is the set of vertices of the 
polygon Ai, i = 1,.. .,2V. More precisely, 

•'vk(Sf)=vK(Sf)+d(Sf), (2.2.3) 

where 

• -d(Sf) = 0 if all the polygons*Ai,..., Адг are triangles or parallelo­
grams; 

• otherwise, we have 

0 < 2d(Sf) ^ £ ( ( 2 m ~ 3 ) ^ 2 m - 4m) + Y ( 2 m " 2 ) ^ 2 т + 1 ~ 1, (2.2.4) 

where Nm, m ^ 3;Qis the number of m-gons in Sf, N'2m, m > 2, is 
the number of 2m?gons in Sf, whose opposite edges are parallel. 

Proof. Inequality (2.2.,2) is obvious, because an m-valent vertex of Af imposes 
m-iZ linear conditions on the planes forming the graph of Nf. 

Assuming that all A i , . . . , AN are triangles or parallelograms, we show 
that the conditions imposed by the 4-valent vertices of Af are independent. 
We take a vector a € M2 with an irrational slope and coorient each edge 
of any parallelogram so that the normal vector form an acute angle with a. 
This coorientation determines ^par t ia l ordering on the set of parallelograms, 
and we complete this ordering somehow up to a linear ordering. Observe that 
each parallelogram has two neighboring edges cooriented outside. Altogether, 
this means that the coefficients of the linear conditions imposed by the 4-
valent vertices of Af can be arranged into a triangular matrix, and, hence, are 
independent, i.e., d(Sj) = 0. 

If Sf contains polygons different from triangles and parallelograms, we de­
fine a linear ordering on the set of all non-triangles in the same way as above. 
Denote by e_(Aj) (respectively, e+(A l

i )) the number of edges of a polygon Aj 

2 In fact, this subset is the interior of a convex polyhedron in A(I). 
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cooriented outside (respectively, inside) Д г \ Passing inductively over the non-
triangular polygons Ait each time we add at least гшп{е_(Дг) — 1, | V ( A t ) | - 3} 
new linear conditions independent of all the preceding ones! Thus, 

N 

d(Sf) ^ Y ( l y ( A < ) l - 3 - т1п{е_(Д<) - 1, \V(Ai)\ - 3}) 
i=2 

iV 

= £ т а х { | У ( Д . ) | - е _ ( Д 0 - 2, 0}, 
i=2 

because, for the initial polygon Д ь all |V(Ai ) | - 3 imposed conditions are 
independent. Replacing a by —a, we obtain 

N - l 

d(Sf) < Y тах{ |У(Д<) | - е+(А{) - 2, 0} . 
г=1 

Since 
• the relations 1 < е_(Д<) < |V(Ai) | —1 and е _ ( Д ; ) + е + ( Д ; ) = \V(Ai)\ 

yield 

тах{ |У(Д; ) | - е_(Д<) - 2, 0} + т а х { | У ( Д г ) | - е+(Д.) - 2, 0} 

< Щ 5 / ) | - 3 ; 

• for a 2m-gon with parallel opposite edges we have 

e_ — e+ = m => max{2m — e_ — 2, 0} + max{2m — e+ — 2, 0} 
= 2m - 4, 

we get 

2 d ( S » ^ £ ((2m - 3 ) iV 2 m - N'2m) + £ (2m - 2 ) i V 2 m + 1 . (2.2.5) 
m ^ 2 m ^ 2 

If among Д ь . . . , AN there is a polygon Дг- whose number of edges is odd and 
exceeds 3, or a polygon with an even number of edges and a pair of nonparallel 
opposite sides, then a can be chosen so that min{e_(Aj), J5+(Ai)} ^ 2. Thus, 
the contribution of Дг to the bound for 2d(Sf) will be |У(Д*)| - 4, which 
allows us to gain - 1 on the right-hand side of (2.2.5), obtaining (2.2.4). 

Finally, assume that all non-triangular polygons in 5 / have an even number 
of edges, that their opposite sides are parallel, and furthermore, that there is 
Д; with |V(A»)I = 2m ̂  6. The union of the finite length edges of Af is the 
adjacency graph of Ai,..., Ддг- We take the vertex corresponding to Дг-, pick 
a generic point О in a small neighborhood of this vertex, and orient each finite 
length edge of Af so that it form an acute angle with the radius-vector from 
О to the middle point of the chosen edge. Equipped with such orientation, 
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the adjacency graph has no oriented cycles, because the terminal point of any 
edge is farther from О than the initial one. Thus, we obtain a partial ordering 
on A i , . . . , AN such that, for any A^ with an even number of edges, at least 
half of edges is cooriented outside. Then we apply the preceding argument to 
estimate d(Sf) and notice that the contribution of the initial polygon Aj to 
such a bound is zero, whereas on the right-hand side of (2.2.5) it is at least 
two. This completes the proof of (2.2.4). • 

2 .3. Algebraic curves over К and C: general fiber and tropicalization. 
Let А с R 2 be a nondegenerate convex lattice polygon, and let С € Лк(А) be 
a curve with only isolated singularities, which is determined by a polynomial 
f(x,y) as in (1.0.1). This curve gives rise to some complex algebraic curves. 

First, evaluating the coefficients of f(x, y) at small positive t (or at com­
plex nonzero t close to zero if the exponents of t in the coefficients ctij(t) of 
f(x,y) are integral), we obtain a family of curves С® G Л(Д) . The relation­
ship between С and is formulated in the following statement, in which by 
the topological type of an isolated singular point (over any algebraically closed 
field of characteristic zero) we mean a minimal resolution tree with given mul­
tiplicities of the point itself and of its infinitely near points, or equivalently, the 
number of local branches, their characteristic Puiseux exponents, and pairwise 
intersection multiplicities. 

Lemma 2 .3. The collection of topological types of the singular points of a 
reduced curve С G Лк(А) coincides with the collection of topological types 
of the singular points of a generic curve С® G Л(Д) . A curve С € Лк(Д) is 
reducible if and only if a generic curve 6 Л(А) is reducible. 

This immediately follows from the fact that, for a given linear system, 
the set of curves with singularities of prescribed topological types over any 
algebraically closed field of characteristic zero is determined by the same 
system of polynomial equalities and inequalities with integral coefficients. The 
same argument confirms the simultaneous reducibility of С and 

By shrinking the range of t if necessary, we can arrange that the curve С 
bears a one-parametric equisingular deformation of complex curves. 

We shall also define certain limits of C^> as t —> 0. Namely, let vj : 
A —>• R be a convex function, and let Sf be the corresponding subdivision 
A = A i U • • • U AN, as defined in the preceding subsection. The restriction 
ff\A. coincides with a linear (affine) function Лг- : A -» R, А г(ж) = WiX + 7$, 
Wi = («i, 0L2) G R 2, 7i G R, i = 1 , . . . , N. Then the polynomial 

(2.3.6) 
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satisfies the following condition: 

= 0 if u> is a vertex of Aj , 
Уа1(сш) < ^ 0 if и € A, 

< 0 i f w £ A . 

In other words, letting t = 0 on the right-hand side of (2.3.6), we obtain a 
complex polynomial with Newton polygon Дг-; in its turn, these polynomials 
determine complex curves Cj G Л(Д г ) , i = 1 , . . .,N. Notice that multiplying 
/(ar, y) by a constant from K* does not change Sf and C i , . . -,CN, but adds 
a linear function to Vf. The collection {i>f, Sf, C\,..., CN) is called the trop­
icalization (or dequantization) of the curve С and is denoted by T(C). We 
also call the /г- and Сг- the tropicalizations of the polynomial / and the curve 
С on the polygon Дг-, 1 < i < N. 

By a change of parameter t i-> t m , we can make all these exponents of t 
integral and the function Vf integral-valued at integral points. Introduce the 
polyhedron 

A = {(a,f3,j)€R3 : (a,P) e A, 7 > *>/(<*>P)h 

It determines a toric variety Y = Tor (A), which naturally fibers over С so 
that the fibres Yt over t ф 0 are isomorphic to Tor (A), and YQ is the union 
of the toric surfaces Tor(Aj), i = l,...,N, where A I , . . . , A J V are the faces 
of the graph of Vf. By the choice of uf, we have Тог(А г ) ~ Tor(Aj), and we 
shall simply write Yo = UiT° r (^ i ) - Then the curve С can be viewed as an 
analytic surface in a neighborhood of Yo, which fibers into the complex curves 

с Yt ~ Tor(A) and whose closure intersects У"0 along the curve C^0^ that 
can be identified with ( J iQ c UiTor(Aj). Passing if necessary to a finite 
cyclic covering ramified along Yo. we can assume that Tor(A) is nonsingular 
everywhere except, possibly, at finitely many points corresponding to vertices 
of A, and, moreover, the surfaces Tor(Afc)\Sing(Tor(A)), к = 1 , . . . , N, are 
smooth and intersect transversally in Tor(A)\Sing(Tor(A)). 

The singular points of the curves C^> determine sections s : D \{0} —» 
Tor(A), where D с С is a small disk centered at 0. The limit points z = 
\imt->o s(t) are singular points of C(°). We say that such a point z € C(°) 
bears the corresponding singular points of C^\ If z € C^ does not belong 
to the intersection lines Ц ^ - Тог(Аг- Г) Aj) and bears only one singular point 

of C( f), which is topologically equivalent to z, we call z a regular singular 
point; otherwise it is irregular. If C(°) has irregular singular points, we can 
define a refinement of the tropicalization in the following way: transform 
the polynomial f(x, y) into f(x + а, у + b) with a, b e К in such a way 
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that the irregular singular point of goes to the origin, and consider the 
tropicalization of the curve defined by the new polynomial f(x + a,y + b). This 
provides additional information on the behavior of the singular points of 
that tend to irregular singular points of C^°\ and corresponds, in a sense, to 
blowing-up the threefold Y at the irregular singular points of C(°) (cf. [28]). 

§3. Counting nodal curves 

3 .1 . Formulation of the result. Let Д с K 2 be a nondegenerate lattice poly­
gon that has integral points in its interior. It is well known that the number of 
nodes of an irreducible curve in Лк(А) does not exceed | I n t ( A ) n Z 2 | . For any 
positive integer n < |Int(A) П Z 2 | , we denote by E&(nAi) the set of reduced 
curves in Лк(Д) that have exactly n nodes as their only singularities and are 
defined by polynomials with Newton polygon A. This is a smooth quasiprojec-
tive subvariety of Лк(А) (the so-called Seven variety) of codimension n, i.e., 
d i m E A ( n A i ) = r = |A ПZ 2 | - 1 - n, because d i m A K ( A ) = |A П Z 2 | - 1. Im­
posing the condition of passing through r generic points in (К*) 2 с Тогк(А), 
we obtain a finite set of curves in Y,&.(nA\)\ the cardinality of it is simply 
d e g E A ( n ^ i ) . 

Now we describe the amoebas that are projections of nodal curves passing 
through generic points in (K*)2 and with distinct valuation projections to R2. 
An amoeba A G A(A) is said to be nodal if its dual subdivision S of A is 
such that 

• all the points in дА П Z 2 are vertices of 5 ; 
• S consists of triangles and parallelograms. 

We define the weight of a nodal amoeba A by the formula 

•W(A)= J ] 1д/1» 
A'eP(S) 

|V(A')|=3 

where P(S) denotes the set of polygons of S, and |A' | stands for the double 
Euclidean area of A' . 

