МАТЕМАТИЧЕСКИЙ ИНСТИТУТ ИМ. В. А. СТЕКЛОВА РОССИЙСКОЙ АКАДЕМИИ НАУК

Лекционные курсы НОЦ *Выпуск* 7

Издание выходит с 2006 года

В. П. Михайлов, А. К. Гущин

Дополнительные главы курса "Уравнения математической физики"

> Москва 2007

УДК 517.95 ББК (В)22.311 Л43

Редакционный совет:

С. И. Адян, Д. В. Аносов, О. В. Бесов, И. В. Волович,

А.М. Зубков, А.Д. Изаак (ответственный секретарь),

A.A. Карацуба, B.B. Козлов, $C.\Pi.$ Новиков,

В. П. Павлов (заместитель главного редактора),

А. Н. Паршин, Ю. В. Прохоров, А. Г. Сергеев, А. А. Славнов, Д. В. Трещев (главный редактор), Е. М. Чирка

Л43 Лекционные курсы НОЦ / Математический институт им. В. А. Стеклова РАН (МИАН). – М.: МИАН, 2007. Вып. 7: Дополнительные главы курса "Уравнения математической физики" / Михайлов В. П., Гущин А. К. – 146 с.

ISBN 5-98419-022-2

Серия "Лекционные курсы НОЦ" – рецензируемое продолжающееся издание Математического института им. В. А. Стеклова РАН. В серии "Лекционные курсы НОЦ" публикуются материалы специальных курсов, прочитанных в Математическом институте им. В. А. Стеклова Российской академии наук в рамках программы Научно-образовательный центр МИАН.

Настоящая брошюра содержит лекции дополнительные главы курса "Уравнения математической физики", прочитанные в осеннем семестре 2006-го года.

ISBN 5-98419-022-2

- © Математический институт им. В. А. Стеклова РАН, 2007
- © Михайлов В. П., Гущин А. К., 2007

Оглавление

Предисловие	5
Часть I	7
Введение	7
Глава 1. Пространства Соболева	
и теоремы вложения	13
§ 1. Обобщенные производные	
и усредненные функции	17
§ 2. Пространства Соболева	22
$\S 3$. След функций из $H^k(Q)$	25
\S 4. Пространство $\mathring{H}^1(Q)$	30
\S 5. Вложение $H^1(a,b)$ в $C([a,b])$	32
\S 6. Вложение $H^1(Q)$ в $L_2(Q)$	34
\S 7. Компактность вложения $H^1(Q)$ в $L_2(\partial Q)$	37
$\S 8$. Вложение $H^k(Q)$ в $C^l(\overline{Q})$	40
\S 9. Эквивалентные нормировки пространств $H^1(Q)$ и $\mathring{H}^1(Q)$	46
Franc 2 Vncenve po vevve	
Глава 2. Краевые задачи для эллиптических уравнений	51
§1. Вторая и третья краевые задачи	91
для уравнения второго порядка	51
§ 2. Первая краевая задача	01
для уравнения второго порядка	63
§ 3. Задача о собственных значениях	
и собственных функциях	75
Часть II	83
Глава 3. Некоторые дополнительные сведения	
из теории пространств Соболева	85
$\S 1$. Пространства L_p и L_∞	85
$\S 2$. Вложение пространства $W_2^1(Q)$ в $L_p(Q)$	89
§ 3. Обобщенные производные	
сложной функции	97

для общего линейного эллиптического
уравнения второго порядка
§ 1. Принцип максимума
$\S 2$. Пространства $\mathring{W}_{2}^{-1}(Q)$ и $W_{2}^{-1}(Q)$
§ 3. Теоремы об однозначной разрешимости
задачи Дирихле
решений эллиптических уравнений § 1. Субрешения эллиптического уравнения § 2. Локальная ограниченность обобщенных решений

Предисловие

Настоящий курс лекций был прочитан в Научно-образовательном центре при Математическом институте им. В. А. Стеклова. Он содержит независимое изложение некоторых разделов теории линейных эллиптических уравнений второго порядка, не входящих в традиционные курсы. Предполагается, что читатели знакомы с основными понятиями и утверждениями функционального анализа. Изложение базируется на вариационном подходе к рассматриваемым вопросам и концепции обобщенного решения.

Курс состоит из двух частей. Первая часть – она содержит лекции, прочитанные В. П. Михайловым, – посвящена разрешимости основных краевых задач и необходимым для этого понятиям и утверждениям из теории пространств Соболева. Большое внимание уделено теоремам вложения и связи обобщенных решений с классическими. Вторая часть лекций, в которых обсуждаются более специальные свойства обобщенных решений, была прочитана А. К. Гущиным. Основной ее целью является доказательство фундаментального результата Е. Де Джорджи и Дж. Нэша о гёльдеровой непрерывности решений уравнения с измеримыми и ограниченными коэффициентами. Потребности этого доказательства во многом определили содержание второй части.

Часть I

Введение

Наш курс посвящен обобщенным решениям простейших краевых задач для линейных эллиптических дифференциальных уравнений второго порядка. В качестве введения рассмотрим классическую задачу о равновесии мембраны. Мы покажем, что функция, задающая уравнение мембраны в состоянии равновесия, является обобщенным решением некоторой краевой задачи для эллиптического уравнения — уравнения Эйлера для квадратичного функционала, представляющего собой потенциальную энергию мембраны.

Напомним, что мембрана — это тонкая пленка, сопротивляющаяся растяжению; будем представлять ее в виде поверхности в $\mathbb{R}^3: u=u(x), x\in Q$, где Q — некоторая ограниченная область в $\mathbb{R}^2, u(x)\in C^1(\overline{Q})$. Считаем, что точки мембраны, находящейся под действием некоторой системы сил, совершают только вертикальные перемещения, и все силы, приложенные к мембране, имеют только вертикальные составляющие.

Пусть в точках $x \in Q$ на мембрану действует сила с плотностью $f(x) - a(x)u, \ x \in Q$, а в точках $x \in \partial Q$ сила с (линейной) плотностью $f_1(x) - a_1(x)u, \ x \in \partial Q$, т.е. на мембрану действуют внешние силы с плотностью f(x) для $x \in Q$ и $f_1(x)$ для $x \in \partial Q$, и силы сопротивления упругих сред, в которых находится внутренность мембраны $(x \in Q)$ и ее граница $(x \in \partial Q)$ с плотностями -a(x)u в области Q и $-a_1(x)u$ на границе ∂Q , пропорциональные величине перемещения мембраны и обратные ему по знаку, $a(x) \geqslant 0, \ x \in Q, \ a_1(x) \geqslant 0, \ x \in \partial Q$ — коэффициенты упругости соответствующих сред.

Работа этих сил по перемещению мембраны из какого-то положения $u=u_0(x)$ в положение u=u(x) соответственно равны

$$T_{1} = \int_{Q} \int_{u_{0}(x)}^{u(x)} (f(x) - a(x)u) du dx$$

$$= \int_{Q} \left[f(x) (u(x) - u_{0}(x)) - \frac{a(x)}{2} (u^{2}(x) - u_{0}^{2}(x)) \right] dx,$$

$$T_{2} = \int_{\partial Q} \left[f_{1}(x) (u(x) - u_{0}(x)) - \frac{a_{1}(x)}{2} (u^{2}(x) - u_{0}^{2}(x)) \right] dS$$

Во внутренних точках $x \in Q$ на мембрану действует также внутренняя упругая сила. Будем считать, что ее работа по перемещению мембраны из положения $u_0(x)$ в положение u(x) равна

$$T_3 = -\int_{Q} k(x) \left(\sqrt{1 + |\nabla u|^2} - \sqrt{1 + |\nabla u_0|^2} \right) dx$$

(работа этой силы, отнесенная к площадке $dx=dx_1\,dx_2$ пропорциональна изменению площади мембраны, проектирующейся на эту площадку, с коэффициентом пропорциональности k(x)>0, который называется коэффициентом натяжения мембраны). Для упрощения задачи будем считать, что для всех допустимых положений мембраны функция $|\nabla u|, x\in \overline{Q}$, столь мала, что величиной $|\nabla u|^4, x\in \overline{Q}$, можно пренебречь. В таком случае можно считать, что работа внутренней упругой силы равна

$$T_3 = -\int_{\Omega} \frac{k(x)}{2} (|\nabla u|^2 - |\nabla u_0|^2) dx.$$

Таким образом, потенциальная энергия мембраны U(u) в положении u(x) равна

$$U(u) = U(u_0) - T_1 - T_2 - T_3$$

$$= C_0 + \frac{1}{2} \int_Q \left(k(x) |\nabla u|^2 + a(x)u^2 - 2f(x)u \right) dx$$

$$+ \frac{1}{2} \int_{\partial Q} \left(a_1(x)u^2 - 2f_1(x)u \right) dS,$$

где $U(u_0)$ – потенциальная энергия мембраны в положении $u_0(x)$, а C_0 – не зависящая от u(x) постоянная.

В рассмотренном случае на значения функции u(x) на границе ограничений не налагается; это случай со свободной границей. Наряду с ним важным является также случай, когда граница закреплена, т.е. когда при всех допустимых u(x) выполняется условие

$$u(x)\big|_{\partial Q} = \varphi(x),$$
 (1)

где $\varphi(x)$ – заданная на ∂Q функция (граница мембраны проходит через пространственную кривую $u=\varphi(x), x\in\partial Q$). В этом случае потенциальная энергия мембраны в положении u(x) имеет вид

$$U(u) = C_1 + \frac{1}{2} \int_Q (k(x)|\nabla u|^2 + a(x)u^2 - 2f(x)u) dx,$$

где C_1 – не зависящая от u(x) постоянная.

Согласно принципу механики в состоянии равновесия мембраны ее потенциальная энергия минимальна, т.е. в случае свободной границы характеризующая состояние равновесия функция $u(x) \in C^1(\overline{Q})$ реализует минимальное значение функционала

$$J_1(u) = \int_Q \left(k(x) |\nabla u|^2 + a(x)u^2 - 2f(x)u \right) dx + \int_{\partial Q} \left(a_1(x)u^2 - 2f_1(x)u \right) dS,$$
 (2)

среди всех функций из $C^1(\overline{Q})$, а в случае закрепленной границы – минимальное значение функционала

$$J_2(u) = \int_Q (k(x)|\nabla u|^2 + a(x)u^2 - 2f(x)u) dx,$$
 (3)

среди всех функций из $C^{1}(\overline{Q})$, удовлетворяющих условию (1).

Здесь мы не будем заниматься вопросом о существовании функции u(x); ниже существование и единственность решений каждой из этих задач будут установлены в значительно более общей ситуации.

Пусть функция $u(x)\in C^1(\overline{Q})$ удовлетворяет условию (1) и реализует минимальное значение функционала (3) на множестве функций из $C^1(\overline{Q})$, удовлетворяющих условию (1). Тогда при любой функции $v(x)\in C^1(\overline{Q})$, удовлетворяющей условию

$$v\big|_{\partial Q} = 0, \tag{1_0}$$

для всех $t \in \mathbb{R}^1$ имеет место неравенство

$$P_{2}(t) = J_{2}(u + tv) - J_{2}(u) = 2t \int_{Q} (k(x)(\nabla u, \nabla v) + auv - fv) dx + t^{2} \int_{Q} (k(x)|\nabla v|^{2} + av^{2}) dx \ge 0,$$
(4)

и следовательно,

$$\int_{O} (k(x)(\nabla u, \nabla v) + auv - fv) dx = 0$$
 (5)

для всех $v \in C^1(\overline{Q})$, удовлетворяющих условию (1_0) .

Аналогично, если $u(x)\in C^1(\overline{Q})$ и реализует минимум функционала (2) на множестве $C^1(\overline{Q})$, то при любой функции $v\in C^1(\overline{Q})$ при всех $t\in \mathbb{R}^1$ имеет место неравенство

$$P_1(t) = J_1(u+tv) - J_1(u)$$

$$= 2t \left[\int_Q \left(k(x)(\nabla u, \nabla v) + auv - fv \right) dx + \int_{\partial Q} \left(a_1 uv - f_1 v \right) dS \right]$$

$$+ t^2 \left[\int_Q \left(k(x)|\nabla v|^2 + av^2 \right) dx + \int_{\partial Q} a_1 v^2 dS \right] \geqslant 0,$$

и следовательно,

$$\int_{Q} (k(x)(\nabla u, \nabla v) + auv - fv) dx + \int_{\partial Q} (a_1 uv - f_1 v) dS = 0 \quad (6)$$

для всех $v \in C^1(\overline{Q})$.

Верны и обратные утверждения: если подчиненная граничному условию (1) и принадлежащая $C^1(\overline{Q})$ функция u(x), удовлетворяет интегральному тождеству (5) при всех подчиненных граничному условию (1_0) функциях v из $C^1(\overline{Q})$, то она реализует минимальное значение функционала (3) на множестве функций из $C^1(\overline{Q})$, удовлетворяющих граничному условию (1). И аналогично, если функция u(x) из $C^1(\overline{Q})$ удовлетворяет интегральному тождеству (6) при любой v из $C^1(\overline{Q})$, то она реализует минимальное значение функционала (2) на множестве функций $C^1(\overline{Q})$. Докажем первое из них, второе доказывается аналогично.

Пусть $u(x) \in C^1(\overline{Q}), \ u\big|_{\partial Q} = \varphi,$ и выполняется при всех $v \in C^1(\overline{Q}), \ v\big|_{\partial Q} = 0$, интегральное тождество (5), а w(x) – произвольная функция из $C^1(\overline{Q}), \ w\big|_{\partial Q} = \varphi$. Пусть v(x) = w(x) - u(x). Очевидно, $v \in C^1(\overline{Q}), \ v\big|_{\partial Q} = 0$. В силу (4) имеем неравенство

$$J_{2}(w) - J_{2}(u) = (J_{2}(u + tv) - J_{2}(u))|_{t=1}$$

$$= 2 \int_{Q} (k(x)(\nabla u, \nabla v) + auv - fv) dx + \int_{Q} (k(x)|\nabla v|^{2} + av^{2}) dx$$

$$= \int_{Q} (k(x)|\nabla v|^{2} + av^{2}) dx \ge 0,$$

из которого вытекает, что $J_2(w)\geqslant J_2(u)$, что и требовалось установить.