Theorem 3. In the previous notation, 

A 

where the sum ranges over all nodal amoebas of rank r passing through r 

fixed generic points in Q2. 

Remark 3 . 1 . Our formula coincides with that given by Mikhalkin [18]. Na­
mely, the multiplicity of a lattice path defined in [18] is equal to the sum of 
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multiplicities of the nodal amoebas that correspond to the subdivisions of A 
arising from the given path in the course of the construction in [18]. Also, we 
note that the generality requirement for the position of r points in Q 2 will be 
specified in the proof, and it is easily check that the configurations considered 
by Mikhalkin [19], i.e., generic points on a generic straight line, satisfy these 
generality conditions. 

The proof comprises three main steps. First, we determine amoebas and 
tropicalizations of nodal curves in the count, in particular, that the amoebas 
are nodal of rank r (Subsection 3.3). Then we refine tropicalizations in a 
suitable way (Subsections 3.5, 3.6). Finally, using the patchworking theorem, 
we show that the refined tropicalization gives rise to an explicit number of 
nodal curves passing through given points (section 3.7). 

3 .2. Deformation of reducible surfaces and curves. We start with the fol­
lowing auxiliary statement. 

Lemma 3 .2. Suppose a complex threefold Y is smooth at a point z, and 
U с Y is a small ball centered at z. Assume that ix : U —> (C, 0) is a flat 
family of reduced surfaces such that UQ = 7 r _ 1 ( 0 ) consists of two smooth 
components UQ, UQ that intersect transversally along a line L D {z}, and the 
Ut = тг~1(*) are nonsingular for t^O. Let C'0 с U'Q and C'0' С UQ be reduced 
algebraic curves that cross L only at z and with the same multiplicity m ^ 2. 
Also, we assume that UQ and UQ are regular neighborhoods of the (possibly 
singular) point z of CQ and CQ, respectively. Let 8' = 5(C'0,z), 6" = S(CQ,Z) 
be the S-invariants, and let r', r" be the number of the local branches of C'0 

and CQ at z, respectively. Then in any flat deformation Ct, t e (C,0), of 
CQ = Co U Co such that Ct С Ut, the total 8-invariant of Ct, t ф 0, in Ut does 
not exceed 

S' + d" + m — maxjr ' , r"}. 

Proof. Topological^, the curves C'Q and CQ (in U) are bouquets of r' and r" 
disks, respectively. Observe that the circles of C'Q П dU and CQ П dU move 
slightly when t changes, and they are not contractible in Ut for t Ф 0. For 
instance, a circle of C0 П dU is (positively) linked with the line L in UQ, and, 
hence, it remains (positively) linked with the surface UQ in U; thus, it cannot 
be contracted in Ut, t ф 0, which does not intersect U0'. This means that the 
curve Ct С Ut, t ф 0, is a union of several immersed surfaces with a total of 
r' + r" holes and at least max{r ' , r"} handles. 

Now the claimed upper bound can be derived either from a local count of 
intersections and self-intersections of the components of Ct, or by a "global" 
argument. For the latter, we consider the following model situation, which is 
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quite relevant to our consideration and is explored in more detail below in the 
proof of Theorem 3. Namely, assume that 

• p » m, p e N, 
• А С M 2 is the triangle with vertices (0,0), (2p,0), (0,2p); 
• v : A -> R is the function such that v(a,B) - 0 if a + [3 < p, and 

z/(a, /?) = a + / 3 - p i f p < a ! + /3; 
• A = {(a , /3 ,7 )6 R 3 : (a, /3) e A, i / (a , /3) < 7 < p - Ы } . 

Then Y = Tor(A) is a nonsingular threefold, and Y0' = Tor(A') , Y0" = Tor (A") 
are surfaces isomorphic (respectively) to P 2 and P 2 with a blown up point, 
where A , = conv{(0 ,0 ,0) , (p ,0 ,0) , (0 ,p ,0)} , A " = conv{(p, 0,0), (0,p,0) , 
(2p, 0,p), (0,2p,p)} are the faces of Graph(z/). Furthermore, Y0' and Y0" in­
tersect transversally along the line L = Tor(<j), a = [(p, 0,0), (0,p, 0)]. A 
neighborhood V of Y0 = YQ' U Y"0" in Y admits a fibration V -» (C, 0) such 
that the zero fibre Y0 and other fibres У4 are the closures of the images of the 
hyperplanes {x3 = t} С (С*) 3 under the standard embedding of (C*) 3 in Y 
with the coordinate correspondence (a, /3,7) <-> (ж1,Ж2, хз) of R 3 and (C*) 3 . 
Clearly, Yt ~ P 2 , t / 0. Assume that the curves C 0 С У0', C 0 ' С Y0" are given 
by polynomials with Newton polygons A' , A", respectively, with a common 
truncation to a, and such that they have a common point z € L as in the 
statement of the lemma, are non-singular outside z, and intersect L transver­
sally outside z (at common points). The flatness of a deformation Ct С Yt, 
t e (C, 0), of the curve Co = C0 U C 0 ' means that Ct, t Ф 0, tends to a curve 
of degree 2p by the isomorphism У ~ P 2 . Denoting by ГУ a neighborhood of 
CQ П C'Q' in У, for the Euler characteristic x(Ct) of the normalization of Ct, 
we obtain the following bound: 

x(ct) = Х(СДГ7) + x (C t П ГУ) = х(С0\ГУ) + Х(С0'\ГУ) + x(Ct П ГУ) 

^ (-p2 + 2p + m-r' + 26') + ( - 3 p 2 + 4p + m-r" + 25") 

+ (r ' + r " - 2 m a x { r / , r"}) 

= - 4 p 2 + 6p + 2m + 26' + 2<5" - max{r ' , r"}. 

Consequently, for the total 5-invariant of C t we have 

^ ) = ( 2 p - l ) ( 2 p - 2 ) _ g ( C t ) 

= ( 2 p - l ) ( 2 p - 2 ) x(C t ) 
2 2 

^ 5' + 5" + m - max{r ' , r"}. • 

Example 3 .3 . In the notation of Lemma 3.2, if C'0, C'0' are nonsingular at z, 
then 8% = 82 = 0, r\ = Г2 — 1, and the number of nodes in a deformation does 
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not exceed m — 1 ; this number can be attained (see [3, Theorem 2.1]). We can 
produce the maximal number of nodes with the help of suitable deformation 
patterns (i.e., certain affine curves), as defined below in Subsection 3.5. 

Remark 3 .4 . In the notation of Lemma 3.2, suppose all the hypotheses are 
fulfilled, but assume that C 0 , C 0 ' are not necessarily reduced. Furthermore, let 
C 0 (respectively, CQ) have r' (respectively, r") reduced local branches at z of 
multiplicities p[,...,p'r, (respectively, p'{,..., p",,)- Then the argument used in 
the proof of Lemma 3.2 shows that if Ct is reduced in U, then 

x(Ct П U) < — min \m'i H Ь m'ri - m'{ — m"„ \, 

where the integers m'b ..., m"„ run over the range l ^ m ^ p ^ , . . . , l<m"„<p"„ . 

3.3. Amoebas and tropicalizations of nodal curves passing through gene­
ric points. Let x i , . . . , xr € Q 2 be generic distinct points, and let р ъ . . . ,pr e 
(K*)2 be generic points satisfying Val(j>j) = x^, i = l , . . . , r , and having only 
rational exponents of the parameter t. 

The parameter change t н» tm with a suitable natural m makes all the 
exponents of t in the coefficients of / integral and the convex piecewise 
linear function Vf : A —• R integral-valued at integral points. We keep these 
assumptions throughout the remaining part of the paper. 

Let Sf : A = Ai U • • • U Адг be the subdivision determined by i/f, and 
let ( C I , . . . , C A T ) be the tropicalization of the curve С = { / = 0} € Лд:(Д). 
The union of the divisors Тог(<т) С Тог(А^), where a runs over all edges 
of Ak, will be denoted by Tor(<9Afc), к = 1, . . . ,7V. For any г = 1,...,N, 
we denote by Cy, j — l , . . . , m j , the distinct irreducible components of the 
curve Ci С Тог(Д г ) and by гц, j = 1 , . . .,rrii, their multiplicities. Put S{3- — 
#(Cij П Тог(дД г )) , j = 1 , . . . , пц. 

We intend to estimate x(C^) from above and from below and to compare 
these bounds. 

Let U be the union of small open balls Uz in the threefold Y (see the 
definition in Subsection 2.3) centered at all points z 6 U i ( C i ПТог(5Д г ) ) . If 
z e Ci nTor(o-), where a is an edge of Дг- lying on dA, then x{C® n Uz) 
does not exceed the number of the local branches of СГ- at the points of 
d П Tor(cr). If z e Тог(<т) D d П Ск, where a = Дг- П Ak is a common edge, 
then x ( C ( t ) П Uz) < 0 by Remark 3.4. Consequently, 

x(C{t)nU) ^ \dAnZ2\, (3.3.7) 

where equality occurs if and only if, for any edge а с Дг- Г) <9Д, the reduction 
of the curve Ci is nonsingular along Tor(«r) and meets Tor(cr) transversally. 

For the upper bound of х{&ь\ we may assume that for any г = 1 , . . . , N and 
1 ^ 3 < f ^ Tii the components Сц and do not glue up in Y\U when C^ 
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deforms into С®. Then the normalization of C^\U is a union of connected 
components, each of them tending to some curve Сц\и. Furthermore, the 
components that tend to a certain Cij\U can be naturally projected onto 
Cij\U, and this projection is an r ?j-sheeted covering (possibly ramified at a 
finite set). Hence, 

N rat 

i=l j=l 

N rrii N N mi 

= Y Y ГИ(Х(СЦ) - si:j) ^ 2 E mi - Y Y Sii> 
i=l j=l i= l i=l 3=1 

where equality occurs only if all Сц are rational, and гц = 1 whenever зц > 2. 
Next we observe that вц ^ 2 for any Сц, and Sij ^ 3 for at least one of the 
components Сц if Дг- has an odd number of edges, or Дг- has an even number 
of edges but not all pairs of opposite sides are parallel. Therefore (in the 
notation of Lemma 2.2), 

X(CV\U) < -N3 - J2(N2J+i + N*3 ~ 4 0 . ( 3 - 3 - 8 ) 

m 
where equality occurs only if, for each triangle A*, Q is irreducible and 
satisfies = 3. For each A* with an odd number of edges exceeding 3, or 
with an even number of edges, but such that not all pairs of opposite sides 
parallel, exactly one component Qj satisfies — 3 and the other satisfy 

= 2; finally, we have = 2 for all components Сц in the remaining 
polygons Ai. Observe also that &ц = 2 means that Сц is defined by a binomial. 