Таким образом, задачи нахождения функций, реализующих минимумы функционалов J_1 и J_2 эквивалентны нахождению функций, удовлетворяющим интегральным тождествам (6) и (5).

Можно доказать, что при достаточной гладкости данных задачи (функций $k(x), a(x), \ldots, \varphi(x)$ и границы области) функции u(x), реализующие минимальные значения функционалов J_1 и J_2 , принадлежат $C^2(\overline{Q})$. Тогда эти функции удовлетворяют не только интегральным тождествам (6) и (5), но и являются решениями следующих краевых задач: в случае свободной границы—задачи

$$-\operatorname{div}(k(x)\nabla u) + a(x)u = f(x), \qquad x \in Q,$$

$$\left(k(x)\frac{\partial u}{\partial \nu} + a_1(x)u\right)\Big|_{\partial Q} = f_1(x),$$
(7)

где $\nu=(\nu_1,\dots,\nu_n)$ – единичный вектор нормали к ∂Q , внешней по отношению к области Q, а в случае закрепленной границы – задачи

$$-\operatorname{div}(k(x)\nabla u) + a(x)u = f(x), \qquad x \in Q,$$

$$u|_{\partial O} = \varphi(x). \tag{8}$$

Действительно, если функция $u(x) \in C^2(\overline{Q})$ и удовлетворяет при всех $v \in C^1(\overline{Q}), v|_{\partial Q} = 0$, равенству (5), то это равенство можно переписать в виде

$$\int_{O} \left(-\operatorname{div}(k(x)\nabla u) + au - f \right) v \, dx = 0,$$

поскольку $k(\nabla u, \nabla v) = \mathrm{div}(kv\cdot\nabla u) - v\cdot\mathrm{div}(k\nabla u),$ а по формуле Остроградского

$$\int_{Q} \operatorname{div}(k(x)v(x) \cdot \nabla u) \, dx = \int_{\partial Q} kv \, \frac{\partial u}{\partial \nu} \, dS = 0.$$

Следовательно, функция u(x) является решением задачи Дирихле (8).

Аналогично доказывается, что если функция u(x) удовлетворяет при всех $v \in C^1(\overline{Q})$ равенству (6) и принадлежит $C^2(\overline{Q})$, то (при достаточно гладких данных задачи) она является решением краевой задачи (7).

Очевидно, верно и такое утверждение. Если функция $u(x) \in C^2(\overline{Q})$ и является решением задачи (8) или задачи (7), то в первом случае она удовлетворяет интегральному тождеству (5) при

всех v(x) из $C^1(\overline{Q})$, удовлетворяющих условию (1_0) , и интегральному тождеству (6) при всех $v(x) \in C^1(\overline{Q})$ во втором случае.

Действительно, пусть, например, u(x) есть решение задачи (7). Умножая первое равенство в (7) на $v(x) \in C^1(\overline{Q})$ и интегрируя полученное равенство по Q, получим равенство

$$\int_{Q} f(x)v(x) dx = \int_{Q} (a(x)uv - \operatorname{div}(k(x)\nabla u) \cdot v) dx$$

$$= \int_{Q} (a(x)uv + k(x)(\nabla u, \nabla v)) dx - \int_{\partial Q} k(x)v \frac{\partial u}{\partial \nu} dS$$

$$= \int_{Q} (a(x)uv + k(x)(\nabla u, \nabla v)) dx + \int_{\partial Q} (a_{1}(x)uv - f_{1}(x)v) dS,$$

совпадающее с тождеством (6).

Интегральное тождество (6) фактически является тождеством, с помощью которого ниже (во второй главе) будет определено обобщенное решение задачи (7), а с помощью интегрального тождества (5) – обобщенное решение задачи (8).

Таким образом, как об этом уже говорилось в начале введения, решение задачи о равновесии мембраны определяется с помощью обобщенного решения соответствующей краевой задачи.

Определение обобщенного решения краевой задачи будет дано во второй главе. Там же получены и результаты, из которых, в частности, вытекают существование и единственность решений обсуждавшихся выше задач, связанных с состоянием равновесия мембраны. При этом, как мы увидим, удобно пользоваться не пространствами типа $C^k(\overline{Q})$ непрерывно дифференцируемых функций, а банаховыми пространствами обобщенно дифференцируемых функций – пространствами Соболева. Необходимые для второй главы сведения об этих пространствах изложены в первой главе.

Пространства Соболева и теоремы вложения

Вначале договоримся об обозначениях и терминологии.

Прежде всего области Q, D, Ω, \dots *п*-мерного вещественного пространства \mathbb{R}^n , в которых задаются те или иные функции f(x), $x = (x_1, \dots, x_n) \in Q, D, \Omega, \dots$, будут, если противоположное не оговорено особо, считаться ограниченными.

Как обычно, множество всех комплекснозначных функций, имеющих в области Q все частные производные до порядка k включительно, непрерывные в Q, где k – некоторое целое неотрицательное число, будем обозначать через $C^k(Q)$, а подмножество этого множества, состоящее из всех функций, все частные производные которых непрерывны в \overline{Q} , обозначим через $C^k(\overline{Q})$.

 $C^k(\overline{Q})$ есть банахово пространство с нормой

$$||f||_{C^k(\overline{Q})} = \sum_{|\alpha| \leq k} \max_{x \in \overline{Q}} |D^{\alpha}f(x)|,$$

где $\alpha = (\alpha_1, \dots, \alpha_n)$ – вектор с целыми неотрицательными компонентами, $|\alpha| = \alpha_1 + \dots + \alpha_n$, а

$$D^{\alpha}f(x) = \frac{\partial^{|\alpha|}f(x)}{\partial x_1^{\alpha_1}\dots\partial x_n^{\alpha_n}}.$$

Множество всех функций, принадлежащих всем $C^k(Q)$, обозначим через $C^\infty(Q)$, т.е. $C^\infty(Q)=\bigcap_{k=1}^\infty C^k(Q)$. Аналогично, $C^\infty(\overline{Q})=\bigcap_{k=1}^\infty C^k(\overline{Q})$.

Множество всех финитных в Q функций из $C^k(Q)$ будем обозначать через $C_0^k(Q)$, а пересечение всех этих множеств $\bigcap_{k=1}^{\infty} C_0^k(Q)$ – через $C_0^{\infty}(Q)$.

Множество всех измеримых в области Q функций, p-ые степени модулей которых интегрируемы по любой строго внутренней подобласти Q_1 области $Q, Q_1 \subseteq Q$, где $p \geqslant 1$, будем обозначать через $L_{p,\text{loc}}(Q)$, а подмножество этого множества, состоящее из

функций, модули p-ых степеней которых интегрируемы по области Q, обозначим через $L_p(Q)$. При этом, как обычно, различающиеся на множестве меры нуль функции будем отождествлять, т.е. считать одним и тем же элементом пространства $L_{p,\text{loc}}(Q)$ $(L_p(Q))$. Множество $L_p(Q)$ есть банахово пространство с нормой

$$||f||_{L_p(Q)} = \left(\int_Q |f(x)|^p dx\right)^{1/p},$$

 $L_p(Q)\subset L_{p'}(Q)$ при p>p' (напомним, что Q – ограниченная область).

Подмножество пересечения $\bigcap_{p\geqslant 1}L_p(Q)$, состоящее из всех существенно ограниченных функций, т.е. функций f(x), для каждой из которых существует такая постоянная M, что $|f(x)|\leqslant M$ для п.в. $x\in Q$, будем обозначать через $L_\infty(Q)$. $L_\infty(Q)$ – банахово пространство с нормой

$$||f||_{L_{\infty}(Q)} = \text{vrai sup}_{x \in Q} |f(x)| = \inf_{\text{mes}\{|f(x)| > M\} = 0} M.$$

Под (n-1)-мерной замкнутой поверхностью S мы будем понимать ограниченную замкнутую (n-1)-мерную поверхность без края класса C^k при некотором $k\geqslant 1$, т.е. лежащее в \mathbb{R}^n связное ограниченное замкнутое множество $S=\overline{S}$, обладающее следующим свойством: для любой точки $x^0\in S$ существует ее (n-мерная) окрестность U_{x^0} и принадлежащая $C^k(U_{x^0})$ функция $F_{x^0}(x)$, для которой $\nabla F_{x^0}(x^0)\neq 0$, такие, что множество $S\cap U_{x^0}$ описывается уравнением $F_{x^0}(x)=0$ (т.е. все точки множества $S\cap U_{x^0}$ удовлетворяют уравнению $F_{x^0}(x)=0$ и любая удовлетворяющая уравнению $F_{x^0}(x)=0$ точка из U_{x^0} принадлежит S).

Граница рассматриваемых областей будет предполагаться состоящей из конечного числа непересекающихся замкнутых (n-1)-мерных поверхностей (класса C^1).

Заметим, что если замкнутая (n-1)-мерная поверхность S принадлежит классу C^k , то для любой ее точки x^0 существует столь малая ее окрестность U'_{x^0} , что пересечение $S\cap U'_{x^0}$ однозначно проектируется на некоторую (n-1)-мерную область D_{x^0} с границей класса C^k , лежащую в одной из координатных плоскостей, т.е. описывается при некотором $i, i=1,\ldots,n$, уравнением

$$x_{i} = \varphi_{x^{0}}(x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n}),$$

$$(x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{n}) \in D_{x^{0}}, \qquad \varphi_{x^{0}} \in C^{k}(\overline{D}_{x^{0}}).$$

Пересечение $S \cap U'_{x^0}$ будем называть npocmым куском поверхности S.

Так как S ограничена и замкнута, то из покрытия $\{U_x', x \in S\}$ поверхности S можно выбрать конечное подпокрытие. Совокупность соответствующих такому конечному покрытию простых кусков S_1, \ldots, S_N будем называть покрытием поверхности S простыми кусками.

Под (n-1)-мерной поверхностью S класса C^k будем понимать связную поверхность, которую можно так покрыть конечным числом (n-мерных) областей $U_i, i=1,\ldots,N$, что каждое из множеств $S_i=S\cap U_i,\ i=1,\ldots,N$, однозначно проектируется на некоторую (n-1)-мерную область D_i с границей класса C^k , лежащую в одной из координатных плоскостей, т.е. при некотором $p=p(i),\ 1\leqslant p\leqslant n$, описывается уравнением

$$x_p = \varphi_i(x_1, \dots, x_{p-1}, x_{p+1}, \dots, x_n),$$

$$(x_1, \dots, x_{p-1}, x_{p+1}, \dots, x_n) \in D_i, \qquad \varphi_i \in C^k(\overline{D}_i).$$

Совокупность поверхностей S_i — простых кусков поверхности S будем называть *покрытием поверхности* S *простыми кусками*. В дальнейшем под (n-1)-мерной поверхностью мы будем понимать (n-1)-мерную поверхность класса C^k при некотором $k \geqslant 1$.

Пусть S – простой кусок некоторой лежащей в \overline{Q} поверхности класса C^k при некотором $k\geqslant 1$ и пусть

$$x_n = \varphi(x_1, \dots, x_{n-1}) = \varphi(x'), \qquad x' \in D, \quad \varphi(x') \in C^k(\overline{D}),$$

– уравнение этого куска.

Заданную на S функцию $f(x) = f(x_1, \dots, x_n), x \in S$, будем считать принадлежащей множеству $C^k(S), f(x) \in C^k(S)$, если $f(x', \varphi(x')) \in C^k(\overline{D})$.

Пусть теперь S — замкнутая лежащая в \overline{Q} поверхность класса C^k , $k\geqslant 1$, (в частности, $S=\partial Q$), а S_1,\ldots,S_N — ее покрытие простыми кусками. Заданную на S функцию $f(x),\ x\in S$, считаем принадлежащей множеству $C^k(S),\ f(x)\in C^k(S),$ если $f(x)\in C^k(S_i)$ при всех $i=1,\ldots,N$. Нетрудно убедиться в том, что принадлежность функции f(x) множеству $C^k(S)$ не зависит от покрытия поверхности S простыми кусками.

Определим в \overline{Q} функцию $r(x),\ r(x)=\min_{y\in\partial Q}|x-y|.$ Очевидно, $r(x)\in C(\overline{Q}).$ Обозначим через $Q_{\delta},\ \delta>0$, множество точек $\{x\in Q: r(x)>\delta\},\$ а через $Q^{\delta},\ \delta>0$, множество $\bigcup_{x^0\in Q}\{|x-x^0|<\delta\}.$

Пусть $\omega_1(t)$, $t\in\mathbb{R}^1$ – бесконечно дифференцируемая четная неотрицательная функция переменного $t\in\mathbb{R}^1$, равная нулю для $|t|\geqslant 1$ и такая, что

$$\int_{\mathbb{R}^n} \omega_1(|x|) \, dx = \int_{|x| < 1} \omega_1(|x|) \, dx = \sigma_n \int_0^1 \omega_1(r) r^{n-1} \, dr = 1,$$

где $\sigma_n=2\pi^{n/2}\Gamma(n/2)$ – площадь поверхности единичной сферы в $\mathbb{R}^n,\ n\geqslant 1\ (\sigma_1=2).$ В качестве $\omega_1(t)$ можно взять, например, функцию

$$\omega_1(t) = \begin{cases} \frac{1}{C_n} e^{-\frac{1}{1-t^2}}, & |t| < 1, \\ 0, & |t| \ge 1, \end{cases}$$

с соответствующим образом подобранной постоянной C_n . Функция

$$\omega_h(|x|) = \frac{1}{h^n} \omega_1(|x|/h), \quad x \in \mathbb{R}^n,$$

где число h > 0, называется *ядром усреднения*.