On the other hand, 

X ( C « ) = 2 - 2g{C®) = 2 - 2(jInt(A) П Z 2 | - n) 

= 2 - 2|Int(A) П Z 2 | + 2( |Д П Z 2 | - 1 - r ) 

= 2 |9Д П Z 2 | - 2r ^ 2\дА П Z 2 | - 2 • r k ( S » 

= 2|dA П Z 2 | - 2 • rkv(Sf) - 2d(Sf) 

with equality only if rk(5 / ) = vkv(Sf) + d(Sf) = r . Next, by (2.2.2) we have 

N 

Х ( С « ) ^ 2 |дД П Z 2 | - 2\V(Sf)\ + 2 + 2 ^ ( | У ( Д г ) | - 3) - 2d(Sf) 
t = i 

= 2\дА П Z 2 | - 2\V{SS)\ + 2 - 2\V(Sf) П 0A\ + 4 | E ( 5 / ) | -QN- 2d(Sf), 
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where E(Sf) denotes the set of edges of Sf. Since \V(Sf)\ - \E(Sf)\+N= 1, 
and 2\E(Sf)\ = 3N3 + 47V4 + 5N5 + • • • + \V(Sf) П dA\, finally we obtain 

x ( c ( t ) ) > 2(|ад n z 2 | - \v(sf) n ад|) 
+ \V(Sf) ndA\-N3 + N5 + 2N6 + 2d(Sf). 

Combining this with (3.3.7) and (3.3.8) leads to the estimate 

(\dAnZ2\-\V(Sf)ndA\)+ £ ( и * - 1 ) 
|У(Д;)|=3 

+ £ ((2m - 3 ) iV 2 m - JV£J + £ (2m - 2 ) i V 2 m + 1 ^ 2d(5/) , 

which, by Lemma 2.2, shows that each integral point on dA is a vertex of Sf 
and all the non-triangular Ai are parallelograms. 

Altogether, the equality conditions for the upper and lower bounds of x ( C ^ ) 
prove that the amoeba Af is nodal of rank r. Furthermore, 

• for each triangle Ait the curve Ci is rational and meets Тот(дАЛ at 
exactly three points, where it is unibranch; 

• for each parallelogram Ai, the polynomial defining Ci, is of type 
xkyl(axa + /ЗуьУ(7хс + 8yd)v with (a,b) = (c,d) = 1 and (a : b) ф 
(c:d). 

We shall describe these curves more precisely. 

Lemma 3 . 5 . For any lattice triangle А' с M2, there exists a polynomial 
with Newton polygon A' with prescribed coefficients at the vertices of A', 
and such that it defines a rational curve С С Тог(Д') meeting Тог(дД') 
at exactly three points where it is unibranch. The curves defined by these 
polynomials are nodal and nonsingular at the intersection with Tor(9A'). 
Moreover, the number of such polynomials is finite and is equal to \A'\. 
An additional fixation of one or two intersection points of С with Тог(дД') 
divides the number of polynomials under consideration by the product of the 
lengths3 of the corresponding edges of A'. 

Proof. By a suitable lattice preserving transformation, we can turn A' into a 
triangle with vertices (p, 0), (q,0), (0 ,m), 0 < p < q < m. Assume that the 
curve С crosses Тог(дД) at points corresponding to the values 0, 1 and oo of 
a uniformizing parameter в; then С is given by x — ав™, у = \3(P(Q — l)q~p. 
If the restrictions of the defining polynomial on the edges [(p,0), (q,0)] and 

'We define the length \a\ of a segment a with integral endpoints as \a П Z 2 | — 1. 

8 Алгебра и анализ, № 2, 2005 г. 
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[(p,0),(0,ro)j are z?(z, + e i ) 9 - p and (ym/d + e2xp/d)d, respectively, where d = 
gcd(m,p) , e\~p = £^= 1, then 

a + £1 = 0, (3m/d^_^m(q-p)/d + £2ap/d = Q; 

which gives m(q—p) = |A| solutions for (a, f3). Additional fixation of intersec­
tion points with T o r ( t W ) means fixation of si or/and e2 and the respective 
reduction of the number of solutions. The prescribed coefficients of xp, xq, ym 

in the polynomial carbbe achieved by an appropriate coordinate change. 
It remains to show^thatHhe curve x = вт, у = вр(в — l)q~p is nodal. Since 

х(в) ф 0 for в ф 0, the curve has no local singular branches. Assuming that 

вт = вт = 6%, dq(6 -- ))q~p = вр(вх - l)q'p = 6P{92 - l)q-p, (3.3.9) 

we successively obtain 

#i = 0£i, в2 — вб2, e^ — e^ — l, £i ф £2, 

в-1 = e3(0£l - 1^= e 4 ( f e 2 - 1), 4~P = £?> 4~P = 

i-vl'i-vV 
0 = ^ = ^ , (3.3.10) 

where 

£i = Vi Л £з — Vi, e2 = vl P> £ 4 = vl' 

Then, plugging 771 = coswi + V^Ts inwi and V2 = cosw2 + \Z^Tsinw2 in 
(3.3.10), we get 

cos(p^i /2) cos(g^ 2 /^ ) _ (q-p)(w2-vi) /—г . (g - p)(^2 - wi) 
- - - ••- 1 — COS —————— -f- у X S1H j 

cos(<7a>i/2) cos(pui2/2) 2 2 

arid finally, 

\ (q-p)(u2-uiH2ir-Z => £1 = vV = VVV = с* 
in contrast to (3.3.10), and we.are done. • 
Lemmf 3 . 6 . / / a, b, c, d are integers such that (a, b) = (c, d) — 1, (a : b) ф (с : 
d), and a, /5 ,7 ,6 are nonzero, then the curve (axa + 0yh)(ryxc + 5yd) = 0 has 
IА' П Z 2 | - 3 nodes as its only singularities in (C*) 2 , where A ' is the lattice 
parallelogram built oh'the vectors (ar^b), (c,—d). 

Proof. Straightforward. • 
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3.4. Irreducible curves and irreducible amoebas. One can tafrk of the non-
Archimedean amoebas as the corner loci of all possible convex piecewise linear 
functions whose generic gradients are integral vectors (cf. [29]). In this sense, 
an amoeba is called reducible if it is the union of two proper sub-amoebas. 
The above description of the tropicalization of nodal curves has the following 
interesting consequence. 

Lemma 3.7. In the notation of Subsection 3.3, the amoeba of an irreducible 
(respectively, reducible) r-nodal curve passing through р г , . . . , р г is irre­
ducible (respectively, reducible). 

Proof. The amoeba of a reducible curve is the union of the amoebas of the 
irreducible components, and thus, is reducible. 

Let a nodal amoeba A of rank r be the union of distinct amoebas A', A". 
The intersection points of A' and A" are four-valent vertices of A, and they 
correspond to some parallelograms in the dual subdivision A = A i U - • -uAyv. 
As was shown in Subsection 3.3, for any parallelogram A, , in the deformation 
C ( ' \ t 6 (C, 0), the distinct components of the curve Q do not glue up. 
Consequently, the amoebas A', A" are lifted up to separate algebraic curves. • 

3.5. Refinement of tropicalization at an isolated singular point. In the 
notation and under the hypotheses of the preceding subsection, we shall in­
troduce a refinement of the tropicalization for each point z ecTor(cr), where 
a — Ak П А/ is a common edge, and the curves Cfc, Q meet Tor (a) at z with 
multiplicity m ^ 2. 

Let Ak, Ai be triangles. Then Ск and Q are nonsingular at z and are 
tangent to Tor(cr) with multiplicity m. To cover the case of cuspidal curves, 
treated below in section §4, we consider a more general situation. Namely, 
assume that at z the curve Ск (respectively, Q) has a semiquasihomogeneous 
singularity topologically equivalent to ymi + xm = 0, mi ^ m.(respectively, 
угп2 + x

m — о, m 2 < m) . We perform the following transformation of f(x,y). 

• Let Ma be an affine automorphism of I? that takes A to the right half-
plane and takes о into a segment a1 on the horizontal coordinate axis. 
This corresponds to a monomial coordinate change x.z= (x')a(y')b, у = 
(x')c(y')d in f(x,y) and furthercmultiplication by a .monomial in x',y'. 
The truncation of the new polynomial f'(x',y') on the edge a (i.e., the 
sum of the monomials of / ' corresponding to the integral points in a) 
is a polynomial in x' over K. Its tropicalization is a complex polynomial 
in x', which is the common truncation of the tropicalizations f'k and / / 
of / ' on the polygons Ma(Ak), Ma(Ai). The point z corresponds to a 
root £ ^ 0 of Po(x'). 
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Fig. 2. Refinement of the tropicalization, I 

• Without loss of generality, assume that vf is zero along a (just multiply 
f(x,y) by a suitable constant from K*). Then we perform the shift 
x' = X" + Z,y> = y", and put f"(x", y") = f'(x',y'). 

To understand the tropicalization of /", we apply the above transformations to 
the polynomials 

Pk(x,y)= £ 4^^XY, Р1(Х,У)= J2 С ^ ^ Г Г У , 
(i,i)eA f c (*,j)GA, 

where 
fk(x,y)= Y^ 4 X V , fi(x,y)= YI 4 Ж У 

(*j')eA f c (i,j")eA, 

are the tropicalizations of / on A^, Ai, and A& = ^ / | A f c and Xi = ^ / | Д ( are lin­
ear functions. The Newton polygons A'k' and A" of the resulting polynomials4 

P'k' and P[' contain segments [(m, 0), (0,mi)], [(m, 0), (0, — mj)], respectively 
(see Fig. 2). 

Clearly, X'k' = " / " I A " and A" = vy'\An are linear functions. Furthermore, 

vp>(i,j) > max{A£(z,j), А"(г, j)} for all points satisfying 0 ^ г < m, 
mii + mj < mmi, and m2i — mj < mm2 (i.e., inside the triangle Az with ver­
tices (m, 0), (0,mi), (0, — m2)). In particular, this means that the coefficients 
c?(i) of (х"У(у"У in / " satisfy ^ „ ( 0 ) ф 0, c£0(0) = 0, г < m. Hence, there is 

a unique r(t) € K, r(0) = 0, such that the polynomial /(ж, у) = /"(ж + т(£), у) 
does not contain the monomial x " 1 - 1 . 

T r o m now on by "polynomial" we mean a Laurent polynomial. 
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It is easily seen that u~\ X'(, and Vf»(i,j ) > 
max{A'fc'(i, j), X"(i,j)} whenever 0 ^ г < m, mii+mj < mm\, and m 2 i - m j < 
m m 2 . It follows that the subdivision of the Newton polygon of / determined 
by the function uj contains a subdivision of the triangle Az; moreover, this 
subdivision has no vertices inside the segments Ef = [(m,0), (0,mi)] and 
Ef = [(m, 0), (0, - m 2 ) ] and at the point (m - 1,0). 

Finally, the fragment of the tropicalization of the polynomial / and of the 
curve С — {/ = 0} restricted to the triangle Az will be called the z-refinement 
of the tropicalization of f and of С and will be denoted by Tz(f), %{C). 

Remark 3.8. We note that the truncation ipz

k\x,y) (respectively, ipz

l\x,y)) 
of the tropicalization of / on the segment Ef (respectively, Ef) is uniquely 
determined by the polynomials Д , fi and the point z. Any polynomial with 
Newton polygon Az and such that its truncations to the edges Ef,, Ef are 

4>z\ <Pz^ and the coefficient of x™*1 vanishes, will be called a deformation 
pattern compatible with /д., / ; and z. 

In our situation, Ck and Q are nonsingular at z, i.e., m i = m 2 = 1, and the 
refinements of the tropicalization are described in the following statements. 

Lemma 3.9. For a given integer m ^ 2 and fixed a,b,c e C*, the set of 
polynomials F(x, y) = ay2 + Ьуд(х) + с with g(x) = xm + . . . , degg = m, 
that define plane rational curves, consists of m disjoint one-dimensional fa­
milies. Each family has a unique representative with the zero coefficient of 
xm~l in g(x), and the rest of the family can be obtained from that repre­
sentative by the coordinate change x н-» x + a, a 6 C. Furthermore, all such 
rational curves have m — 1 nodes in C 2 as their only singularities. 

Proof. Without loss of generality, suppose that a = с = 1, b = 2. Then the 
equations for singular points, F(x,y) = Fx(x,y) = Fy(x,y) = 0, reduce to the 
system 

The solutions of this system are the x-coordinates of singular points, and their 
multiplicities in g'(x) are Milnor numbers. Hence, the total Milnor number 
does not exceed m - 1. On the other hand, the total Milnor number is at 
least the ^-invariant. Thus, by our assumptions, they coincide, which is only 
possible in the case of m - 1 nodes corresponding to m - 1 distinct solutions 
to (3.5.11). The latter condition on (3.5.11) is fulfilled if and only if g(x) is (up 
to a shift x >-> x + a) the Chebyshev polynomial cos(m • a r c c o s ( 2 " ( m _ 1 ) / m x ) ) 
or one of- the m - 1 other polynomials of type g(xe), em = 1, or -g(xe), 
£ m = - 1 . • 

dg_ 

dx 
(x) = 0. (3.5.11) 
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Lemma 3 .10. With the above notation and definitions, let z G Tor(cr) ПС^П 
Q. If Ck and Q are nonsingular at z, the intersection number of Ck and 
Тог(ст) at z is (Ск • Тог(сг)) г = m > 2, and z bears singularities with the 
total 6-invariant m — I, then Tz(f) consists of one polynomial having Newton 
polygon Az and defining a rational curve with m — 1 nodes- in Тог(А г ) , and 
the singularities born of z are m—1 nodes. 

Proof. We show that %(f) consists of the triangle Az and, correspondingly, 
of one polynomial, which then is described in Lemma 3.9. 

We use induction on m. Let m = 2, and so %(f) contains mare than one 
polynomial. Then Az is subdivided into two triangles conv{(0,0), (0,1), (2,0)} 
and conv{(0,0), ( 0 , - 1 ) , (2,0)}. The curves defined by the polynomials with 
these Newton triangles are nonsingular and cross Tor([(0,0), (2,0)]) transver-
sally, because the coefficient of x vanishes, but then no singular point appears 
in the deformation, by Lemma 3.2. Let m ^ 3, and let (ii , 0 ) , . . . , (ir, 0) € 
In t (A 2 ) be the vertices of the subdivision of Az associated with Tz(f), r ^ 1, 
0 < %\ < • • • < ir < m — 2. Singular points may only appear from pos­
sible tangency points along Tor([( i s ,0) , (is+i,0)]), s — l , . . . , r - 1, or along 
Тог([(г г, 0), (m, 0)]), or from a curve with Newton triangle conv{(0,1), (0, - 1 ) , 
( i i ,0 )} if i\ > 0. Since the curves with Newton triangles containing the edge 
[ ( i r ,0 ) , (m, 0)] must cross Tor([(i r , 0), (m, 0)]) at least at two points, because 
of the condition that the coefficient of x m _ 1 vanishes,, the total <5-invariant of 
the singular points that may appear is at most 

which gives a contradiction. • 

3.6. Refinement of the tropicalization along a non-isofated singularity. 
Assume that z € Tor(cr), a = Ак П A; is a common edge, (Ck • Тог (а ) ) г = 
(Ci • Тог(сг)) г = m ^ 2, and at least one of the Ak, Ai is a parallelogram. 
Then, after reenumeration, the pair Ak,Ai extends up to a chain A i , . . . , A p , 
p ^ 3, where A i , A p are triangles, A 2 , . . . , A p _ i are parallelograms, and o\ = 
A i П A 2 , . . . , cTp_i = Ap_i П A p are common edges parallel to each other 
(see Fig. 3(a)). We shall associate a refinement of the tropicalization with 
the union Z of the multiple components of C 2 , . . . , C p _ i that cross the lines 
T o r ( a i ) , . . . , Tor(op_i). 

Multiplying f(x,y) be a suitable constant belonging to IK*, we can achieve 
the constancy of vj along the edges a\,..., av-\. Then we apply a transforma­
tion M G Aff(Z 2) that takes A to the right half-plane and makes ai,...,<rp_i 
horizontal (see Fig. 3(b)). The corresponding monomial coordinate change 
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k = l,...,p. 
Afe 

transforms f(x,y) Into a polynomial f'(x',y'). For the latter polynomial, the 
truncations of the edges аг,..., ap-\ of the tropicalizations of A i , . . . , Ap con­
tain a factor (x — £ ) m with some £ € C*. Then we introduce the polynomial 
f"(x", y") = fix" + f, y") and consider its tropicalization. Again, for bet­
ter understanding of T(f"), we apply the above coordinate changes to the 
polynomials 

Pk(x,y)= Y c ° i A f e ^ y , k = l,...,p, 
(»>j)eA f c 

where 
fk(x,y)= c°xlyJ, A f c = i / / 

( i J ) e A f c 

The Newton polygons A'k' of the resulting polynomials Pk(x",y"), i = l,...,p, 
look as shown in Fig. 3(c) and bound a trapezoid в with vertices (0, a - 1), 
( 0 , Ь + 1), (m,«) , and (m,b). Then, in particular, the functions ^ / " | д « = A'fc', 

fc = 1 , . . are linear, and 

vtii(i,j)> max А^(г, j ) , 0 ^ г < m, a^j^b. (3.6.12) 

Now we consider subdivisions of 9 into parallelograms and one triangle with 
edges parallel to the edges of 9 (see, e.g., Fig. 3(d,e)). Exactly one of them 
can be induced by a convex piecewise linear function, defined as i/f on 
A " U • • • U Ap and extended to 6. Here we suppose that the function vf is 
generic among the convex piecewise linear functions determining the same 
subdivision Sf of A (this means that it had generic rational slopes before we 
multiplied it by a large natural number), and then, necessarily, its graph has 
a break along the edges of the triangle. Let (m, d) be a vertex of the triangle 
on the chosen subdivision of 9. We perform one more shift. Namely, inequality 
(3.6.12) and the fact that the linear functions A£, к = 1 , . . .,p, are constant in 
the horizontal direction, show that there exists a unique r ( i ) € К, r (0) = 0, 
such that the polynomial f(x,y) = f"(x + r(t),y) has no monomial xm~lyd 

(next to the vertex of the triangle). 
We claim that the function vj determines a subdivision of 9 into one triangle 

and p—l parallelograms as described above. Furthermore, the tropicalizations 
of / on the parallelograms inside в are products of binomials, and the trop­
icalization of / on the triangle inside 9 (which we denote Az) is ydP(x,y), 
where P is a polynomial ocurring Lemma 3.5, with the vanishing coefficient 
of xm~ly. 

Indeed, deformation of the tropicalization of the curve С — {/ = 0} on the 
polygons А' с 9 and A ' e P(Sj) describes a deformation of the tropicalization 
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_ I _ I |m 
(a) (b) (c) 

(d) (e) (f) 

Fig. 3. Refinement of the tropicalization, II 

C(°) of the original curve С = {/ = 0} in a neighborhood of Z. The argument 
in Subsection 3.3 implies that, the truncations of the tropicalization of / on 
the vertical edges of Д 2 , ...,Ap_t, lying on дв (see Fig. 3(c)), determine 
irreducible components of the restriction of T(C) to the polygons subdivid­
ing 9. In particular, each vertical edge of A 2 , . . . , A p '_i lying on дв is joined 
to a segment lying on the vertical coordinate axis by a sequence of parallel­
ograms. Furthermore, the argument in Subsection 3.3 shows that all other 
components of T(C) in Tor(A') , А' с в, must be rational, and each of them 
crosses (Jo- Tor(cr) at two points; here a runs over all nonvertical edges of the 
subdivision Sj in 6. All this leaves for T(C)\e only the possibility claimed 
above. For instance, the subdivision in question cannot be as shown by dashes 
in Fig. 3(f), because the tropicalization on / of the horizontal dashed segment 
a, lying at the level d, cannot be a power of a binomial (observe that the 
monomial xm~lyd is absent). Thus, the component of T(C) corresponding to 
a is irreducible and crosses Тог(ст) at least at two points. 

Remark 3.11. The truncations ip^ and ip^ of the tropicalization of / on 
the nonvertical edges of the triangle Az are uniquely determined by the 
polynomials Д and fp, respectively. Any polynomial with Newton triangle 
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conv{(0,0), (m, 1), (0,2)} (Az shifted down) whose truncations to the non-
vertical edges coincide with ip^\ 4$ ( U P t o multiplication by a suitable 
monomial), and the coefficient of xm~ly vanishes, will be called a deforma­
tion pattern for the set Z. 

3.7. Restoring a nodal curve out of tropical data. We denote by QA(nA\) 
the set of quadruples (A, S, F, R), where 

• A € A(A) is a nodal amoeba of rank r, S : A = А\,...,А^ is a 
subdivision of A dual to A, and F, R are collections of polynomials 
in C[x,y], which together are defined up to multiplication by the same 
non-zero (complex) constant; 

• F = ( / i , . . .,JN), where fa is a polynomial with Newton polygon Аг-, 
i = 1 , . . . , N, and such that if Д; is a triangle, then /г- defines a rational 
curve in Тог(А г ) as described in Lemma 3.5, if Аг- is a parallelogram, 
then fi defines a curve in Тог(Д г ) as described in Lemma 3.6, and for 
any common edge a = Дг- П Aj the truncations / f and coincide; 

• R is a collection of deformation patterns compatible with F as de­
scribed in Remarks 3.8 and 3.11. 

We are given points x\,...,xr G Q 2 and p 1 , . . . , p r € (K*) 2 such that 
Val(pj) = Xi, г = 1 , . . . , r, and we intend to find out 

• how many elements (A,S,F,R) G QA(nA\) correspond to a nodal 
amoeba A G A(A) of rank r passing through x\,..., xr, and 

• how many polynomials / G K[x,y] (determined up to multiplication by 
a nonzero K-constant) with Newton polygon Д and defining curves 
С G H&(nAi) that pass through Pi,...,pr arise from a tropicalization 
(A,S,F,R)eQA(nAl). 

Step 1. Let A G A(A) be a nodal amoeba of rank г passing through the given 
points x\,.. .,xr G Q 2 . 

First, observe that A uniquely determines a dual subdivision S of Д . Indeed, 
the unbounded components of E 2 \ A are in a natural one-to-one correspondence 
with дА П I?. The bounded edges of A in the boundary of the above com­
ponents determine germs of the edges of S starting at дА П Z 2 . There is a 
pair of nonparallel neighboring germs that start at distinct points of dAc\l?, 
and their extension uniquely determines a triangle or a parallelogram in P(S). 
Then we remove this polygon from Д and continue the process. 