Очевидны следующие свойства ядра усреднения:

- a) $\omega_h(|x|) \in C^{\infty}(\mathbb{R}^n)$, $\omega_h(|x|) \geqslant 0$ в \mathbb{R}^n ,
- б) $\omega_h(|x|) \equiv 0$ для $|x| \geqslant h$
- $\mathrm{B}) \int_{\mathbb{R}^n} \omega_h(|x|) \, dx = 1,$
- г) для любого $\alpha = (\alpha_1, \dots, \alpha_n)$, где α вектор с целочисленными неотрицательными компонентами, при всех $x \in \mathbb{R}^n$

$$|D^{\alpha}\omega_h(|x|)| \leqslant \frac{c_{\alpha}}{h^{n+|\alpha|}}$$

с постоянной $c_{\alpha} > 0$, не зависящей от h.

Для любой функции $f \in L_1(Q)$ при всех h>0 определена функция

$$f_h(x) = \int_Q f(y)\omega_h(|x-y|) dy, \qquad x \in \mathbb{R}^n$$

называемая усредненной функцией для функции f (усреднением функции f). Ясно, что $f_h(x) \in C^{\infty}(\mathbb{R}^n)$. Усредненные функции будут играть в наших дальнейших рассмотрениях важную роль.

§ 1. Обобщенные производные и усредненные функции

Пусть непрерывная в Q функция f(x) имеет непрерывную в Q производную $f_{x_i}(x)$. Тогда для любой $g(x) \in C_0^1(\overline{Q})$ имеет место равенство

$$\int_{Q} f(x)\overline{g_{x_{i}}(x)} dx = -\int_{Q} f_{x_{i}}(x)\overline{g(x)} dx.$$

Оказывается этим равенством поизводная $f_{x_i}(x)$ функции f(x) полностью определяется: легко видеть, что если для функции $f(x) \in C^1(Q)$ существует функция $h_i(x) \in C(Q)$ такая, что для любой $g(x) \in C_0^1(\overline{Q})$ имеет место равенство

$$\int_{O} f(x)\overline{g_{x_{i}}(x)} dx = -\int_{O} h_{i}(x)\overline{g(x)} dx, \tag{1}$$

то функция $h_i(x), x \in Q$, является производной $f_{x_i}(x)$ функции f(x).

Если в равенстве (1) отказаться от непрерывности функций f и h_i , а потребовать их интегрируемость, то мы приходим к введенному С. Л. Соболевым понятию обобщенной производной.

Пусть $\alpha=(\alpha_1,\dots,\alpha_n)$ — вектор с целыми неотрицательными компонентами. Функция $f^{\alpha}\in L_{1,\mathrm{loc}}(Q)$ называется α -ой обобщенной производной (o.n.) функции $f\in L_{1,\mathrm{loc}}(Q)$, если для всех $g(x)\in C_0^{|\alpha|}(\overline{Q})$ имеет место равенство

$$\int_{Q} f(x) \overline{D^{\alpha} g(x)} \, dx = (-1)^{|\alpha|} \int_{Q} f^{\alpha}(x) \overline{g(x)} \, dx, \tag{2}$$

Этим равенством о.п. определяется (как элемент пространства $L_{1,\text{loc}}(Q)$) однозначно: если существует еще одна функция $f_1^{\alpha}(x) \in L_{1,\text{loc}}(Q)$, для которой выполняется тождество (2), то функция $f^{\alpha}(x) - f_1^{\alpha}(x)$, принадлежащая при любой $Q_1 \in Q$ пространству $L_1(Q_1)$, удовлетворяет равенству

$$\int_{Q} \left(f^{\alpha}(x) - f_{1}^{\alpha}(x) \right) \overline{g(x)} \, dx = 0$$

для всех $g(x) \in C_0^{|\alpha|}(\overline{Q}_1)$. Поэтому $f^{\alpha}(x) = f_1^{\alpha}(x)$ в Q_1 , а значит, и в Q.

Приведенное определение обобщенной производной по существу такое же как и определение производной обобщенной функции. Функцию f(x) из $L_{1,\text{loc}}(Q)$ также можно рассматривать как обобщенную функцию (регулярную обобщенную функцию). При этом у нее существуют все производные любых порядков, являющиеся обобщенными функциями. В нашей ситуации производная $D^{\alpha}f$ является не просто обобщенной функцией, а регулярной обобщенной функцией, принадлежащей $L_{1,\text{loc}}(Q)$.

Поскольку для функции $f(x) \in C^{|\alpha|}(Q)$ равенство (2) выполняется с функцией $f^{\alpha} = D^{\alpha}f(x)$, где $D^{\alpha}f(x)$ обычная производная функции f, то эта производная является и соответствующей обобщенной производной функции f. Поэтому в дальнейшем о.п. f^{α} функции f будем обозначать через $D^{\alpha}f$, для о.п. первого, второго и т.д. порядков будем также пользоваться обозначениями $f_{x_i}, f_{x_i, x_j}, \ldots$.

Отметим несколько просто доказываемых утверждений.

Поскольку для гладких функций g(x) производная $D^{\alpha}g$ не зависит от поряка дифференцирования, то и о.п. $D^{\alpha}f$ не зависит от порядка дифференцирования.

Если функции $f_i,\ i=1,2,$ имеют о.п. $D^{\alpha}f_i,\ i=1,2,$ то функция $f=C_1f_1+C_2f_2$ при любых постоянных $C_1,\ C_2$ имеет о.п. $D^{\alpha}f=C_1D^{\alpha}f_1+C_2D^{\alpha}f_2.$

Если $D^{\alpha}f$ – о.п. функции f в области Q, а область $Q_1\subset Q$, то $D^{\alpha}f,\,x\in Q_1$, является о.п. функции f в Q_1 .

Если для функции $f \in L_{1,loc}(Q)$ существует о.п. $D^{\alpha}f = F$, а у функции F существует о.п. $D^{\beta}F$, то функция $D^{\beta}F$ является о.п. $D^{\alpha+\beta}f$ функции f.

Функция $f(x)=|x_1|$ в n-мерном шаре $\{|x|<1\}$ имеет о.п. $f_{x_1}=\operatorname{sgn} x_1,$ и $f_{x_i}=0,$ $i=2,\ldots,n.$

Функция $f(x)=\operatorname{sgn} x_1$ в шаре $\{|x|<1\}$ обобщенной производной f_{x_1} не имеет, а обобщенные производные по остальным переменным существуют и $f_{x_i}=0,\,i=2,\ldots,n.$

О.п. $D^{\alpha}f$ функции f, в отличие от обычной производной, определяется сразу для порядка $|\alpha|$ без предположения о существовании соответствующих младших производных. Для функции $f(x) = \operatorname{sgn} x_1 + \operatorname{sgn} x_2$ в n-мерном шаре $\{|x| < 1\}$ существует о.п. $f_{x_1x_2} = 0$, но о.п. f_{x_1} и f_{x_2} не существует.

Несколько сложнее доказывается следующее утверждение: если функция f имеет о.п. $D^{\alpha}f$ в областях Q_1 и Q_2 и $Q=Q_1\cup Q_2$

тоже область, то $D^{\alpha}f$ существует и в Q (доказательство см., например, в [1], [2]).

В нашем курсе основную роль будут играть пространства, связанные с квадратичной интегрируемостью. Поэтому мы, как правило, будем формулировать те или иные результаты и доказывать их лишь для случая, когда степень интегрируемости p=2, хотя зачастую они справедливы и для других p.

Имеет место следующее утверждение.

ТЕОРЕМА 1. Если $f(x) \in L_2(Q), \ mo \ f_h(x) \to f(x) \ e \ L_2(Q)$ при $h \to 0$.

Наряду с теоремой 1 имеют место и аналогичные утверждения, отличающиеся от теоремы 1 тем, что в их формулировках пространство $L_2(Q)$ заменено на $L_p(Q)$ при $p \geqslant 1$ или на $C(\overline{Q})$.

Доказательство теоремы 1. Считая функцию f(x) продолженной нулем вне Q, имеем

$$|f(x) - f_h(x)|^2 = \left| \int_{|x-y| < h} (f(x) - f(y)) \omega_h(|x-y|) \, dy \right|^2$$

$$\leq \int_{|x-y| < h} |f(x) - f(y)|^2 \, dy \cdot \frac{\text{const}}{h^n}$$

$$= \frac{\text{const}}{h^n} \int_{|z| < h} |f(x) - f(x+z)|^2 \, dz$$

и, тем самым,

$$||f - f_h||_{L_2(Q)}^2 \le \frac{\text{const}}{h^n} \int_{|z| < h} dz \int_Q |f(x) - f(x+z)|^2 dx.$$
 (3)

Как известно, принадлежащая $L_2(Q)$ функция f(x) непрерывна в метрике $L_2(Q)$, т.е. по любому $\varepsilon>0$ найдется такое $h_0>0$, что

$$\int_{Q} |f(x) - f(x+z)|^2 dx \leqslant \varepsilon$$

для всех $z, |z| \leq h_0$ (f(y) = 0 для $y \in \mathbb{R}^n \backslash Q$). Поэтому из неравенства (3) вытекает, что при всех $h \in (0, h_0]$

$$||f - f_h||_{L_2(Q)}^2 \le \text{const} \cdot \varepsilon.$$

Что и требовалось установить.

Следствие. Множество $C_0^{\infty}(Q)$ всюду плотно в $L_2(Q)$.

Действительно, для функции $f \in L_2(Q)$ по любому $\varepsilon > 0$ найдется такое $\delta > 0$, что $\|f - f^\delta\| \leqslant \varepsilon$, где финитная в Q_δ функция $f^\delta(x) = f(x)$ для $x \in Q_\delta$ и $f^\delta(x) = 0$ для $x \in Q \setminus Q_\delta$. В силу теоремы 1 существует столь малое $h, h < \delta/2$, что финитная в Q усредненная функция $(f^\delta)_h(x)$ обладает свойством $\|(f^\delta)_h(x) - f^\delta\|_{L_2(Q)} \leqslant \varepsilon$. Следовательно, $\|(f^\delta)_h(x) - f\|_{L_2(Q)} \leqslant 2\varepsilon$ для выбранных δ и h.

ТЕОРЕМА 2. Пусть $f \in L_2(Q)$ и существует о.п. $D^{\alpha} f \in L_2(Q)$. Тогда для любой подобласти $Q_1 \in Q$

$$||D_x^{\alpha} f_h(x) - D_x^{\alpha} f(x)||_{L_2(Q_1)} \to 0 \quad npu \ h \to 0.$$

Действительно, по теореме 1

$$||D^{\alpha}f - (D^{\alpha}f)_h||_{L_2(Q)} \to 0$$
 при $h \to 0$.

С другой стороны, для $x \in Q_{2h}$

$$(D^{\alpha}f)_h(x) = \int_Q D^{\alpha}f(y)\omega_h(|x-y|) dy$$
$$= (-1)^{|\alpha|} \int_Q f(y)D_y^{\alpha}\omega_h(|x-y|) dy$$

поскольку при таких x функция (переменного y) $\omega_h(|x-y|) \in C_0^\infty(Q).$ Поэтому для $x \in Q_{2h}$

$$(D^{\alpha}f)_h(x) = \int_O f(y) D_x^{\alpha} \omega_h(|x-y|) \, dy = D_x^{\alpha} \big(f_h(x) \big).$$

Следовательно, для любой области $Q_1 \in Q$ имеет место доказываемое соотношение.

Из теоремы 2 немедленно вытекает

СЛЕДСТВИЕ 1. Если финитная в Q функция $f \in L_2(Q)$ и у нее существует o.n. $D^{\alpha}f \in L_2(Q)$, то

$$||D^{\alpha}f_h(x) - D^{\alpha}f(x)||_{L_2(Q)} \to 0 \quad npu \ h \to 0.$$

СЛЕДСТВИЕ 2. Если у функции $f(x) \in L_2(Q)$ все первые обобщенные производные $f_{x_i} = 0, i = 1, \ldots, n, mo \ f = \text{const.}$

Действительно, в любой подобласти $Q_1 \in Q$ при достаточно малых h имеем равенства $(f_h)_{x_i} = (f_{x_i})_h = 0, \ i = 1, \ldots, n,$ из которых вытекает, что $f_h = \mathrm{const} = c(h)$ в Q_1 для таких h. Так как $\|f_h - f\|_{L_2(Q_1)} = \|c(h) - f\|_{L_2(Q_1)} \to 0$ при $h \to 0$, то

$$||c(h_1) - c(h_2)||_{L_2(Q_1)} = |c(h_1) - c(h_2)|\sqrt{\operatorname{mes} Q_1} \to 0$$

при $h_1, h_2 \to 0$. Следовательно, $c(h) = f_h$ при $h \to 0$ сходится равномерно в Q_1 (и тем более в $L_2(Q_1)$) к некоторой постоянной, т.е. f = const в Q_1 , и тем самым, в Q.

С помощью теорем 1 и 2 нетрудно получить следующее необходимое и достаточное условие существования обобщенной производной.

ТЕОРЕМА 3. Для того чтобы функция $f \in L_2(Q)$ имела о.п. $D^{\alpha}f$ необходимо и достаточно, чтобы для любой подобласти $Q_1 \subseteq Q$ существовали такие постоянные $C(Q_1) > 0$ и $h(Q_1) > 0$, что $\|D^{\alpha}f_h\|_{L_2(Q_1)} \leqslant C(Q_1)$ для всех $h \leqslant h(Q_1)$.

Доказательства этой теоремы мы проводить не будем, поскольку она не будет использована в дальнейших построениях. С ее доказательством можно познакомиться в [2]. В [2] есть и еще один критерий существования о.п., связанный со свойствами соответствующего конечноразностного отношения.

§ 2. Пространства Соболева

Множество функций f(x), принадлежащих $L_{p,loc}(Q)$, $p \ge 1$, и имеющих все принадлежащие $L_{p,\mathrm{loc}}(Q)$ о.п. до k-го порядка включительно образуют пространство Соболева $W^k_{p,\mathrm{loc}}(Q);$ в случае, когда функция f и все ее о.п. принадлежат $L_p(Q)$, это множество обозначается через $W_p^k(Q)$. При этом, как и в случае пространства $L_p(Q)$, функции из $W_{p,\text{loc}}^k(Q)$ и $W_p^k(Q)$, различающиеся на множестве меры нуль, отождествляются; при p=2 (этим случаем мы, в основном, и будем интересоваться) наряду с приведенными обозначениями $W_{2,\mathrm{loc}}^k(Q)$ и $W_2^k(Q)$ пользуются также обозначениями $H_{loc}^k(Q)$ и $H^k(Q)$.

Из определения обобщенной производной вытекает, что множество $W_p^k(Q), p \geqslant 1, k \geqslant 0$ (при k = 0 $W_p^0(Q) = L_p(Q)$) является банаховым пространством с нормой

$$||f||_{W_p^{(k)}(Q)} = \left(\sum_{|\alpha| \le k} ||D^{\alpha} f||_{L_p(Q)}^p\right)^{1/p},$$

а множество $H^k(Q)$ – гильбертовым пространством со скалярным произведением

$$(f,g)_{H^k(Q)} = \sum_{|\alpha|\leqslant k} (D^\alpha f, D^\alpha g)_{L_2(Q)}$$
и порождаемой им нормой

$$\|f\|_{H^k(Q)} = \bigg(\sum_{|\alpha| \leqslant k} \|D^{\alpha} f\|_{L_2(Q)}^2\bigg)^{1/2},$$

Отметим некоторые очевидные свойства пространств $H^{k}(Q)$.

- 1. Если область $Q_1 \subset Q$ и $f \in H^k(Q)$, то $f \in H^k(Q_1)$.
- 2. Если $f \in H^k(Q)$ и $a(x) \in C^k(\overline{Q})$, то $af \in H^k(Q)$. При этом любая о.п. вычисляется по обычным правилам дифференцирования, например, $(af)_{x_1} = a_{x_1}f + af_{x_1}$.

Свойства 1 и 2 немедленно вытекают из соответствующих свойств обобщенных производных. Следующее свойство есть теорема о возможности продолжения функции с сохранением гладкости в более широкую область.

ТЕОРЕМА 1. Пусть граница области $Q \ \partial Q \in C^k$ при некотором целом $k \geqslant 1$. Тогда в любой области $Q_1 \ni Q$ для любой функции $f(x) \in H^k(Q)$ $(f(x) \in C^k(\overline{Q}))$ существует финитная в Q_1 функция $F(x) \in H^k(Q_1)$ $(F(x) \in C^k(\overline{Q}_1))$, совпадающая c f на Q. При этом существует такая постоянная C > 0, не зависящая от f, что

$$||F||_{H^k(Q_1)} \leqslant C||f||_{H^k(Q)} \qquad (||F||_{C^k(\overline{Q}_1)} \leqslant C||f||_{C^k(\overline{Q})}).$$

Эта теорема для случая пространства $C^k(\overline{Q})$ есть классическая теорема Уитни–Хестинса (см. [3]). Доказательство ее для случая пространства $H^k(Q)$, почти полностью совпадающее с доказательством в [3], проведено в [2].

Полезным является также утверждение о возможности продолжить функцию с границы.

ТЕОРЕМА 2. Пусть $\varphi(x)\in C^1(\partial Q)$. Тогда существует функция $f(x)\in C^1(\overline{Q})\subset H^1(Q)$ такая, что $f\big|_{\partial Q}=\varphi$. При этом имеет место неравенство

$$||f||_{C^1(\overline{Q})} \leqslant C||\varphi||_{C^1(\partial Q)},$$

в котором постоянная C>0 не зависит от φ .

С доказательством этой теоремы также можно познакомиться в [3] и [2].

Из следствия 1 теоремы 2 предыдущего параграфа вытекает

Теорема 3.

- 1. Пусть $f \in H^k(Q)$ при некотором целом $k \geqslant 1$, а $Q_1 \subseteq Q$. Тогда $||f_h f||_{H^k(Q_1)} \to 0$ при $h \to 0$.
- 2. Для любой финитной функции $f \in H^k(Q), k \geqslant 1$, имеет место соотношение $\|f_h f\|_{H^k(Q)} \to 0$ при $h \to 0$.

В качестве следствия из теоремы 3 и теоремы 1 отметим следующее утверждение.

ТЕОРЕМА 4. Пусть $\partial Q \in C^k$ при некотором $k \geqslant 1$. Тогда множество $C^{\infty}(\overline{Q})$ всюду плотно в $H^k(Q)$.

Для доказательства возьмем произвольную (ограниченную) область $Q_1 \ni Q$. По теореме 1 для любой функции $f(x) \in H^k(Q)$ существует финитная в Q_1 функция $F(x) \in H^k(Q_1)$, совпадающая с функцией f(x) при $x \in Q$. Согласно п. 2 теоремы $3 \parallel F_h - F \parallel_{H^k(Q_1)} \to 0$ при $h \to 0$ и тем более, $\parallel F_h - F \parallel_{H^k(Q)} =$

 $\|F_h-f\|_{H^k(Q)}\to 0$ при $h\to 0$, что и требовалось установить, поскольку при любом h>0 функция $F_h(x)\in C^\infty(\,\overline{Q}\,).$

Функции из пространства $W_p^k(Q)$ при любых p и k (напомним, что $H^k(Q)=W_2^k(Q)$) определены в Q с точностью до произвольного множества меры нуль. Это означает, что каждую функцию из $W_p^k(Q)$ можно произвольно изменить на любом множестве меры нуль, оставляя ее тем же элементом этого пространства. Т.е. каждой функции из $W_p^k(Q)$ можно произвольно приписать любые значения на каком угодно множестве меры нуль, в частности, на граничной поверхности или, тем более, на поверхностях меньшей размерности, например, в отдельных точках.

Поскольку в $W^k_p(Q)$ наряду с "не очень хорошими" функциями есть и гладкие в классическом смысле функции, "испорченные", быть может, на каком-то множестве меры нуль, то возникает естественный вопрос, как отобрать их из числа всех остальных. Оказывается, гарантией возможности такого отбора является наличие у функции достаточного числа обобщенных производных, интегрируемых в достаточно высокой степени. В частности, принадлежность функции пространству $W_p^k(Q)$ при достаточно больших p и k (пространству $H^k(Q)$ при достаточно большом k) позволяет, изменив эту функцию на надлежащем множестве меры нуль, сделать ее достаточно гладкой в классическом смысле слова: например, обладающей граничными значениями на поверхностях той или иной размерности, непрерывно переходящими друг в друга при непрерывном перемещении этих поверхностей и, в частности, непрерывной и даже непрерывно дифференцируемой достаточное число раз в каждой точке рассматриваемой области. Такого сорта результаты составляют основное содержание так называемых теорем вложения. Метод доказательства этих теорем, принятый в наших лекциях, следующий. Для произвольной функции f(x) из $H^k(Q)$ $(W_p^k(Q))$ берется последовательность гладких функций, сходящаяся к f(x) в норме этого пространства. Затем доказывается, что при соответствующих предположениях о k (k и p) эта последовательность сходится еще и, скажем, в норме пространства $C^l(\overline{Q})$ при некотором l. Это и означает, что взятая функция допускает такое ее изменение на некотором множестве меры нуль, в результате которого она становится функцией из $C^l(\overline{Q})$. Формулировке и доказательству некоторых из теорем вложения, используемых далее в нашем курсе, посвящены последующие параграфы этой главы.

\S 3. След функций из $H^k(Q)$

За счет перенесения начала координат область Q в силу ее ограниченности можно считать расположенной вместе с некоторой ее объемлющей областью $Q_1, Q \in Q_1$, в первом координатном углу: $Q \in Q_1 \subset \{0 < x_i, i=1,\ldots,n\}$.

Рассмотрим сначала случай, когда размерность пространства n>1; более простой случай n=1 будет рассмотрен в § 5. Пусть S некоторая n-1-мерная поверхность класса C^1 , лежащая в \overline{Q} (в частности, $S=\partial Q$), а S_1,\ldots,S_N , – ее покрытие простыми кусками, $S=\bigcup_{i=1}^N S_i$. Пусть простой кусок S_1 однозначно проектируется на n-1-мерную область D_1 координатной плоскости $\{x_n=0\}$, а

$$x_n = \varphi(x'), \quad x' = (x_1, \dots, x_{n-1}) \in D_1, \quad \varphi(x') \in C^1(\overline{D}_1),$$

– уравнение этого куска.

Возьмем произвольную функцию $f(x) \in C^1(\overline{Q})$, продолжим ее согласно теореме 1 из §2 в область Q_1 , а затем продолжим полученную функцию нулем в $\mathbb{R}^n \backslash \overline{Q}_1$; эту функцию, принадлежащую $C^1(\mathbb{R}^n)$, по-прежнему будем обозначать через f(x). По формуле Ньютона—Лейбница имеем

$$f(x', \varphi(x')) = \int_0^{\varphi(x')} \frac{\partial f(x', \xi_n)}{\partial \xi_n} d\xi_n,$$

откуда

$$|f(x',\varphi(x'))|^2 \leqslant \varphi(x') \int_0^{\varphi(x')} \left| \frac{\partial f(x',\xi_n)}{\partial \xi_n} \right|^2 d\xi_n.$$

Проинтегрируем это неравенство по D_1 , предварительно умножив его на $\sqrt{1+|\nabla\varphi(x')|^2}$. В результате, снова используя теорему о продолжении функций (теорему 1 предыдущего параграфа), получим неравенство

$$\int_{S_1} |f(x)|^2 dS \leq \int_{D_1} \varphi(x') \sqrt{1 + |\nabla \varphi(x')|^2} \int_0^{\varphi(x')} \left| \frac{\partial f(x', \xi_n)}{\partial \xi_n} \right|^2 d\xi_n dx'$$

$$\leq C \|f\|_{H^1(O_1)}^2 \leq C_1 \|f\|_{H^1(O_1)}^2,$$

в котором постоянная C_1 не зависит от f. Аналогичное неравенство имеет место и для любого другого простого куска S_k ,

 $k=2,\dots,N,$ поверхности S и, тем самым, существует постоянная $C_2>0$ такая, что для любой $f\in C^1(\overline{Q})$ имеет место неравенство

$$\int_{S} |f(x)|^2 dS = ||f||_{L_2(S)}^2 \leqslant C_2 ||f||_{H^1(Q)}^2.$$
 (1)

Возьмем теперь функцию $f(x) \in H^1(Q)$. В силу плотности множества $C^1(\overline{Q})$ в $H^1(Q)$ (теорема 4 предыдущего параграфа) найдется последовательность $f_1(x),\ldots,f_k(x),\ldots$, функций из $C^1(\overline{Q})$, сходящаяся к f(x) в норме $H^1(Q)$. Для функции f_p-f_q неравенство (1) имеет вид

$$||f_p - f_q||_{L_2(S)}^2 \le C_2 ||f_p - f_q||_{H^1(Q)}^2.$$
 (2)

Так как $\|f_p - f_q\|_{H^1(Q)} \to 0$ при $p, q \to \infty$, то и $\|f_p - f_q\|_{L_2(S)} \to 0$ при $p, q \to \infty$. Это означает, что последовательность значений $f_p|_S$, $p=1,\ldots$, функций $f_p(x)$ на поверхности S является фундаментальной в норме $L_2(S)$, и, следовательно, существует функция $f|_S \in L_2(S)$, к которой она сходится в норме $L_2(S)$. Переходя в (2) к пределу при $q \to \infty$, получим

$$||f_p - f|_S||_{L_2(S)}^2 \le C_2 ||f_p - f||_{H^1(Q)}^2.$$
(3)

Покажем, что функция $f|_S$ не зависит от выбора последовательности $f_1(x),\ldots$, аппроксимирующей функцию f(x). Действительно, пусть $f_1'(x),\ldots$ другая последовательность функций из $C^1(\overline{Q}), \|f_p'-f\|_{H^1(Q)} \to 0, p \to \infty$, а $f'|_S$ – предел в норме $L_2(S)$ последовательности $f_p'|_S$, $p=1,2,\ldots$. Тогда

$$\begin{split} & \|f|_{S} - f'|_{S}\|_{L_{2}(S)} \\ & \leq \|f|_{S} - f_{p}\|_{L_{2}(S)} + \|f_{p} - f'_{p}\|_{L_{2}(S)} + \|f'_{p} - f'|_{S}\|_{L_{2}(S)} \\ & \leq C_{2}(\|f - f_{p}\|_{H^{1}(Q)} + \|f_{p} - f'_{p}\|_{H^{1}(Q)} + \|f'_{p} - f\|_{H^{1}(Q)}) \to 0 \end{split}$$

при $p \to \infty$, т.е. $f|_S = f'|_S$.

Функцию $f|_S$ (как элемент $L_2(S)$) будем называть *следом* на S функции $f \in H^1(Q); L_2(S)$ -норму следа $f|_S$ будем обозначать $\|f\|_{L_2(S)}$.

В силу плотности множества $C^1(\overline{Q})$ в $H^1(Q)$ неравенство (1), установленное для любой функции f из $C^1(\overline{Q})$, справедливо и для любой функции $f \in H^1(Q)$, причем в левой части этого неравенства стоит квадрат $L_2(S)$ -нормы следа функции f. Таким образом, установлена

ТЕОРЕМА 1. Каждая функция $f(x) \in H^1(Q)$ на любой поверхности S (класса C^1) имеет след $f|_S \in L_2(S)$. При этом справедливо неравенство

$$\int_{S} |f(x)|^2 dS = ||f||_{L_2(S)}^2 \leqslant C_2 ||f||_{H^1(Q)}^2, \tag{1}$$

в котором постоянная $C_2 > 0$ не зависит от f.