Second, A determines (uniquely up to a constant shift) a convex piecewise 
linear function v : A —> R whose graph projects onto the subdivision S. More 
precisely, the points x\,.. .,xr lie on r distinct edges of A corresponding to 
some r edges of S. If <тг- G E(S) corresponds to a point X{, and ш[,и)" are the 
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endpoints of «г*, 1 ^ i ^ r, then we have linear conditions on и(ш!Л and I/(UJ"): 

и^Л-и{шЧ) = {шЧ-^)хи « = l , . . . , r . (3.7.13) 

Since xi,...,xr are generic, system (3.7.13) is independent. Furthermore, 
the parallelograms A j € P(S), j = l , . . . , ^ , corresponding to the 4-valent 
vertices of A impose the following linear conditions on the values of v at the 
vertices u>^\ w j 2 \ OJP\ w^ of Aj (listed, say, clockwise): 

" / ( " j 4 ) + M"f) = »M2)) + 3 = 1, • • •, N4. (3.7.14) 
Lemma 2.2 shows that the united system (3.7.13), (3.7.14) is independent, and, 
since it contains | У ( 5 ) | — 1 equations, it determines the values of v at the 
vertices of S uniquely up to a constant shift. 

Step 2. We are looking for polynomials of the form 

f(x,y) = J2 Cij(t)t^xY, сц(0) = сц, (i,j)eA, (3.7.15) 
(i,j)6A 

where 

fk{x,y)= Y
 cijxlyJ> k = l,...,N. 

We claim that the condition 

/ ( P i ) = - " = / (Pr) = 0 (3.7.16) 
determines the coefficients of fi,..., at the vertices of S, together with the 
truncations of / 1 , . . . , /JV on the edges a\,...,or corresponding to x\,..., xr, 
uniquely up to multiplication by the same non-zero constant. 

Indeed, let 
xi = (-ai,-fii), Pi = (t,v), £ = tf*? + h.o.t., 

17 = r?°rf + h.o.t, ( ? l 4 ? g C , 

and let ш[ — (ki,h) and u>" = (k2,l2) be the endpoints of the edge o-j. The 
conditions / (p j ) = 0, i = 1,.. . , r , take the form of the following equations: 

/ . ( й ) = ^ ( * 1 Л Ж 1 В Д + Л А Ы ^ , Ч ? ) + О ( * ) ) = 0 <7*(£W°) = 0, 
(3.7.17) 

where a quasihomogeneous polynomial gi(x,y) = c^x4^1
 H h c ^ s ' 2 ^ 2 is 

the tropicalization of / ° \ Since ^ is the product of a monomial and a power 
of an irreducible binomial, (3.7.17) determines it uniquely up to a constant 
factor. On the other hand, for the coefficients bi, b2,bs,b4 of the polynomial fj 
having Newton parallelogram Aj with respective clockwise ordered vertices 
u>^\ u)f\ u)f\ ojjA\ we have b\b3 = b2b±. We see that the conditions imposed 
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on the coefficients of / 1 , . . . , /JV at V(S) constitute a multiplicative form of a 
system like (3.7.13,)., (3.7.14), whence the claim follows. 

Next we compute in how many ways / I , . . . , / A T can be restored if we 
fix the coefficients of the polynomials / I , . . . , / J V at V(S) and their trunca­
tions to the edges a\,..., ar. To formulate the answer, we split E(S) into 
disjoint subsets, assuming that two parallel edges of a parallelogram always 
belong to the same subset, and extending this relation by transitivity. 5 Using 
Lemmas 3.5 and 3.6, it is not difficult to show (see, e.g., {27]) that there 
are W(A) \[a \cr\~~1 Щ = 1 N l - 1 collections of polynomials / 1 , . . . , / л г compat­
ible with the given data, where in the first product a ranges over a set of 
representatives of the subsets of E(S) introduced above. Omitting details, 
we explain this as follows. Fixing only coefficients at V(S), we can obtain 
W(A) Y[a \o-\~1 suitable combinations of Д , . . . , /дг when recovering / 1 , . . . , /лг 
inductively along the order used in the proof of Lemma 2.2. Then we observe 
that fixation of the truncation on each edge сгг-, 1 ̂  г ^ r, divides the number 
of possibilities for / I , . . . , / J V by |<тг|. 

Finally, by Lemma 3.9, we can find W(A) П [ = 1 l ° t | _ 1 elements (A, S, 
F,R) G QA(nAi) compatible with the given nodal amoeba A and the points 
Xi,...,Xr G Q 2 , P i , . . . , p r G ( K * ) 2 . 

Step 3 . We complete the proof of Theorem 3 with the following statement, 
which will be proved after the main patchworking Theorem 5 in Subsection 
5.4. 

Lemma 3 .12. In the above notation, for given points x i , . . . , x T G Q 2 , 
Pi,...,pr G ( K * ) 2 and a compatible (A,S,F,R) G QA{nAx), the polyno­
mials f G K[x, y] with Newton polygon A that tropicalize into (A, S, F, R) 
define exactly Щ = 1 curves in Лк(Д) having n nodes and passing through 

§4. Counting curves with one cusp 

4 . 1 . Formulation of the result. Let A be a nondegenerate convex lattice 
polygon having at least one interior integral point. We consider the variety 
£ д ( Л 2 ) of curves С G Лк(А) having an ordinary cusp as their only sin­
gularity, and we are going to express its degree as the number of certain 
non-Archimedean amoebas. 

An amoeba A G A(A) is said to be l-cuspidal if its dual subdivision S of A 
satisfies one of the following conditions: 

In fact, a subset of E(S) consists of edges parallel to each other and contained in parallel­
ograms that form a chain in the sense of Subsection 3.6. 

file:///cr/~~1
file:///o-/~1
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Fig. 4. Newton polygons of auxiliary curves with nodes and cusps 

(i) S contains a quadrangle Aff(Z 2)-equivalent to that shown in Fig. 4(a), 
and the rest of S consists of triangles of area 1/2; 

(ii) S contains a triangle Aff(Z 2)-equivalent to that shown in Fig. 4(b), 
and the rest of S consists of triangles of area 1/2; 

(iii) S contains an edge of length 2 common for a triangle Aff(Z 2)-equivalent 
to that shown in Fig. 4(c) and a triangle of area 1, and the rest of S 
consists of triangles of area 1/2; 

(iv) S contains an edge of length 2 common for a quadrangle Aff(Z 2)-
equivalent to that shown in Fig. 4(d) and a triangle of area 1, and the 
rest of S consists of triangles of area 1/2; 

(v) S contains an edge of length 3 common for two triangles of area 3/2, 
and the rest of S consists of triangles of area 1/2. 

Observe that a 1-cuspidal amoeba has rank r = | Z 2 n A | - 3 and determines 
the dual subdivision uniquely. 

Let xi,.. .,xr be generic points in Q 2 , and let Л be a 1-cuspidal amoeba 
passing through these points. We shall introduce the weight W(A, xi,...,xr). 
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Assume that A has only 3-valent vertices, i.e., S contains only triangles. 
Then we put W(A,pu.. .,pr) equal to 5, 6, or 6 in accordance with cases 
(ii), (iii), or (v) in the definition of 1-cuspidal amoebas. 

Assume that A contains a 4-valent vertex. The vertices of S and the r 
edges of S dual to the edges of A that contain the fixed points form a graph 
Г. Observe that Г has no cycles, since otherwise, as shown at Step 2 in 
Subsection 3.7, we would have a dependent sequence of relations of type 
(3.7.13), which is impossible because of the generic choice of ръ.. .,pr. Thus, 
the relation \V(S)\ = |Д П Z 2 | - 1 = r + 2 implies that Г consists of two 
disjoint trees (a tree may consist of one point). Furthermore, the vertices of 
the quadrangle A' in S dual to the 4-valent vertex of A cannot all belong 
to one component of Г, and in the case of A' shown in Fig. 4(d) it cannot 
happen that the two upper vertices belong to one component of Г and the 
lower vertices belong to the other. We take the vectors joining the vertices of 
A', that belong to the same component of Г, take one vector v joining two 
vertices from distinct components of Г, and denote by w(A, x\,.. .,xr) the 
minimal positive coefficient of v in the possible integral linear combinations of 
all the vectors taken. Now we put W(A, x\,..., xr) equal to w(A, x\,..., xT) 
or 3w(A, xi,.. .,xr) in cases (i) or (iv), respectively. 

Theorem 4 . In the above notation, 

deg Ед (A 2 ) = Y2 w ( A i ж ь • • • i ж")> 

where x\,..., xr e Q 2 is a collection of generic distinct points, and A ranges 
over all \-cuspidal amoebas in A(A) passing through x\,...,xT. 

4.2 . Auxiliary curves with nodes and cusps. We start by describing the 
nodal complex curves that will be used in the proof of Theorem 4. 

Lemma 4 . 1 . Up to the action of the group A f f ( Z 2 ) of affine automorphisms 
of%2, 

• the polygons in Fig. 4(a,e) are the only lattice quadrangles with one 
interior integral point and all edges of length 1; 

• the polygon in Fig. 4(b) i s the only lattice triangle with two interior 
integral points and all edges of length 1; 

• the polygon in Fig. 4(c) is the only lattice triangle with one interior 
integral point, one edge of length 2, and the other of length 1; 

• the polygon in Fig. 4(d) is the only lattice quadrangle without interior 
integral points, with one edge of length 2, and the other of length 1. 

There is no lattice pentagon whose vertices are its only integral points. 

This is an elementary geometric fact, and we omit the proof. 

file:///-cuspidal
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Lemma 4.2. Let Ai, i = 1 , . . . . . , 5 , denote the polygons shown in Fig. 4(a-e) , 
respectively. 

(i) A curve m Tor(Aj) defined by a polynomial with Newton polygon Ai 
cannot ham.a singularity more complicated than an ordinary cusp if 
i = l , 2 , arid has at most one node if i = 3,4. 

(ii) For given the coefficients at the vertices of A2, there exist exactly 
five polynomials with Newton triangle A2 that define a curve with a 
cusp. Furthermore, such curves have no other singular points. 

(iii) For given coefficients:,at the vertices of Д 3 , there exist exactly two 
polynomials with Newton triangle Д 3 that define a curve with a node 
o«Tor([ (0 ,0) , (2 ,0)] ) . 

(iv) A curve in Tor(Ai) defined by a polynomial with Newton polygon Ai 
and coefficients с-ю, cni, ci2, C2Q G C* at the vertices of Ai has a cusp 
if and only if 

c i o c i , 2 = 4i4o- (4.2.18) 
Moreover, for fixed сю, coi, c\2, c2o such a polynomial is unique, and 
the corresponding curve has a cusp as its only singularity. 

(v) A curve in Т о г ( Д 4 ) defined by a polynomial with Newton polygon 
Д 4 and coefficients CQO, COI, схд, c2,o G C* at the vertices of Д 4 has a 
node on Tor([(0.0), (2,0)]) if and only if 

соосхд = C o i C 2 0 . (4.2.19) 

Moreover, for fixed coo, coi, c-хд, c2ro such a polynomial is unique, and 
the corresponding curve has a node as its only singularity. 

(vi) A curve in Тог(Дэ) defined by a polynomial with Newton polygon Д 5 
cannot have cusps. 

Proof. These statements are verified by direct computation, and we only ex­
plain (vi). Indeed, a polynomial with Newton polygon Д 5 defines a plane cubic 
which admits two tangent lines intersecting at some point on a curve; but the 
Pliicker formulas show that this is impossible for a cuspidal cubic. • 

4.3. Amoebas and tropicalizations of 1-cuspidal curves. The dimension of 
the stratum of curves with a cusp in Л(Д) is r = | Z 2 П A | — 3. We pick r 
distinct generic points x\,.. .,xr G Q 2 and points p 1 ( . . . , p r G (K*) 2 so that 
Val (pJ = xh i = l,...,r. 