На доказанное утверждение можно смотреть и следующим образом. Каждой функции $f(x) \in H^1(Q)$ поставлена в соответствие функция $f|_{\partial Q} \in L_2(\partial Q)$ — след функции f на граничной поверхности (аналогично, ее след $f|_S$ на некоторой принадлежащей классу C^1 поверхности $S \subset \overline{Q}$). Это означает, что на $H^1(Q)$ задан оператор $\mathbb J$, переводящий $H^1(Q)$ в $L_2(\partial Q)$, оператор вложения $H^1(Q)$ в $L_2(\partial Q)$: для каждой $f \in H^1(Q)$ $\mathbb Jf = f|_{\partial Q}$. Этот оператор, очевидно, линейный и в силу теоремы $\mathbb J$ ограниченный:

$$\|\mathbb{J}f\|_{L_2(\partial Q)} = \|f|_{\partial Q}\|_{L_2(\partial Q)} \leqslant C_2 \|f\|_{H^1(Q)}$$

причем $||\mathbb{J}|| \leqslant C_2$. Ниже, в §8, будет доказано, что оператор \mathbb{J} вполне непрерывный.

Вернемся к началу нашего рассмотрения в этом параграфе, при этом будем считать, что поверхность S_k из покрытия поверхности S простыми кусками имеет вид $\{|x-x_k|< r\}\cap S$, где x_k – некоторая точка поверхности S, а r – достаточно малое число (т.е. считаем, что поверхность S покрыта достаточно мелкими простыми кусками).

Пусть S_1 – некоторый простой кусок поверхности S, временно нам его удобно переобозначить через Γ_0 , $\Gamma_0=S_1=\{x=(x_1,\dots,x_{n-1},x_n)=(x',x_n),\,x_n=\varphi(x'),\,x'\in D_1\},\,\varphi(x')\in C^1(\overline{D}_1),$ и пусть $\delta_0>0$ столь мало, что область $\Omega^1_{\delta_0}=\{\varphi(x')-\delta_0< x_n<\varphi(x'),\,x'\in D_1\}\subset Q$ (аналогично рассматривается случай, когда область $\Omega^1_{\delta_0}=\{\varphi(x')< x_n<\varphi(x')+\delta_0,\,x'\in D_1\}\subset Q$). Для любого $\delta\in(0,\delta_0]$ "параллельная" Γ_0 поверхность $\Gamma_\delta=\{x_n=\varphi(x')-\delta,\,x'\in D_1\}$ лежит в Q и пусть $x^\delta=(x',\varphi(x')-\delta)$ – точка этой поверхности, а $x^0=(x',\varphi(x'))$ – лежащая над ней точка поверхности Γ_0 .

Для любой функции $f(x) \in C^1(\overline{Q})$ имеем равенство

$$f(x^{0}) - f(x^{\delta}) = \int_{\varphi(x') - \delta}^{\varphi(x')} \frac{\partial f(x', \xi_{n})}{\partial \xi_{n}} d\xi_{n}, \tag{4}$$

из которого, как и прежде, получаем неравенство

$$||f(x^0) - f(x^\delta)||_{L_2(\Gamma_0)}^2 \le C\delta ||f||_{H^1(\Omega_x^1)}^2,$$
 (5)

и неравенство

$$||f(x^0) - f(x^\delta)||_{L_2(\Gamma_\delta)}^2 \le C\delta ||f||_{H^1(\Omega_s^1)}^2,$$
 (5')

в которых постоянная C не зависит ни от f, ни от δ . Следовательно, неравенства (5) и (5') имеют место и для любой функции $f \in H^1(Q)$ (в левых частях этих неравенств стоят следы функции f на поверхностях Γ_0 и Γ_δ). Эти неравенства выражают определенную непрерывность следов функции $f \in H^1(Q)$ на семействе поверхностей Γ_δ относительно сдвигов этих поверхностей.

Из равенства (4) для $f(x) \in C^1(\overline{Q})$ вытекает также и неравенство

$$||f||_{L_2(\Gamma_\delta)}^2 \le 2||f||_{L_2(\Gamma_0)}^2 + 2C\delta||f||_{H^1(\Omega_\delta^1)}^2,$$

интегрируя которое по δ в пределах от 0 до δ , получим неравенство

$$||f||_{L_2(\Omega_{\delta}^1)}^2 \le 2\delta ||f||_{L_2(\Gamma_0)}^2 + 2C\delta^2 ||f||_{H^1(\Omega_{\delta}^1)}^2, \tag{6}$$

с постоянной C>0, не зависящей ни от f, ни от $\delta.$

Пусть теперь поверхность S есть граница ∂Q области Q, а $\{S_1,\ldots,S_N\}$ — множество простых кусков, покрывающее границу ∂Q . Для простого куска S_1 мы получили неравенство (6); аналогичные неравенства есть и для любого другого куска $S_k, k=2,\ldots,N$:

$$||f||_{L_2(\Omega_\delta^k)}^2 \leqslant 2\delta ||f||_{L_2(S_k)}^2 + C\delta^2 ||f||_{H^1(\Omega_\delta^k)}^2,$$

где $\Omega_{\delta}^k,\ 0<\delta\leqslant\delta_0,$ – подобласть области Q, построенная по поверхности $S_k,\ k=2,\ldots,N,$ аналогично тому, как область $\Omega_{\delta}^1,\ 0<\delta\leqslant\delta_0$ построена по поверхности $S_1=\Gamma_0.$

Суммируя эти неравенства по $k,\ k=1,\ldots,N,$ и пользуясь тем, что при достаточно малом $\delta_0>0$ для всех $\delta,\ 0<\delta\leqslant\delta_0,$ справедливы включения $Q\setminus Q_{\delta/2}\subset\bigcup_{k=1}^N\Omega^k_\delta\subset Q\setminus Q_{2\delta},$ получим, что для любой $f\in C^1(\overline{Q})$ имеет место неравенство

$$||f||_{L_2(Q\setminus Q_{\delta/2})}^2 \le C(\delta||f||_{L_2(\partial Q)}^2 + \delta^2||f||_{H^1(Q\setminus Q_{2\delta})}),$$
 (7)

в котором постоянная C не зависит ни от f, ни от δ . Следовательно, последнее неравенство справедливо и для любой функции $f(x) \in H^1(Q)$.

Поскольку в силу абсолютной непрерывности интеграла Лебега для любой функции $f(x) \in H^1(Q) \ \|f\|_{H^1(Q \setminus Q_{2\delta})} \to 0$ при $\delta \to 0$, то из неравенства (7) вытекает следующее утверждение, которым мы воспользуемся в следующем параграфе.

ЛЕММА. Для функции $f(x) \in H^1(Q)$, след которой на границе равен нулю, $f|_{\partial Q} = 0$, справедливо соотношение

$$||f||_{L_2(Q\setminus Q_\delta)} = o(\delta) \quad npu \ \delta \to 0.$$

Если функция $f(x) \in H^k(Q)$, k>1, то любая ее обобщенная производная $D^{\alpha}f$, $|\alpha|< k$, принадлежит $H^1(Q)$ и, следовательно, имеет след на поверхности S, о которой идет речь в теореме 1, при этом имеет место неравенство

$$||D^{\alpha}f||_{L_2(S)} \leqslant C||f||_{H^{|\alpha|+1}(Q)} \leqslant C||f||_{H^k(Q)}.$$

Отметим еще формулу интегрирования по частям: для любых f и g из $H^1(Q)$ справедливы равенства

$$\int_{O} f_{x_{i}} \overline{g} \, dx = \int_{\partial O} f \overline{g} \nu_{i} \, dS - \int_{O} f \overline{g}_{x_{i}} \, dx, \qquad i = 1, \dots, n, \quad (8)$$

в которых f и g, стоящие под знаком интеграла по ∂Q являются следами на ∂Q соответствующих функций, $\nu_i = \nu_i(x) - i$ -ая компонента вектора внешней по отношению к области Q единичной нормали $\nu = (\nu_1, \dots, \nu_n)$ к поверхности ∂Q . Для получения этой формулы аппроксимируем f и g в норме $H^1(Q)$ последовательностями $f_1(x), \dots, f_k(x), \dots$, и $g_1(x), \dots, g_s(x), \dots$, функций из $C^1(\overline{Q})$ и перейдем к пределу при $s \to \infty$ и $k \to \infty$ в равенствах

$$\int_{Q} f_{kx_{i}} \overline{g}_{s} dx = \int_{\partial Q} f_{k} \overline{g}_{s} \nu_{i} dS - \int_{Q} f_{k} \overline{g}_{sx_{i}} dx, \qquad i = 1, \dots, n.$$

Из формул (8) вытекает формула Остроградского: для любого вектора $f(x) = (f_1(x), \ldots, f_n(x))$, компоненты которого $f_i(x)$, $i = 1, \ldots, n$, принадлежат $H^1(Q)$ имеет место равенство

$$\int_{O} \operatorname{div} f(x) \, dx = \int_{\partial O} (f(x), \nu(x)) \, dS.$$

§ 4. Пространство $\mathring{H}^1(Q)$

Обозначим через $\mathring{H}^1(Q)$ множество функций из $H^1(Q)$, след которых на границе ∂Q равен нулю. $\mathring{H}^1(Q)$ – очевидно, линейное подмножество пространства $H^1(Q)$ и, тем самым, является предгильбертовым пространством в скалярном произведении пространства $H^1(Q)$. Имеет место

ТЕОРЕМА 1. $\mathring{H}^1(Q)$ – $nodnpocmpaнство пространства <math>H^1(Q)$.

Для доказательства теоремы достаточно установить замкнутость множества $\mathring{H}^1(Q)$.

Пусть $f_1(x),\ldots,f_k(x),\ldots$, где $f_k(x)\in \mathring{H}^1(Q)$ для всех $k\geqslant 1,-$ последовательность функций, сходящаяся в норме $H^1(Q)\colon \|f_k-f_s\|_{H^1(Q)}\to 0$ при $k,s\to\infty$. Предельная функция f(x) принадлежит $H^1(Q)$. Для того чтобы доказать, что ее след на ∂Q равен нулю, воспользуемся теоремой 1 предыдущего параграфа: для любого $k\geqslant 1$ имеет место неравенство

$$||f||_{L_2(\partial Q)} = ||f - f_k||_{L_2(\partial Q)} \le C_2 ||f - f_k||_{H^1(Q)},$$

в котором постоянная C_2 не зависит от k. Но правая часть этого неравенства может быть сделана при достаточно больших k сколь угодно малой. Следовательно, $||f||_{L_2(\partial Q)} = 0$.

Поскольку функция $f(x) = 1 \in H^1(Q)$, но не содержится в пространстве $H^1(Q)$, то $H^1(Q)$ – истиное подпространство пространства $H^1(Q)$, т.е. подпространство, не совпадающее с самим $H^1(Q)$.

Важное значение имеет следующее утверждение.

ТЕОРЕМА 2. Множество $C_0^{\infty}(Q)$ всюду плотно в $\mathring{H}^1(Q)$.

Легко проверить, что при любом $\delta > 0$ функция

$$\zeta_{\delta}(x) = \int_{Q_{\frac{3\delta}{A}}} \omega_{\delta/4}(|x-y|) dy, \qquad x \in \mathbb{R}^n,$$

обладает следующими свойствами:

- а) $0 \leqslant \zeta_{\delta}(x) \leqslant 1$ для всех $x \in \mathbb{R}^n$,
- б) $\zeta_{\delta}(x) = 1$ для $x \in Q_{\delta}$,
- в) $\zeta_{\delta}(x) = 0$ вне $Q_{\delta/2}$,
- г) $\left| \frac{\partial \zeta_{\delta}(x)}{\partial x_i} \right| \leqslant \frac{C}{\delta} \ x \in \mathbb{R}^n, \ i=1,\ldots,n,$ где C некоторая положительная не зависящая от δ постоянная.

Пусть функция $f(x) \in \mathring{H}^1(Q)$. Тогда функция $f(x) \zeta_{\delta}(x) \in \mathring{H}^1(Q)$ и равна нулю вне $Q_{\delta/2}$. Кроме того, в силу леммы предыдущего параграфа

$$\begin{split} \|f - f\zeta_{\delta}\|_{H^{1}(Q)}^{2} &= \int_{Q} |f(1 - \zeta_{\delta})|^{2} \, dx \\ &+ \sum_{i=1}^{n} \int_{Q} |f_{x_{i}}(1 - \zeta_{\delta}) - f\zeta_{\delta x_{i}}|^{2} \, dx \\ &\leqslant \int_{Q \backslash Q_{\delta}} |f|^{2} \, dx + 2 \sum_{i=1}^{n} \int_{Q \backslash Q_{\delta}} |f_{x_{i}}|^{2} \, dx \\ &+ 2 \sum_{i=1}^{n} \int_{Q \backslash Q_{\delta}} |f|^{2} |\zeta_{\delta x_{i}}|^{2} \, dx \\ &\leqslant \int_{Q \backslash Q_{\delta}} |f|^{2} \, dx + 2 \sum_{i=1}^{n} \int_{Q \backslash Q_{\delta}} |f_{x_{i}}|^{2} \, dx \\ &+ \frac{nC^{2}}{\delta^{2}} \int_{Q \backslash Q_{\delta}} |f|^{2} \, dx = o(1) \quad \text{при } \delta \to 0. \end{split}$$

Т.е. по любому $\varepsilon>0$ можно найти $\delta>0$ такое, что принадлежащая $H^1(Q)$, равная нулю вне $Q_{\delta/2}$ функция $f\zeta_\delta$ отличается от функции f по норме $H^1(Q)$ меньше, чем на $\varepsilon\colon \|f-f\zeta_\delta\|_{H^1(Q)}\leqslant \varepsilon$. По теореме 3 из $\S 2 \ \|(f\zeta_\delta)_h-f\zeta_\delta\|_{H^1(Q)}\to 0$ при $h\to 0$, причем при $h<\delta/2$ функция $(f\zeta_\delta)_h$ — финитная в Q, т.е. можно найти столь малое h>0, что $\|(f\zeta_\delta)_h-f\zeta_\delta\|_{H^1(Q)}<\varepsilon$, откуда $\|f-(f\zeta_\delta)_h\|_{H^1(Q)}\leqslant 2\varepsilon$. Теорема доказана.

§ 5. Вложение $H^1(a,b)$ в C([a,b])

В § 3 рассматривался вопрос о следах функций из $H^1(Q)$ для областей $Q \subset \mathbb{R}^n$ при n>1. Обратимся теперь к случаю n=1. Пусть область Q=(a,b), где $-\infty < a < b < \infty$. Легко проверить, что для любой функции $f(x) \in C^1_0([a,b])$ имеет место равенство

$$f(x) = \frac{1}{2} \int_{a}^{b} f'(y) \operatorname{sgn}(x - y) dy, \qquad x \in [a, b],$$

из которого вытекает справедливое для всех $x \in [a,b]$ неравенство

$$|f(x)| \leq \frac{\sqrt{b-a}}{2} ||f'||_{L_2(a,b)},$$

т.е. неравенство

$$||f||_{C([a,b])} \leqslant \frac{\sqrt{b-a}}{2} ||f||_{H^1(a,b)}.$$

С помощью этого неравенства получим аналогичное неравенство

$$||f||_{C([a,b])} \le C_0 ||f||_{H^1(a,b)},$$
 (1)

с не зависящей от f постоянной C_0 и справедливое для любой функции $f(x) \in C^1([a,b])$: для этого продолжим согласно теореме 1 из § 2 функцию $f(x) \in C^1([a,b])$ на больший отрезок $[a',b'], -\infty < a' < a < b < b' < \infty$, функцией $F(x) \in C^1_0[a',b']$ и воспользуемся неравенством $\|F\|_{H^1(a',b')} \leqslant C_1 \|f\|_{H^1(a,b)}$, в котором постоянная C_1 не зависит от f.

Поскольку множество $C^1([a,b])$ по теореме 4 из § 2 всюду плотно в $H^1(a,b)$, то для произвольной функции $f(x) \in H^1(a,b)$ найдется последовательность функций $f_1(x), \ldots, f_k(x), \ldots$, где $f_k(x)$ $\in C^1([a,b])$ для всех $k \geqslant 1$, сходящаяся к функции f(x) в норме пространства $H^1(a,b)$. Из неравенства (1) для функции $f_k(x)$ $f_s(x)$ получаем, что взятая последовательность фундаментальна в норме пространства C([a,b]), и следовательно, она равномерно сходится на [a, b] к функции из C([a, b]), п.в. совпадающей с функцией f(x). Это означает, что функцию f(x) можно изменить на множестве меры нуль так, что в результате она станет непрерывной на [a,b], и, тем самым, любая функция f(x) из $H^1(a,b)$ принадлежит C([a,b]) и для нее имеет место неравенство (1), в котором постоянная C_0 не зависит от f. Для получения этого неравенства воспользуемся неравенством (1) для функции $f_n(x)$ из взятой выше последовательности и перейдем в нем к пределу при $n \to \infty$.

Таким образом, имеет место вложение пространства $H^1(a,b)$ в пространство $C([a,b])\colon H^1(a,b)\subset C([a,b])$, при этом оператор вложения \mathbb{J} , действующий из $H^1(a,b)$ в C([a,b]) по формуле $\mathbb{J}f=f$, очевидно, линейный, является в силу (1) ограниченным:

$$||f||_{C([a,b])} = ||\mathbb{J}f||_{C([a,b])} \leqslant C_0 ||f||_{H^1(a,b)},$$

и $\|\mathbb{J}\| \leqslant C_0$.

Докажем, что этот оператор вполне непрерывен, т.е. что он переводит любое ограниченное в $H^1(a,b)$ множество M во множество, компактное в C([a,b]). Действительно, для любой $f(x) \in C^1([a,b])$ и любых двух точек x_1 и x_2 из [a,b] имеем

$$f(x_1) - f(x_2) = \int_{x_2}^{x_1} f'(y) \, dy,$$

откуда

$$|f(x_1) - f(x_2)| \le \sqrt{|x_1 - x_2|} \|f'\|_{L_2(a,b)}.$$

Повторяя далее предыдущие рассуждения, получим, что для любой функции $f(x) \in H^1(a,b)$ (она, как было выше установлено, непрерывна на [a,b]) при любых $x_1,\,x_2\in [a,b]$ имеет место неравенство

$$|f(x_1) - f(x_2)| \le C_1 \sqrt{|x_1 - x_2|} \|f\|_{H^1(a,b)}$$

с постоянной, не зависящей от f. Это означает, что каждая функция из $H^1(a,b)$ не только непрерывна, но и удовлетворяет условию Гёльдера порядка 1/2.

Поскольку множество M ограничено в $H^1(a,b)$, т.е. при некоторой постоянной $C_2>0$ для всех $f\in M$

$$||f||_{H^1(a,b)} \leqslant C_2,$$

то для всех $f \in M$ и всех $x_1, x_2 \in [a, b]$

$$|f(x_1) - f(x_2)| \le C_1 C_2 \sqrt{|x_1 - x_2|}$$
.

Из этого неравенства вытекает, что множество функций M равностепенно непрерывно: при произвольном $\varepsilon>0$ для всех $f\in M$ и всех $x_1,\,x_2\in [a,b]$ таких, что $|x_1-x_2|\leqslant \varepsilon^2/(C_1C_2)^2$ имеем неравенство $|f(x_1)-f(x_2)|\leqslant \varepsilon$. Поскольку равномерная ограниченность в C([a,b]) этого множества вытекает из неравенства (1), то по теореме Арцела множество M компактно в C([a,b]). Таким образом, имеет место

ТЕОРЕМА 1. Пространство $H^1(a,b)$ вкладывается в пространство C([a,b]) и соответствующий оператор вложения вполне непрерывен.

§ 6. Вложение $H^1(Q)$ в $L_2(Q)$

Из определения пространства $H^1(Q)$ вытекает, что каждая функция, принадлежащая $H^1(Q)$, принадлежит и $L_2(Q)$. Это означает, что пространство $H^1(Q)$ вложено в пространство $L_2(Q)$, и соответствующий оператор вложения \mathbb{J} , оператор из $H^1(Q)$ в $L_2(Q)$, ставящий каждой функции $f(x) \in H^1(Q)$ в соответствие ее же, как функцию из $L_2(Q)$, очевидно, линейный и ограниченный; его норма $\|\mathbb{J}\| \leqslant 1$ (при введенной нами нормировке пространств $H^1(Q)$ и $L_2(Q)$). Имеет место также следующая

ТЕОРЕМА 1. Оператор вложения \mathbb{J} пространства $H^1(Q)$ в $L_2(Q)$ вполне непрерывен.

Другими словами, любое ограниченное множество функций в пространстве $H^1(Q)$ является компактным множеством в $L_2(Q)$.

ДОКАЗАТЕЛЬСТВО. Пусть $M=\{f(x)\}$ ограниченное в $H^1(Q)$ множество функций, т.е. множество, для которого существует постоянная $C_0>0$ такая, что

$$||f||_{H^1(Q)} \leqslant C_0$$
 для всех $f \in M$. (1)

Предположим вначале, что $M \subset \mathring{H}^1(Q)$. Продолжим все функции из M нулем вне Q и пусть $f_h(x)$ – усреднененная функция для $f(x) \in M$. Тогда

$$||f_h - f||_{L_2(Q)}^2 = \int_Q \left| \int_{|x-y| < h} (f(y) - f(x)) \omega_h(|x-y|) \, dy \right|^2 dx$$

$$\leq \frac{C_1}{h^n} \int_{|z| < h} dz \int_Q |f(x+z) - f(x)|^2 \, dx \tag{2}$$

Для функции $f(x) \in C^1_0(\overline{Q})$, также продолженной нулем вне Q, при любом векторе $z \in \mathbb{R}^n$ имеет место равенство

$$f(x+z) - f(x) = \int_0^1 \frac{df(x+tz)}{dt} dt = \int_0^1 (\nabla f(x+tz), z) dt.$$

Значит,

$$|f(x+z) - f(x)|^2 \le |z|^2 \int_0^1 |\nabla f(x+tz)|^2 dt$$

и, тем самым,

$$\int_{Q} |f(x+z) - f(x)|^2 dx \le |z|^2 ||f||_{H^1(Q)}^2.$$
 (3)

Неравенство (3) справедливо и для любой функции $f \in \mathring{H}^1(Q)$, поскольку множество $C_0^1(\overline{Q})$ функций f(x), для которых выполнено неравенство (2), всюду плотно в $\mathring{H}^1(Q)$. Для $f \in M$ из (2) и (3) в силу (1) имеем

$$||f_h - f||_{L_2(Q)}^2 \le \frac{C_1}{h^n} ||f||_{H^1(Q)}^2 h^2 \int_{|z| < h} dz \le C_2^2 h^2,$$
 (4)

где постоянная C_2 ни от h, ни от $f \in M \subset \mathring{H}^1(Q)$ не зависит. Множество функций

$$M_h = \left\{ f_h(x) = \int_Q f(y)\omega_h(|x - y|) \, dy, \ x \in \overline{Q}; \ f \in M \right\}$$

при любом фиксированном h>0 в силу теоремы Арцела компактно в $C(\overline{Q})$, поскольку для всех $f\in M$ имеют место неравенства

$$|f_h(x)| = \left| \int_Q f(y)\omega_h(|x-y|) \, dy \right| \leqslant \frac{C_0}{h^n} \int_Q |f(y)| \, dy$$

$$\leqslant \frac{C_3}{h^n} \, ||f||_{L_2(Q)} \leqslant \frac{C_4}{h^n} \, ||f||_{H^1(Q)} \leqslant \frac{C_5}{h^n} \, ,$$

$$|f_{hx_i}(x)| \leqslant \frac{C_6}{h^{n+1}} \int_Q |f(y)| \, dy \leqslant \frac{C_7}{h^{n+1}} \, , \qquad i = 1, \dots, n,$$

в которых постоянные C_i , $i \leq 7$, не зависят от $f_h \in M_h$. Тем более, каждое множество M_h , h > 0, компактно в $L_2(Q)$.

Возьмем произвольное $\varepsilon>0$. В силу $L_2(Q)$ -компактности множества $M_\varepsilon=M_h|_{h=\varepsilon}$ по теореме Хаусдорфа в M_ε существует конечная ε -сеть, т.е. в M_ε существует конечное число $N=N(\varepsilon)$ таких функций $f_\varepsilon^1(x),\ldots,f_\varepsilon^N(x)$, что для любой функции $f_\varepsilon(x)$ из M_ε найдется функция $f_\varepsilon^k(x)$, удовлетворяющая неравенству $\|f_\varepsilon(x)-f_\varepsilon^k(x)\|_{L_2(Q)}\leqslant C_2\varepsilon$. Покажем, что множество $f^1(x),\ldots,f^N(x)$ функций из M, обладающих свойством: $\|f^k(x)-f_\varepsilon^k(x)\|_{L_2(Q)}\leqslant C_2\varepsilon$ для всех $k=1,\ldots,N,$ ($f^k(x)$ — функция из M, для которой $f_\varepsilon^k(x)$ есть ε -усредненная функция) является $(2C_2+1)\varepsilon$ -сетью для множества M, и, тем самым, по теореме

Хаусдорфа множество M $L_2(Q)$ -компактно. Действительно, для любой $f \in M$ имеем $\|f(x) - f_{\varepsilon}(x)\|_{L_2(Q)} \leqslant C_2 \varepsilon$, а для $f_{\varepsilon}(x)$ найдется функция $f_{\varepsilon}^k(x)$ такая, что $\|f_{\varepsilon}(x) - f_{\varepsilon}^k(x)\|_{L_2(Q)} \leqslant \varepsilon$. Следовательно, $\|f - f^k\|_{L_2(Q)} \leqslant \|f - f_{\varepsilon}\|_{L_2(Q)} + \|f_{\varepsilon} - f_{\varepsilon}^k\|_{L_2(Q)} + \|f_{\varepsilon}^k - f_{\varepsilon}^k\|_{L_2(Q)} \leqslant (2C_2 + 1)\varepsilon$.

Пусть теперь $M \in H^1(Q)$. Обозначим через M' множество функций F(x) из $\mathring{H}^1(Q')$, полученных в результате продолжения функций f(x) из M в некоторую область $Q' \ni Q$. Поскольку $\|F\|_{H^1(Q')} \leqslant \mathrm{const} \|f\|_{H^1(Q)}$ с постоянной, не зависящей от f, то множество M' ограничено в $\mathring{H}^1(Q')$. По только что доказанному, оно компактно в $L_2(Q')$. Значит множество M компактно в $L_2(Q)$. Теорема доказана.

§ 7. Компактность вложения $H^1(Q)$ в $L_2(\partial Q)$

В § 3 доказано, что любая функция $f(x) \in H^1(Q)$ имеет на граничной поверхности ∂Q (так же как и на любой лежащей в \overline{Q} (n-1)-мерной поверхности S класса C^1) след $f\big|_{\partial Q} \in L_2(\partial Q)$, и что, тем самым, на $H^1(Q)$ определен линейный оператор $\mathbb J$, оператор вложения $H^1(Q)$ в $L_2(\partial Q)$, ставящий в соответствие функции f ее след на ∂Q : $\mathbb J f = f\big|_{\partial Q}$. Там же доказано, что оператор $\mathbb J$ ограничен. Докажем его компактность. Имеет место

ТЕОРЕМА 1. Оператор вложения \mathbb{J} пространства $H^1(Q)$ в пространство $L_2(\partial Q)$ вполне непрерывен.

Доказательство. Пусть $M=\{f(x)\}$ ограниченное в $H^1(Q)$ множество функций, т.е. пусть существует постоянная C>0 такая, что неравенство

$$||f||_{H^1(Q)} \leqslant C \tag{1}$$

имеет место для всех $f \in M$. Нам нужно доказать, что множество следов этих функций на ∂Q компактно в $L_2(\partial Q)$.

Пусть S_1 – простой кусок поверхности ∂Q , и пусть

$$x_n = \varphi(x'), \quad x' = (x_1, \dots, x_{n-1}) \in D, \quad \varphi(x') \in C^1(\overline{D}),$$

– уравнение этого куска.