The exponents of t in the coefficients of all the polynomials / G K[x, y) such 
that the cuspidal curves in Лк(Д) defined by then pass through p1,...,pr 

have a common denominator. A parameter change t t-» tM with a suitable 
natural M makes all these exponents integral and the convex piecewise linear 
function vf : A —> R integral-valued at integral points. 
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We claim that the images of the 1-cuspidal curves in Лк(А) that pass 
through px,..., p r are 1-cuspidal amoebas passing through x\,..., xr. Indeed, 
using Lemmass3.5, 4.3(i), and 4.2(vi), it is easy to show that the amoebas of 
rank exceeding | Z 2 П A | - 3, as well as the non-l-cuspidal amoebas of rank 
| Z 2 П A| — 3 can lift only to nodal curves. 

Furthermore, the polynomials in T(f) corresponding to the polygons in Sf 
that are which is Aff(Z 2)-equivalent to those shown in Figr4(a,b,c,d) must be 
as described inXemma 4.2(i-v), and the polynomials in T(f) corresponding to 
the triangles without interior integral points:jnust be as described in Lemma 
3.5. If Sf contains a polygon Aff(Z 2)-equivalent,to one of those shown in 
Fig. 4(c,d), then there is an edge a = Д ^ П А andca point z e Tor(o-) f)CkC\Q 
such that (Ck • Tor(sig))z = (Q • Tov(a))z ^ 2, and thus, we can construct 
a z-refinement of the tropicalization of / as was explained in Subsection 3.5. 
Possible refinements of the tropicalization of / are described in the following 
statements. 

Lemma 4 . 3 . Under the above notation and definitions, let z € Tor(cr) П Ck П 
Q. 

(i) / / Ck and Ci are nonsingular at z, (Ck • Тбт(а))г = 3, and z bears 
a cusp A2, then Tz(f) consists of one polynomial having Newton 
polygon Az as shown in Fig. 5(a) and defining an elliptic curve with 
one cusp in Тог(Д г ) . 

(ii) If Ck has a node at z, Ci is nonsingular at z, (Ck • Tor(cr)) 2 = 2 , 
and z bears a cusp A2, then Tz(f) consists of one polynomial having 
Newton polygon Az as shown in Fig. 5(b) and defining a rational 
curve with one cusp in Тог(Д 2 ) . 

Proof. We show that in each case Tz(f) in each case consists of one polyno­
mial, and describe these polynomials in Lemma 4.4 below. 

The proof proceeds in the same way as the proof of Lemma 3.10. As an 
example, we treat situation (ii). 

Besides the vertices of Az, only the points (0,0) and (0,1) may serve as 
vertices of the subdivision Sf(z). Observe that the possible intersections of the 
curves defined by Tz(f) with Tor([(0,0), (2,0)]) are transversal, because the 
coefficient of x is zero by construction. Consequently, z may only bear singular 
points that come from singularities in ( C * ) 2 of curves defined by polynomials 
with Newton polygon conv{(0,0), (2,0), (0,2)} or conv{(0 , -1 ) , (0,1), (2,0)}, 
which are at most nodes. • 

Lemma 4 . 4 . (i) There exist exactly two polynomials with Newtom poly­
gon A' as shown in Fig. 5(a) and such that they have prescribed 
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(a) (Ь) 

Fig. 5 . Newton polygons for deformation patterns 

coefficients at the vertices of A' and the zero coefficient of x2, and 
define curves in Tor(A') with a cusp as their only singularity. 

(ii) There exist exactly three polynomials with Newton polygon A" as 
shown in Fig. 5(b) and such that they have prescribed coefficients at 
the vertices of A" and the zero coefficient of x2, and define curves in 
Tor(A") with a cusp as their only singularity. 

Proof. This is checked by direct computation. As an example, we consider the 
second case. 

After a suitable coordinate change, we reduce the question to the study of 
polynomials 

F(x,y) = y3 + yx2 + l + ay + by2, а , 6 б С . 

The system F(x,y) = Fx(x,y) — Fy(x,y) = 0 reduces in C 2 to the system 

ж = 0 , 3y2 + 2by + a = 0, y3 + by2 + ay + 1 = 0 , 

which must have a solution of multiplicity 2, so that y3+by2+ay+l — (y+a)3, 
a3 = 1 , and the claim follows. • 

4.4. Restoring a cuspidal curve out of the tropical data. We follow the 
argument of Subsection 3.7. 
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Let 2 д ( А 2 ) denote the set of quadruples (A,S,F,R), where 

• A G A(A) is a 1-cuspidal amoeba, S : A = A i , . . . , Ajv is a subdivision 
of A dual to A, and F, R are collections of the polynomials in C[x,y], 
which together are defined up to multiplication by the same nonzero 
(complex) constant; 

• F — ( / i , . . . , /JV), where is a polynomial with Newton polygon A,, 
i = 1 , . . . , N, and such that if Ai is a triangle without interior integral 
points, then / j defines a rational curve in Tor(Aj) as described in 
Lemma 3.5; if Д ; is a triangle Aff(Z 2)-equivalent to that shown in 
Fig. 4(b,c), then defines a curve in Tor(Aj) as described in Lemma 
4.2(ii,iii); if Aj is a quadrangle Aff(Z 2)-equivalent to that shown in 
Fig. 4(a,d); then / ; defines a curve in Tor(Aj) as described in Lemma 
4.2(iv,v), and finally, for any common edge a — Д»ПД^ the truncations 
f? and f? coincide; 

• R is a collection of deformation patterns compatible with F as de­
scribed in Remarks 3.8 and 3.11. 

Let (A,S,F,R) € Q A ( A 2 ) , and let x\,...,xr E A, These points lie on r 
distinct edges of A corresponding to some r edges of S, and they impose 
conditions (3.7.13) on the values of the function v : A —> R. Since x\,...,xr 

are generic, system (3.7.13) is independent. A quadrangle that may appear in 
S imposes one linear condition on the values of и at the vertices; in the case 
of the shape shown in Fig. 4(a) , this condition reads 

3i/(l, 0) + i / ( l . 2 ) = M O , 1) + 2i/(2,0), 

and in the case of Fig. 4(d) we have 

i/(0,0) + 2i/(l, 1) = 2tv(0,1) + i/(2,0). 

Adding the latter condition to (3.7.13), we obtain a system of \V(S)\ - 1 
independent equations, which determines the values of v at V(S) uniquely up 
to a shift. 

We seek a polynomial / € K[x,y] that defins, a curve in Е д ( А 2 ) in the 
form (3.7.15). As at Step 2 in Subsection 3.7, conditions (3.7.16) take the 
form (3.7.17). In the case of a triangular subdivision S, the latter system 
determines the coefficients of / I , . . . , / J V at V(S), as well as the truncations 
°f / i ) - - ->/ jv on the edges о д , . . . ,oy, uniquely up to proportionality. If S 
contains a quadrangle, then we supply system (3.7.17) with equation (4.2.18) 
or (4.2.19), which together produce w(A,xi,.. .,xr) collections of the coef­
ficients of / i , . . . , /дг at V(S) and truncations to о д , . . .ar (up to proportion­
ality). Finally, using Lemmas 4.2 and 4.4, we see that for a given 1-cuspidal 
amoeba A e A(A), А э {xi,...,xr}, there are W(A, хъ ..., xr) П - = 1 Ы - 1 
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quadruples (A, S, F, R) e Q A ( ^ ) that may serve as tropicalizations of polyno­
mials / € Щх, y] having Newton polygon Л and defining curves С € £ д ( А 2 ) 
that pass through px,...,pT. 

Lemma 4 . 5 . In the above notation, for given x\,...,xr e Q 2, 
рг,...,рг б (К*) 2 and a compatible (A,S,F,R) e Q A ( A 2 ) , the polynomi­
als f e Щх, у] with Newton polygon A that tropicalize into (A, S, F, R) de­
fine exactly П [ = 1 curves in Л к ( Д ) that have one cusp and pass through 
px,...,pr. 

The proof of Lemma 4.5 is completely similar to that of Lemma 3.12 (see 
Subsection 5.4), and we omit it. 

§ 5 . Patchworking singular algebraic curves 

5 . 1 . Initial data for patchworking. Let Д с R 2 be a nondegenerate convex 
lattice polygon, and let S : A = A i U • • • U Д д г be its subdivision into convex 
lattice polygons determined by a convex piecewise linear function v : A —> R 
such that v{l?) С Z. 

Suppose ац € С, (г, j) € A n Z 2 , are such that ац ф 0 for each vertex (г, j ) 
of all the polygons A i , . . . , Д д т . Then we introduce the polynomials 

fk(x, y)= Y аЦх%У3-> k = l,...,N, 
(y )eA f c nz2 

and the curves Ck = {fk = 0} с Т о г ( Д ^ ) , к — 1 , . . . , N, on which we impose 
the following conditions. 

(A) For any к = 1,...,N, each multiple component of Ck (if it exists) is 
defined by a binomial; it crosses any other component of Ck transver-
sally, only at nonsingular points, and not on Tor(SAfc). 

(B) For any edge а С дА, а с Ak, 1 ^ к < N, the curve Ck is non-
singular along Tor(cr) and crosses Tor(cr) transversally. 

(C) If a is an edge of A/., 1 ^ к ^ N, and z € Tor (а) П Ck is an isolated 
singular point of Ck, then the germ (Ck,z) is topologically equivalent 
to ym(k'z) + xm = 0, where the y-axis stands for Tor(<r). 

Now we introduce additional polynomials that will play the role of deforma­
tion patterns, as defined in Remarks 3.8 and 3.11. 

Consider all the triples (k, a, z) in which 1 < к < N, а ф дА is an edge 
of A f e , z e Тог(<т) П Ck, and (Ck • Тог(ст))2 = m > 2. We introduce the 
following equivalence of triples: (i) (k,a,z) ~ {l,cr,z) if a = Ak П Aj, and 
(ii) (k, a, z) ~ (k, a', zf) if cr, a' are parallel sides of Ak and z, z' belong to 
one and the same multiple component of Ck- The transitive extension of this 
equivalence distributes the triples into disjoint classes. We denote the set of 
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equivalence classes by П. In fact, a pair of points z, z' in equivalent triples 
(k,a,z), (l,a',z') determines an element of П uniquely, and we write simply 
(z, z') s П. 

With any element of П we associate a deformation pattern. Namely, in 
any class there are exactly two triples (k,a,z), (l,a',z') with coinciding or 
parallel edges a, a' and with isolated singular (or nonsingular) points z, z' 
of the curves Ck, С respectively. As required in the above property (C), in 
some local coordinates in neighborhoods of z and z' the curves Ck and C\ are 
defined by 

Y a y x V = 0 , Y / % * У = Ч ) , 
im(k,z)+jm^.mm{k,z) im{l,z')+jrn^mm{l,z?) 

respectively, with amo = l3mo and with nondegenerate homogeneous polyno­
mials 

<pz

k\x,y) = Y 
im(k!z)+jm=mm(k,z) 

vilh*,y)= Y ^ x i y j -
im(l,z')+JTn=mm(l,z') 

A deformation pattern associated with a chosen class of triples is a curve 
Cz,z' С Tox(AZ)Zi), AZJZI — conv{(m, 0), (0,m(k,z)), (0, — m(l,z'))}, defined by 
a polynomial FZiZ>(x,y) with Newton triangle AZtZ> and truncations ipz

k\x,y), 
(p^)(x,y~l) on the edges [(m, 0), (0,m(k, z)], [(m, 0), (0, — m(l, z'))], respec­
tively. 