Существует такое $\delta_0>0$, что для всех $\delta\in(0,\delta_0]$ область $\Omega_\delta=\{\varphi(x')-\delta< x_n<\varphi(x'),\,x'\in D\}\subset Q$ (или область $\Omega'_\delta=\{\varphi(x')+\delta> x_n>\varphi(x'),\,x'\in D\}\subset Q$). Для любой функции $f(x)\in C^1(\overline{Q})$ при любом $t\in(0,\delta]$, $\delta\in(0,\delta_0]$ имеет место равенство

$$f(x', \varphi(x')) - f(x', \varphi(x') - t) = \int_{\varphi(x') - t}^{\varphi(x')} \frac{\partial f(x', \xi_n)}{\partial \xi_n} d\xi_n,$$

из которого вытекает неравенство

$$\left| f(x', \varphi(x')) \right|^{2} \le 2 \left(\left| f(x', \varphi(x') - t) \right|^{2} + \left| \int_{\varphi(x') - t}^{\varphi(x')} \frac{\partial f(x', \xi_{n})}{\partial \xi_{n}} d\xi_{n} \right|^{2} \right)$$

$$\leq 2 \left(\left| f(x', \varphi(x') - t) \right|^2 + t \int_{\varphi(x') - t}^{\varphi(x')} \left| \frac{\partial f(x', \xi_n)}{\partial \xi_n} \right|^2 d\xi_n \right) \\
\leq 2 \left(\left| f(x', \varphi(x') - t) \right|^2 + \delta \int_{\varphi(x') - \delta}^{\varphi(x')} \left| \frac{\partial f(x', \xi_n)}{\partial \xi_n} \right|^2 d\xi_n \right),$$

проинтегрировав которое по $t \in (0, \delta)$, получим

$$\delta |f(x', \varphi(x'))|^{2} \leq 2 \int_{0}^{\delta} |f(x', \varphi(x') - t)|^{2} dt + 2\delta^{2} \int_{\varphi(x') - \delta}^{\varphi(x')} \left| \frac{\partial f(x', \xi_{n})}{\partial \xi_{n}} \right|^{2} d\xi_{n}.$$

Умножим последнее неравенство на $\sqrt{1+\varphi_{x_1}^2+\cdots+\varphi_{x_{n-1}}^2}$ и про-интегрируем его по D:

$$\delta \int_{S_1} |f(x)|^2 dS \leq 2 \int_{\Omega_{\delta}} |f(x)|^2 dx + 2\delta^2 ||f||_{H^1(\Omega_{\delta})}^2$$
$$\leq 2||f||_{L_2(Q)}^2 + 2\delta^2 ||f||_{H^1(Q)}^2. \tag{2}$$

Поскольку $\partial Q \subset \bigcup_{i=1}^N S_i$, где S_i , $i=1,\ldots,N$, — совокупность простых кусков, покрывающих поверхность ∂Q , для каждого из которых имеет место неравенство, аналогичное неравенству (2), то для любой функции $f(x) \in C^1(\overline{Q})$ получаем справедливое для всех $\delta \in (0, \delta_0]$ неравенство

$$||f||_{L_2(\partial Q)}^2 \leqslant \frac{C_1}{\delta} ||f||_{L_2(Q)}^2 + C_1 \delta ||f||_{H^1(Q)}^2, \tag{3}$$

в котором постоянная C_1 не зависит от f и δ . В силу плотности в $H^1(Q)$ множества $C^1(\overline{Q})$ это неравенство имеет место и для любой функции $f(x) \in H^1(Q)$.

Из теоремы 1 § 6 следует, что множество M компактно в $L_2(Q)$. Поэтому из произвольной последовательности $f_1(x), \ldots, f_n(x), \ldots$, функций из M можно выбрать подпоследовательность (будем считать, что это сама взятая последовательность), которая фундаментальна в $L_2(Q)$. Это означает, что по любому ε , $0 < \varepsilon \leqslant \delta_0$, найдется такое N_0 , что $\|f_k - f_s\|_{L_2(Q)} \leqslant \varepsilon$ для

всех $k, s \geqslant N_0$. Но тогда в силу (3) и (1) при любом $\delta, 0 < \delta < \delta_0$, имеет место неравенство

$$||f_{k} - f_{s}||_{L_{2}(\partial Q)}^{2} \leqslant \frac{C_{1}}{\delta} \varepsilon^{2} + C_{1} \delta ||f_{k} - f_{s}||_{H^{1}(Q)}^{2}$$

$$\leqslant \frac{C_{1}}{\delta} \varepsilon^{2} + C_{1} \delta (||f_{k}||_{H^{1}(Q)} + ||f_{s}||_{H^{1}(Q)})^{2}$$

$$\leqslant \frac{C_{1}}{\delta} \varepsilon^{2} + 4C^{2} C_{1} \delta,$$

из которого при $\delta=\varepsilon$ получим, что

$$||f_k - f_s||_{L_2(\partial Q)}^2 \leqslant C_2 \varepsilon$$

для всех $k, s \geqslant N_0$. Что и требовалось доказать.

§ 8. Вложение $H^k(Q)$ в $C^l(\,\overline{Q}\,)$

В этом параграфе будет изучаться взаимоотношение пространств $H^k(Q)$ и $C^l(\overline{Q})$. Будет показано, что если функция принадлежит пространству $H^k(Q)$ при достаточно большом k, то она принадлежит и пространству $C^l(\overline{Q})$, т.е. ее можно так изменить на множестве меры нуль, что она будет непрерывна вместе со всеми производными до порядка l в \overline{Q} .

Пусть функция $f(x) \in C^2_0(\overline{Q}).$ Тогда для любой точки $x \in Q$ имеет место равенство

$$f(x) = \int_{Q} U(x - y)\Delta f(y) \, dy, \qquad x \in Q, \tag{1}$$

где U(x) – фундаментальное решение уравнения Лапласа:

$$U(x) = \begin{cases} -\frac{1}{(n-2)\sigma_n|x|^{n-2}} & \text{при } n>2,\\ \frac{\ln|x|}{2\pi} & \text{при } n=2, \end{cases}$$

а $\sigma_n = 2\pi^{n/2}\Gamma(n/2)$ — площадь поверхности (n-1)-мерной единичной сферы.

Это равенство вытекает из хорошо известной (см., например, [2], [4] или [5]) формулы Грина: для $f(x) \in C^2(\overline{Q})$ в любой точке $x \in Q$ имеет место равенство

$$\begin{split} f(x) &= \int_Q U(x-y) \Delta f(y) \, dy \\ &+ \int_{\partial Q} \left(f(y) \frac{\partial U(x-y)}{\partial \nu_y} - \frac{\partial f(y)}{\partial \nu} \, U(x-y) \right) dS_y, \end{split}$$

в котором ν — единичный вектор внешней по отношению к области Q нормали к поверхности ∂Q (напомним, что $\partial Q \in C^1$).

Если функция f более гладкая, $f \in C_0^k(\overline{Q})$, то наряду с (1) для нее имеют место и представления через производные k-го порядка. Для получения этих представлений нам потребуется следующее простое утверждение.

ЛЕММА. Пусть $n\geqslant 3$. Тогда при любом (вещественном) μ функция

$$u_{\mu}(x) = \begin{cases} \frac{|x|^{\mu+2}}{(\mu+2)(\mu+n)} & npu \ \mu \neq -2, \ \mu \neq -n, \\ \frac{\ln|x|}{n-2} & npu \ \mu = -2, \\ -\frac{\ln|x|}{|x|^{n-2}(n-2)} & npu \ \mu = -n \end{cases}$$

для всех $x \in \mathbb{R}^n$, $x \neq 0$, удовлетворяет уравнению $\Delta u_{\mu} = |x|^{\mu}$.

В справедливости леммы легко убедиться непосредственной проверкой.

Пусть функция $f\in C^2_0(\overline{Q}).$ В силу формулы (1) для $x\in Q$ при n=2 имеем

$$f(x) = \frac{1}{2\pi} \int_{\Omega} \Delta f(y) \ln|x - y| \, dy, \tag{2}$$

при n=3

$$f(x) = -\frac{1}{4\pi} \int_{\mathcal{O}} \frac{\Delta f(y)}{|x - y|} \, dy,\tag{3}$$

при n > 3

$$f(x) = -\frac{1}{(n-2)\sigma_n} \int_{\Omega} \frac{\Delta f(y)}{|x-y|^{n-2}} \, dy, \tag{4}$$

Пусть n=4, а функция $f\in C_0^3(\overline{Q})$. С помощью равенства $\frac{1}{|x-y|^2}=\frac{1}{2}\Delta_y\ln|x-y|$ (см. лемму) интегрированием по частям получим из (4)

$$f(x) = \frac{1}{4\sigma_4} \int_Q \Delta f(y) \cdot \Delta_y \ln|x - y| \, dy$$
$$= -\frac{1}{4\sigma_4} \int_Q \nabla (\Delta f(y)) \cdot \nabla_y \ln|x - y| \, dy. \tag{5}$$

Если n=5, то из (4) и равенства $|x-y|^{-3}=-\frac{1}{2}\Delta_y\frac{1}{|x-y|}$ (см. лемму) для функции $f(x)\in C_0^3(\overline{Q})$ получим представление

$$f(x) = \frac{1}{2 \cdot 3\sigma_5} \int_Q \Delta f(y) \cdot \Delta_y \frac{1}{|x-y|} dy$$
$$= -\frac{1}{2 \cdot 3\sigma_5} \int_Q \nabla (\Delta f(y)) \cdot \nabla_y \frac{1}{|x-y|} dy. \tag{6}$$

и т.д. Пусть $f \in C_0^{2p}(\overline{Q}), p \geqslant 2$. Тогда из справедливых при n >4p-3 равенств

$$\frac{1}{|x-y|^{4p-4}} = C'_{4p-2} \Delta_y^{p-1} \frac{1}{|x-y|^{2p-2}},$$
$$\frac{1}{|x-y|^{4p-3}} = C'_{4p-1} \Delta_y^{p-1} \frac{1}{|x-y|^{2p-1}},$$

вытекающих из леммы, в силу (4) имеем

$$f(x) = C_{4p-2}'' \int_{\Omega} \frac{\Delta^p f(y)}{|x-y|^{2p-2}} dy$$
 при $n = 4p-2$ (7_{4p-2})

$$f(x) = C_{4p-1}'' \int_{\mathcal{O}} \frac{\Delta^p f(y)}{|x-y|^{2p-1}} \, dy$$
 при $n = 4p-1$ (7_{4p-1})

где C_i^\prime и $C_i^{\prime\prime}$ – некоторые абсолютные постоянные. Так как при n> $4p - 1, p \ge 2$

$$\frac{1}{|x-y|^{4p-2}} = C'_{4p} \Delta_y^{\ p} \frac{1}{|x-y|^{2p-2}}$$

И

$$\frac{1}{|x-y|^{4p-1}} = C'_{4p+1} \Delta_y^{\ p} \frac{1}{|x-y|^{2p-1}} \, ,$$

то для $f \in C_0^{2p+1}(\overline{Q}), p \geqslant 2$, из (4) имеем

$$f(x) = C''_{4p} \int_Q \nabla (\Delta^p f(y)) \cdot \nabla_y \frac{1}{|x - y|^{2p - 2}} dy$$
 при $n = 4p$ (7_{4p})

$$f(x) = C''_{4p+1} \int_{Q} \nabla (\Delta^{p} f(y)) \cdot \nabla_{y} \frac{1}{|x-y|^{2p-1}} dy \quad \text{при } n = 4p+1,$$

$$(7_{4p+1})$$

где C_i' , C_i'' – абсолютные постоянные. Поскольку $\left|\nabla_y \frac{1}{|x-y|^s}\right| = \frac{s}{|x-y|^{s+1}}$ при $s\geqslant 1$, то из (3), (5), (6), (7_{4p-2}) – (7_{4p+1}) получаем неравенства

$$|f(x)| \leqslant C_{4p-2} \int_{Q} \frac{|\Delta^{p} f(y)|}{|x-y|^{2p-2}} dy$$
 при $n = 4p-2, p > 1, x \in Q,$

$$(8_{4p-2})^{-1}$$

$$|f(x)| \leqslant C_{4p-1} \int_Q \frac{|\Delta^p f(y)|}{|x-y|^{2p-1}} dy$$
 при $n = 4p-1, p \geqslant 1, x \in Q,$

$$(8_{4p-1})$$

для всех $f \in C_0^{2p}(\overline{Q})$, и неравенства

$$|f(x)| \leqslant C_{4p} \int_Q \frac{|\nabla \Delta^p f(y)|}{|x-y|^{2p-1}} \, dy \quad \text{при } n = 4p, \ p \geqslant 1, \ x \in Q, \quad (8_{4p})$$

$$|f(x)| \leqslant C_{4p+1} \int_Q \frac{|\nabla \Delta^p f(y)|}{|x-y|^{2p}} \, dy \quad \text{при } n = 4p+1, \ p \geqslant 1, \ x \in Q, \quad (8_{4p+1})$$

для всех $f \in C_0^{2p+1}(\overline{Q}), C_i$ – абсолютные постоянные.