5.2. Transversality. Transversality of equisingular strata provides sufficient 
conditions for the patchworking (cf. [25, 26]). 

Let S be a topological or (contact) analytic equivalence of isolated pla­
nar curve singular points. We intend to define 5-transversality for triples 
(Ak, Afc, Ck), 1 ^ к ^ N, where Ar; is a connected (or empty) union of some 
edges of Ak, and for deformation patterns. 

Pick a triple (Ak, A ~ , Ck),l<k^N. 
If z E Ck П ( C * ) 2 is an isolated singular point, we denote by Ms(Ck, z) the 

germ at Ck of the <S-equisingular stratum of (Ck, z) in A(A^). The (projective) 
Zariski tangent space to Ms(Ck, z) at Ck is formed by the curves {g = 0}, g G 
A(Afc), with g € Is(Ck,z) С C>Tor(Afc),z> where Is(Ck,z) is the equisingular 
ideal (see [5, 34]) or the Tyurina ideal (g,gx,9y), according to whether <S is 
the topological or analytic equivalence. 

Let z e CfcnTor(cr) be a nonsingular or singular isolated point of Ck, where 
a is an edge of Ak, and let x", y" be local coordinates in a neighborhood of z 
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in Tor(Afc), as was introduced in Subsection 5.1. The ideals 

1оФ(Ск, z) = {<? 6 0ToT{Aklz : g = £ Ьф"У(у")Л, 
im(k,z)+jrri^mm(k,z) ' 

I^(Ck,z) = I^(Ck,z) + ( ^ ) 

naturally determine the linear subsystems M^b(Ck,z) and M s q h ( C f c , z ) in 
A(Afc), respectively. 

Let z e Cfc П (C*) 2 be an intersection point of two distinct components 
{g' = 0 } and {g" = 0} of Cfc having mult ipl icit ies m ' and m", respectively, 
w i th m! + m" > 2. We denote by Mea(Ck)z) the closure of the germ at Ck 

of the fami ly of curves С E A(Ak) having m'm" nodes in a neighborhood of 
2. The (projective) Zariski tangent space to Meg(Ck,z) at Ck is formed by 
the curves {g = 0 } , g E A(A f c ) , w i th <? 6 / e 9 ( C f c , * ) : = ({g')m'Ля'Т") С 
С т о г ( Д ь ) , г - Indeed, in a neighborhood of z, the curves С E Meg(Ck,z) are 
unions of m ' + m " disks (counting mult ipl ici t ies), and are represented by 
equations ((g')m' + ЯгШТ" + 9i) = 0 w i th \\д[\\ and \\g»\\ sufficiently 
smal l ; thus, the claim follows. 

Definition 5 .1. In the above notation, let A ^ be the union of the edges a of 
Ak such that а (jL A~. The triple (Ak,Ak,Ck) is said to be ^-t ransversal if 
all the germs 

Ms(Ck,z), z € (C*) 2 is an isolated singular point of Ck; 

Meg(Ck,z), z E (C*) 2 is an intersection point of a mult iple component 

< of Ck, w i th any other component of Ck; 

MQ 4 h (Cfc , z ) , z E Ck ПТог(Ат;) is not a non-isolated singular point; 

Msqh(Ck, z), z E Ck nTor(AjJ") is not a non-isolated singular point, 

are smooth germs of expected dimension and intersect transversally in A(Ak). 

Definition 5.2. A deformation pattern Cz>zi С Az>z> is said to be S-transversal 
if the triple (AZiZ>,A~z,,Cz,z') is 5-transversal, where A~z, is the union of 
the nonvertical edges of Az>zi. 

Lemma 5.3. In the above notation, the triple (Ak,Ak,Ck) is S-transversal 

if 

H\Tox{Ak\ 0Tov{Ak)(Ck) ® JZk) = 0, (5.2.20) 
where Jzk С C?Tor(A fc) i S the ideal sheaf of the zero-dimensional scheme 
Zk С Tor(Afc) defined at the points z E Ck mentioned in Definition 5.1 by 
the ideals Is{Ck,z), Ie9(Ck,z), I8

Q

qh{Ck,z), and Isih{Ck,z), respectively. 
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This statement immediately follows from the cohomology interpretation of 
transversality. 

Following [25, 26], we provide an explicit numerical criterion for the hl-
vanishing (5.2.20). To formulate it, we use the topological invariants b(C,£), 
b(C, () defined for a curve С and its local branch £, and the Tyurina number 
r ( C , Z) equal to the codimension of the Tyurina ideal in the local ring of an 
ambient surface. The complete definition of the invariants b and b can be found 
in [25, Subsection 4.1], or in [26, §4, Definition 1]. We only recall it for some 
cases. If С has a node, then b(C, £) = 0 for both branches; if С has a cusp, 
then 6(C,£) = 1; if С is given locally by {xPr + yir = 0} , with (p,q) = 1, then 
Ь ( С , 0 = Р + < 7 - 1 . 

Lemma 5.4. (i) The S-transversality of a triple (Ak, A~, Ck) survives 
if A~ contains at most two edges and from Ar; we remove edges of 
length 1. 

(ii) / / Ck is irreducible, then the triple (Ak, A~, Ck) is transversal with 
respect to the topological equivalence of singular points provided that 

J^b(Ck, 0 + J^'b(Ck, Q) + Y!"((Ck • To r ( a ) ) 2 - e) 

<тСдАк 

where ]T}' ranges over all local branches £ of Ck centered at the 
points z € Sing(Cfc) П (C*) 2 , Y^," ranges over all local branches Q of 
Ck centered at the points z € Sing(Cfc) П Tor(dAfc), and YJ"' ranges 
over all nonsingular points z of Ck on Tor(dAfc), with e = 0 if а С Дг; 
and e = 1 otherwise. 

(iii) / / Ck is irreducible, then the triple (Ak, Aj~, Ck) is transversal with 
respect to the analytic equivalence of singular points provided that 

i n in 
Y,{r(Ck, z ) - l ) + Y}(Ck, Q) + • T o r ( a ) ) 2 - e) 

< (CVTor(o-)), 
aCdAk 

where Y! ranges over all z e Sing(Cfc) П (C*) 2 , and Y!' and Y!" are 
as above. 
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(iv) / / Ck is reduced and reducible, then the triple (Ak, Ak, Ck) is transver­
sal with respect to the topological equivalence of singular points pro­
vided that, for any irreducible component С of Ck, 

О + J^KCk, Q) + £ " ' ( ( < ? • Tor(o-)), - e) 

< ( C - T o r ( a ) ) , (5.2.21) 
аСдАк 

where Y' ranges over all local branches £ of С centered at the points 
z G Sing(Cfc) П (C*) 2 , Y" ranges over all local branches Q of С 
centered at the points z e Sing(Cfc) П Tov(dAk), and Y'" ranges over 
all nonsingular points z of Ck on С Г) Tor (а), а С dAk, with e = 0 if 
а с ДГ/ and e = 1 otherwise. 

(v) / / Ck is non-reduced, then the triple (Ak, A^, Ck) is transversal with 
respect to the topological equivalence of singular points provided 
that any component of Ck that is not defined by a binomial satis­
fies (5.2.21), and any component of Ck defined by a binomial crosses 
Тог(Д^) at one point at most and crosses the reduced union of all 
the other component of Ck transversally at nonsingular points only. 

Lemma 5.5. In the notation of Subsection 5.1 and under Definition 5.2, 
(i) an irreducible deformation pattern CZJZI is transversal with respect to 

the topological equivalence of singular points if 

Y KCz^,w) < #(Zn(-m(l,z'),m(k,z))) + e0, 
w€Smg(CZiZ,)n€? 

and is transversal with respect to the analytic equivalence of singular 
.points if 

Y (T(CZ,Z,,W) - 1) < # ( Z П (-m(l, z'),m(k, z))) + e 0 > 

w e S i n g ( c 2 ] Z , ) n C ? 

where EQ is the number of edges of length 1 in A~z,; 
(ii) a reducible deformation pattern CZJZI is transversal with respect to 

the topological equivalence of singular points if for any irreducible 
component С of Cz>zi we have 

Ylb(Cz,z>,t,) < (C • Тог(дД г ,у) ) - (С • Тог (Д- г , ) ) + e0(C), 

where £ ranges over all local branches of С centered in Sing(CZiZ>) П 

C 2 , and £Q(C) is the number of edges of length 1 in A~z,. 
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Proof. Both Lemmas 5.4 and 5.5 are slightly modified particular cases of 
Theorem 4.1 in [25], and we shall only explain the modifications. 

To obtain e 0 , or, more generally, to remove edges of length 1 from Ar;, 
we notice that the <S-transversality of the triad (Ak,Ak,Ck) means that in 
the space V(Ak) of polynomials with Newton polygon Ak, the corresponding 
<S-equisingular stratum is smooth and transversally intersects the (affine) sub-
space of polynomials with fixed coefficients at the integral points in ДГ". The 
action of (C*) 3 on V(Ak), defined as (A 0, Ai, A 2) -F(x,y) = X0F(Xix, X2y), ar­
bitrarily varies the coefficients, corresponding to integral points in the edges 
of length 1 in Д г Д Д " , whereas the coefficients at the integral points in Ar; 
stay fixed. Since the 5-equisingular stratum in question is invariant with re­
spect to this action, we conclude that it transversally intersects the subspace 
of polynomials with fixed coefficients at the integral points in Дг;. 

In case (v) in Lemma 5.4, relation (5.2.20) is deduced by successive elimi­
nating the components of Ck defined by binomials with the help of the Horace 
method [9], and then applying statement (iii) to the remaining part of the 
curve. • 

5.3. Patchworking theorem. Suppose we are given the data introduced in 
Subsection 5.1, namely, a subdivision S: A = A i U - - - U A ; v induced by a 
function v : A —» R, an amoeba A, polynomials / I , . . . , / J V , and deformation 
patterns defined by polynomials fZjZ. Let Q be the set of orientations of the 
amoeba A (viewed as a graph), that have no oriented cycles and obey the 
following requirements. For Г e Q, let A~(T) denote the union of the edges 
of Afc that correspond to the arcs of A Г-oriented inside Ak. We assume that 
Аг;(Г) is connected for any к = 1 , . . .,N, and that any two arcs of A having 
a common vertex and lying on a straight line are cooriented. 

Theorem 5. Under the assumptions of Subsection 5.1, suppose that all the 
given deformation patterns are S-transversal, and there is Г G Q such that 
every triple (Ak,A~,Ck) is S-transversal, к = l,...,N. Then there exists 
a polynomial f e K[x, y] with the following properties: its Newton polygon 
is A; its refined tropicalization consists of the given data v, S, / I , . . . , / J V 
and the given deformation patterns; it defines a family of reduced curves 

С Tor (A), t ф 0, such that there is an S-equivalent 1-to-l correspondence 
between Sing(CW) and the disjoint union of 

• the sets of isolated singular points of all the curves Ck in (C*) 2 , 
k = l,...,N, 

• the sets Sing(C\j-) П C 2 , {z, z} € П, 
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• the set of Ylk=i Z ) z dim®€?,z/Ieg(Ck, z) nodes, where z runs over all 
points in Ck, belonging to the intersections of a multiple component 
of Ck with any other component of Ck. 

Furthermore, take any set В С V(S) such that, for each к — 1,...,N, 
either \BC\Ak\ ^ 3, or BD Ак С A~. Then a family of polynomials as above 
can be described by the relations 

with certain complex analytic functions (i,j) e Ar\Z2\B. 

We omit the proof, which is a routine adaptation of the proofs of similar 
patchworking theorems in [25, 26] (for the details we refer the reader to [27]). 

5.4 . Proof of Lemma 3.12. Let (A,S,F,R) e Q(nAi). We take any vector 
С € M 2 \ {0} not parallel to any of the edges of S, and orient the arcs of A 
so that they form acute angles with C- This gives rise to an orientation Г of 
A that meets the requirements of Theorem 5. Furthermore, Lemmas 5.4 and 
5.5 imply that the deformation patterns R and all the triples (Ak,Ak,Ck) are 
transversal. For example, if Ak, 1 < A; ^ N, is a triangle, the inequality of 
Lemma 5.4(i), which serves as a transversality criterion, is fulfilled, because 
the binvariant vanishes for nodes, Ck is non-singular along Tor(<9Afc), and 
e = 1 for all edges in A^" ф 0. Thus, Theorem 5 applies, and the set В can be 
chosen as follows. For any parallelogram A^ the set A £ is the union of two 
neighboring edges. Then we take V(S) and remove all the interior vertices of 
A~l for all parallelograms A&. 

Notice that | S | = r + 1, that is, formulas (5.3.22) and (5.3.23) describe 
all the polynomials / e К[ж,у] with Newton polygon A that define n-nodal 
curves in AK(A) and tropicalize into (A,S,F,R). 

From (5.3.23) we separate the equations for сц, (i,j) e V(S)\B. Namely, 
let Ш11к,Ш2,к,шз,к,(^4:,к be the vertices (listed clockwise) of a parallelogram 
Afe, and let & Afc • Then an equation for Meg(Ck) (see Subsection 5.2) 
involving the coefficients at the vertices of A^ can be written as 

where 0(t) includes the terms with t to a positive power. Since 
«wi, f cau;3,fe - aw 2,fcA^4,fc = °- w e c a n rewrite (5.3.23) in the form 

f(x,y)= Y, (<kj + cn)xW{iJ), (5.3.22) 

(5.3.23) 

Cij = ФуСК : и E V(S)}), (i,j) e A\V(S), (5.4.24) 

file:///BC/Ak/
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{CWl,fcaW3,fc + C^3,fca^l,fc CW2,fc°W4,fc CW4,fea 2̂,fc — 0(t), 
l^k^N, \V(Ak)\ = A. 

Consider the equations f(Pi) = • • • = f(pr) = 0. Suppose a i s = Val(p s ) 
corresponds to an edge as of S. Without loss of generality, we assume that 
as lies on the horizontal coordinate axis, v\ = 0, and > 0 for £ 

a.. Then ps = (es+est,V0s+vlt), where &т,°а E С*, Ц п \ € К, Valfe 1), 
V a l ^ 1 ) < 0. 

Assume that \as\ = 1, i.e., as = [w's,u"], ui's = (i,0),w" = (i + 1,0). Then 
the equation f(ps) = 0 in the form (3.7.17) reads 

Ы + Co/J + {a^j + сш»)(£° + ф) = O(t); 

since аш'з + а ш »£° = 0, this reshapes to 

с^ + сш»£° = 0(г). 

Suppose \as\ = m ^ 2, i.e, without loss of much generality, a s = [u^w"], 
OJ'S = ( 0 , 0 ) , = (m, 0). We only consider the case where as is a common 
edge of two triangles Afc, А/ (cf. Fig. 2), because the situation where as is an 
edge of a parallelogram can be treated in the same way, but requires a more 
complicated notation. Let z = Tor(cr s) П С ^ П С ; . We have 

m m 

f(x, у) = ] Г К о + Cijux* + 0(t) = £ ci.ox* + а т > 0(ж + £s°)m + 0 ( i ) . 

The coordinate change x = x' + £g takes f(x, y) to the form 
m—1 

/'(ж', у) = £ < 0(а/у + (am, 0 + с^оХх'Г + ОД, 
where 

m , .ч 

<о = Е ^ !L t = 0 > . . . , m - l . 

Furthermore, we can find 

т = — + 0(t) + h.o.t. € K, mamfi 

where "h.o.t." contains all monomials in cw, UJ e A, of degree at least 2 and 
such that the coefficient of xm~x in the polynomial f"(x",y) := f(x' + т,у) 
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is zero. Then 
m - 2 

/"(*", У)=Е <o(*")' + Ыо + < о ) ( * Т 
1=1 

+ y(ooi + c'oi)*P + У _ 1 ( 4 - 1 + + • • •, 

where we omit the monomials [x")ly^ with $ Az, Az = conv{(m,0) , ( 0 , 1 ) , 
(0, — 1 ) } , and we have 

< o = < o + + h.o.t., г = 0 , . . . , m - 2, 4 i 0 ( 0 ) - <&(()) = ^ ( O ) = 0, 

whereas aoi> ao,-i € C*, and p, g are distinct positive integers (we assume 
that p < q). By Lemma 3.10, the tropicalization of f"(x",y) determines a 
subdivision containing the triangle Az, and the corresponding deformation 
pattern. In particular, c"0 = 0(t), г = 0 , . . . , m — 2. Another consequence is as 
follows: plugging the coordinates x" — t£\ — т, у = ijg+rjlt of ps in f"(x",y), 
we see that the minimal powers of t come from the monomials xm and y , and 
they must compensate each other, because the coordinates of ps annihilate / " , 
i.e., 

n X i * p + 4 o ( 0 - r)m + h-o.t. = 0. 
This equation leads to 

^ am,0 ' 

Combining this with the above formulas for r and c" 0 , c£ 0 , it is not difficult 
to deduce the relation 

coo - — c m , 0 = coo + ( - 1 Г + 1 ( Й ) т С т , о = ( - l ) m ™ a m , o & T ~ 1 £ * 

+ ( - l ^ m i ^ ^ X i ' C f i ) 1 ^ " 1 + (5-4-26) 
where Ф3 is some analytic function of the parameters ац, сц, (г, j ) e A, and 
£°> £s> ^ s ' I s ' * whose terms contain t to a positive power or сц to the total 
power at least 2. We point out that formula (5.4.26) gives m distinct equations. 

Thus, finally we obtain YTS=1 \crs\ distinct systems of equations for the co­
efficients of f(x,y). Each system consists of equations (5.4.24), (5.4.25), and 
(5.4.26); the latter equation is written as 

Сш>аш» ~ Си';аш>Б = 0(t) + h.o.t., s = l , . . . , r . (5.4.27) 

Now we put Ci0j0 — 0 for some (io,jo) £ В and apply the implicit function 
theorem in order to conclude that the system has a unique solution. The con­
ditions of the implicit function theorem are fulfilled because, for instance, the 
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independence of the linearized system (5.4.25), (5.4.27) for t = 0 is equivalent 
to that of system (3.7.13), (3.7.14) treated at Step 1 in Subsection 3.7. 

§6. Counting real nodal curves 

Since the complex conjugation naturally acts in K, we can talk of real K-
curves, i.e., those defined over the subfield K R of Puiseux series with real 
coefficients. If, for instance, the given points ръ .. .,pr belong to (Kg) 2, then 
we can use the formulas of Lemmas 3.5, 3.6 and 3.9 to count how many 
real tropicalizations (A, S, F, R) € QA(nA{) correspond to a nodal amoeba 
A. Then, taking the real solutions of equations (5.4.26), we can decide how 
many real nodal curves correspond to a given amoeba, and thereby confirm 
the formulas suggested by Mikhalkin in [18]. Here we focus on a related 
problem of computing the Welschinger number X A ( P I , • • - , P r ) ' which was 
introduced in a general symplectic setting in [35]. In our situation it is the 
number of real nodal irreducible curves passing through given real points and 
counted with the sign (—l) n i s o , where, for a given real nodal curve, щ30 is 
the number of its real solitary nodes (i.e., those given locally by x2 + y2 = 0). 
The importance of this number comes from Welschinger's theorem [35] saying 
that, for rational nodal curves, XA(PI> • • -iPr) does not depend on the choice of 
the fixed points. This means that, when calculated for a special configuration 
of r = |<9AnZ 2 | — 1 real points, the number | X A ( P 1 ; . . -,pr)\ provides a lower 
bound for the number of real rational curves passing through an arbitrary 
collection of r generic real points in Tor (A). 

The next proposition is a consequence of the results of the preceding sec­
tions. 

Proposition 6 .1 . In the notation of §3, for any generic points x\,..., xr e Q2 

and р ъ . . . , р г € (K|Q 2 such that Val(pJ = Xi, i = 1,. . . ,r, and any irre­
ducible nodal amoeba A of rank r passing through p x , . . . ,pr, the following 
statements are true: 

(i) / / the dual subdivision S contains an edge of even length, then the 
contribution to XA(PI, • • • ,PR) of the real n-nodal curves passing 
through р ъ . . . ,pr and projecting onto A is zero; 

(ii) if the dual subdivision S has only edges of odd length, then there ex­
ists a unique real irreducible n-nodal curve passing through р ъ . . .,pr 

and projecting onto A, and its contribution to ХА(РЪ • • • > Pr) i S {~^Y> 
where s is the total number of interior integral points in the triangles 
of S. 

Proof. Recall that, by Lemma 3.7, to count the irreducible nodal curves we 
need to consider only irreducible nodal amoebas. 



212 E. SHUSTIN 

Suppose S contains an edge a of even length m. The formulas of Lemma 
3.9 show that given a real tropicalization Д , . . .,/jv, with the edge a we can 
associate either zero, or two real deformation patterns, which in their turn are 
independent of how many real solutions equations (5.4.26) have. If real de­
formation patterns do exist, their explicit formulas can be extracted from the 
computation in the proof of Lemma 3.9. Namely, one real deformation pattern 
corresponds to the Chebyshev polynomial P(x) = c o s ( m - a r c c o s ( 2 ~ ( m _ 1 ) / m z ) ) , 
and this deformation pattern has m — 1 real solitary nodes by [22, Proposi­
tion 2.5]. The other real deformation pattern corresponds to the polynomial 
—Р(ж\/—1)> and it has one non-solitary node besides m — 2 imaginary nodes. 
Thus, claim (i) follows, because the exchange of the above deformation pat­
terns changes the parity of the number of solitary real nodes. 

If S contains only edges of odd length, then the formulas in the proof 
of Lemmas 3.5 and 3.9 and equations (5.4.26) give a unique real choice for 
an n-nodal curve passing through p1,...,pr and projecting onto A. It is a 
simple exercise to check that the real tropicalizations to triangles and the real 
deformation patterns associated with edges of odd length have only imaginary 
or real solitary nodes, whereas the real tropicalizations to parallelograms do 
not bear solitary real nodes. Thus, statement (ii) follows. • 
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