При n=2 с помощью неравенства Буняковского для функции f(x) из $C_0^2(\overline{Q})$ из (2) получаем неравенство

$$|f(x)| \le \frac{1}{2\pi} \left(\int_{Q} |\Delta f(y)|^{2} dy \right)^{1/2} \left(\int_{Q} \left| \ln|x - y| \right|^{2} dy \right)^{1/2}$$

 $\le C ||f||_{H^{2}(Q)}, \quad x \in Q,$

в котором не зависящая от f(x) постоянная

$$C > \max_{x \in \overline{Q}} \int_{Q} \left| \ln|x - y| \right|^{2} dy.$$

При n=4p-2, p>1, для $f(x)\in C_0^{2p}(\overline{Q})$ из (8_{4p-2}) аналогично получаем неравенство

$$|f(x)| \leqslant C_{4p-2} \left(\int_{Q} |\Delta^{p} f(y)|^{2} dy \right)^{1/2} \left(\int_{Q} \frac{dy}{|x-y|^{4p-4}} \right)^{1/2}$$

$$\leqslant C ||f||_{H^{2p}(Q)}, \qquad x \in Q,$$

в котором не зависящая от f(x) постоянная

$$C > \max_{x \in \overline{Q}} \int_Q \frac{dy}{|x - y|^{4p - 4}} \,,$$

а из (8_{4p-1}) – (8_{4p+1}) – соответственно неравенства

$$|f(x)| \le C||f||_{H^{2p}(Q)}, \quad n = 4p - 1 \ge 3, \quad x \in Q,$$

 $|f(x)| \le C||f||_{H^{2p+1}(Q)}, \quad n = 4p \ge 4, \quad x \in Q,$
 $|f(x)| \le C||f||_{H^{2p+1}(Q)}, \quad n = 4p + 1 \ge 5, \quad x \in Q,$

в которых постоянная C не зависит от f.

Таким образом, неравенство

$$||f||_{C(\overline{Q})} \le C||f||_{H^{[n/2]+1}(Q)}$$
 (9)

имеет место для всех $f \in C_0^{[n/2]+1}(\overline{Q}), n \geqslant 1$, с не зависящей от f постоянной. Справедливость этого неравенства при n=1 немедленно следует из представления

$$f(x) = \frac{1}{2} \int_a^b \operatorname{sgn}(x - y) \cdot f'(y) \, dy, \qquad x \in [a, b],$$

любой функции $f(x) \in C_0^1([a,b])$, которым мы уже пользовались в § 5.

Если функция $f(x) \in C_0^{[n/2]+1+l}(\overline{Q})$ при некотором l > 0, то наряду с неравенством (9) она удовлетворяет и неравенству

$$||f||_{C^{l}(\overline{Q})} \leqslant C_{l}||f||_{H^{[n/2]+1+l}(Q)} \tag{10}$$

в котором постоянная C_l не зависит от f.

Действительно, для любого вектора $\alpha = (\alpha_1, \dots, \alpha_n)$ с целыми неотрицательными компонентами, $|\alpha| \leq l$, в силу (9) имеем

$$\|D^{\alpha}f\|_{C(\overline{Q})}\leqslant C\|D^{\alpha}f\|_{H^{[\frac{n}{2}]+1}(Q)}\leqslant C\|f\|_{H^{[n/2]+1+|\alpha|}(Q)}.$$

Суммируя эти неравенства по всем α , $|\alpha| \leq l$, получим неравенство (10).

Пусть финитная в Q функция $f(x) \in H^{[n/2]+1+l}(Q)$, а $\{f_m(x), m=1,2,\ldots\}$ — последовательность функций из $C_0^{[n/2]+1+l}(\overline{Q})$, сходящаяся в норме $H^{[n/2]+1+l}(Q)$ к f(x) (теорема 3 из § 2). В силу (10)

$$||f_m - f_s||_{C^l(\overline{Q})} \le C||f_m - f_s||_{H^{[n/2]+1+l}(Q)} \to 0$$

при $m,s\to\infty$, т.е. последовательность $\{f_m(x),m=1,2,\ldots\}$ оказывается фундаментальной, а, значит, и сходящейся и в норме $C^l(\overline{Q})$. Это означает, что предельная для этой последовательности функция f(x) принадлежит не только $H^{[n/2]+1+l}(Q)$, но и $C^l(\overline{Q})$, т.е. функция f(x) допускает возможность такого ее изменения на множестве меры нуль, в результате которого она становится функцией из $C^l(\overline{Q})$. Переходя в неравенстве $\|f_m\|_{C^l(\overline{Q})}\leqslant C\|f_m\|_{H^{[n/2]+1+l}(Q)}$ к пределу при $m\to\infty$, получим справедливость неравенства (10) для любой финитной функции f(x) из $H^{[n/2]+1+l}(Q)$.

Имеет место следующее утверждение.

ТЕОРЕМА 1. $H_{\mathrm{loc}}^{[n/2]+1+l}(Q)\subset C^l(Q),$ т.е. любая функция из пространства $H_{\mathrm{loc}}^{[n/2]+1+l}(Q)$ после ее изменения на множестве меры нуль принадлежит пространству $C^l(Q)$.

Действительно, пусть функция $f(x) \in H^{[n/2]+1+l}_{\mathrm{loc}}(Q)$. Возьмем любую подобласть $Q',\ Q' \in Q$, и построим функцию $\zeta(x) \in C_0^\infty(\overline{Q})$, равную 1 в Q'. Функция $f(x)\,\zeta(x) \in H^{[n/2]+1+l}(Q)$ и является финитной в Q, поэтому она принадлежит $C_0^l(\overline{Q})$ и, значит, функция f(x) принадлежит $C^l(\overline{Q'})$. В силу произвольности Q' функция f(x) принадлежит $C^l(Q)$.

Пусть теперь f(x) – произвольная функция из $H^{[n/2]+1+l}(Q)$. Предположим, что $\partial Q \in C^{[n/2]+1+l}$. Тогда в силу теоремы о продолжении (теорема 1 из § 2) для (любой ограниченной) области $Q', \ Q' \ni Q$, существует финитная в Q' функция $F(x) \in H^{[n/2]+1+l}(Q')$, совпадающая с f(x) в Q, причем $\|F\|_{H^{[n/2]+1+l}(Q')} \leqslant C' \|f\|_{H^{[n/2]+1+l}(Q)}$, где постоянная C' не зависит от f(x).

По доказанному функция $F(x) \in C^l(\overline{Q}')$ и для нее имеет место неравенство $\|F\|_{C^l(\overline{Q}')} \leqslant C''\|F\|_{H^{[n/2]+1+l}}(Q')$ (неравенство (10) для функции F(x) в области Q'). Следовательно, $f(x) \in C^l(\overline{Q})$ и справедливо неравенство

$$||f||_{C^{l}(\overline{Q})} \leqslant C'C''||f||_{H^{[n/2]+1+l}(Q)}.$$

Таким образом, доказана

ТЕОРЕМА 2. Если $\partial Q \in C^{[n/2]+1+l}$, то $H^{[n/2]+1+l}(Q) \subset C^l(\overline{Q})$, т.е. каждая функция из $H^{[n/2]+1+l}(Q)$ допускает такое ее изменение на множестве меры нуль, в результате которого она становится функцией из $C^l(\overline{Q})$. При этом для любой функции $f(x) \in H^{[n/2]+1+l}(Q)$ имеет место неравенство

$$||f||_{C^{l}(\overline{Q})} \le C_{l}||f||_{H^{[n/2]+1+l}(Q)}$$
 (10)

в котором постоянная $C_l > 0$ не зависит от f(x).

Иначе говоря, если $\partial Q \in C^{[n/2]+1+l}$, то на $H^{[n/2]+1+l}(Q)$ определен линейный ограниченный оператор $\mathbb J$ из $H^{[n/2]+1+l}(Q)$ в $C^l(\overline Q)$, ставящий в соответствие каждой функции, принадлежащей $H^{[n/2]+1+l}(Q)$, ее же, как функцию из $C^l(\overline Q)$, оператор вложения $H^{[n/2]+1+l}(Q)$ в $C^l(\overline Q)$, при этом $\|\mathbb J\| \leqslant C_l$.

Можно доказать, что оператор \mathbb{J} вполне непрерывен (доказательство см. в [1]).

46 Глава <u>1</u>

\S 9. Эквивалентные нормировки пространств $H^1(Q)$ и $\mathring{H}^1(Q)$

Пусть в области Q задана вещественная симметрическая матрица $\mathbb{A}(x) = \|a_{ij}(x)\|_{i,j=1,\dots,n}$, элементы которой принадлежат $L_{\infty}(Q)$, функция $a(x) \in L_{\infty}(Q)$ и функция $\sigma(x) \in L_{\infty}(\partial Q)$. Определим на $H^1(Q)$ эрмитову билинейную форму

$$W(f,g) = \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) f_{x_{i}} \overline{g}_{x_{j}} + a(x) f \overline{g} \right) dx + \int_{\partial Q} \sigma(x) f \overline{g} dS \tag{1}$$

(в последнем интеграле, конечно, $f = f|_{\partial Q}$, $g = g|_{\partial Q}$ – следы на ∂Q соответствующих функций).

ТЕОРЕМА 1. Если матрица $\mathbb{A}(x)$ положительно определена, т.е. для любого вектора $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n$ и для п.в. $x \in Q$ выполняется неравенство

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i \overline{\xi}_j \geqslant \gamma \sum_{i=1}^{n} |\xi_i|^2,$$
(2)

с постоянной $\gamma > 0$, функции $a(x) \ge 0$ п.в. на Q, $\sigma(x) \ge 0$ п.в. на ∂Q , $u \operatorname{mes}\{a(x) > 0\} + \operatorname{mes}\{\sigma(x) > 0\} > 0$, то билинейная форма (1) определяет на $H^1(Q)$ скалярное произведение

$$(f,g)'_{H^1(Q)} = W(f,g),$$

эквивалентное скалярному произведению

$$(f,g)_{H^1(Q)} = \int_Q (\nabla f \nabla \overline{g} + f \overline{g}) \, dx. \tag{3}$$

Напомним, что скалярное произведение $(f,g)'_{H^1(Q)}$ эквивалентно скалярному произведению $(f,g)_{H^1(Q)}$, если существуют постоянные A>0 и B>0 такие, что для всех $f\in H^1(Q)$

$$A(f,f)_{H^1(Q)} \leq (f,f)'_{H^1(Q)} \leq B(f,f)_{H^1(Q)}.$$
 (4)

Билинейная форма (1), очевидно, удовлетворяет правому неравенству в (4) причем постоянная B зависит лишь от $\|a_{ij}\|_{L_{\infty}(Q)}$, $i, j = 1, \ldots, n, \|a\|_{L_{\infty}(Q)}, \|\sigma\|_{L_{\infty}(\partial Q)}$ и постоянной C_2 из теоремы $1 \S 3$.

Докажем справедливость левого неравенства в (4). Предположим, что нужной постоянной не существует. Тогда для любого целого $m\geqslant 1$ найдется такая функция $f_m(x)\in H^1(Q)$, что $\|f_m\|_{H^1(Q)}^2>mW(f_m,f_m)$ (напомним, что в силу условий теоремы число $W(f_m,f_m)$ неотрицательно) или, что то же самое, найдется функция $g_m(x)\in H^1(Q)$, для которой

$$||g_m||_{H^1(Q)} = 1 (5)$$

И

$$W(g_m, g_m) = \int_Q \left(\sum_{i,j=1}^n a_{ij}(x) g_{mx_i} \overline{g}_{mx_j} + a(x) |g_m|^2 \right) dx$$
$$+ \int_{\partial Q} \sigma(x) |g_m|^2 dS < \frac{1}{m}.$$

Из последнего неравенства вытекает, что каждое из трех слагаемых в $W(g_m,g_m)$ меньше $\frac{1}{m}$, поэтому в силу (2)

$$\int_{Q} |\nabla g_{m}|^{2} dx < \frac{1}{\gamma m}, \qquad \int_{Q} a(x)|g_{m}|^{2} dx < \frac{1}{m},
\int_{\partial Q} \sigma(x)|g_{m}|^{2} dS < \frac{1}{m}.$$
(6)

Из равенства (5) вытекает, что последовательность $\{g_m(x), m=1,2,\dots\}$ ограничена в $H^1(Q)$, следовательно, по теореме 1 из \S 6 из этой последовательности можно выбрать фундаментальную в $L_2(Q)$ подпоследовательность. Не умаляя общности, будем считать, что сама последовательность $\{g_m(x), m=1,2,\dots\}$ фундаментальна в $L_2(Q)$, т.е. $\|g_m-g_p\|_{L_2(Q)}\to 0$ при $m,p\to\infty$. Так как в силу первого из неравенств в (6)

$$\begin{aligned} \|g_m - g_p\|_{H^1(Q)}^2 &= \|g_m - g_p\|_{L_2(Q)}^2 + \||\nabla(g_m - g_p)|\|_{L_2(Q)}^2 \\ &\leq \|g_m - g_p\|_{L_2(Q)}^2 + 2\||\nabla g_m|\|_{L_2(Q)}^2 + 2\||\nabla g_p|\|_{L_2(Q)}^2 \\ &\leq \|g_m - g_p\|_{L_2(Q)}^2 + \frac{2}{m\gamma} + \frac{2}{p\gamma} \,, \end{aligned}$$

то $\|g_m-g_p\|_{H^1(Q)}^2\to 0$ при $m,p\to\infty$, т.е. последовательность $\{g_m(x),\,m=1,2,\dots\}$ фундаментальна в $H^1(Q)$. Следовательно, она сходится в $H^1(Q)$ к некоторой функции $g(x)\in H^1(Q)$. Переходя в (5) и (6) к пределу при $m\to\infty$, получим соотношения:

a)
$$\|g\|_{H^1(Q)} = 1$$
,
6) $\int_Q |\nabla g|^2 dx = 0$,
B) $\int_Q a(x)|g|^2 dx = 0$,
 $\int_{\partial Q} \sigma(x)|g|^2 dS = 0$.

Из равенств б) и а) вытекает, что $g(x)=\mathrm{const}=1/\sqrt{\mathrm{mes}\,Q}$ в Q и $g\big|_{\partial Q}=1/\sqrt{\mathrm{mes}\,Q}$. Но это противоречит, если $\mathrm{mes}\{a(x)>0\}>0$, равенству в) или, если $\mathrm{mes}\{\sigma(x)>0\}>0$, равенству г). Теорема доказана.

Из теоремы 1 вытекает

ТЕОРЕМА 2. Если матрица $\mathbb{A}(x)$ положительно определена $u\ a(x)\geqslant 0\ n.s.\ s\ Q,$ то билинейная форма

$$W_1(f,g) = \int_Q \left(\sum_{i,j=1}^n a_{ij}(x) f_{x_i} \overline{g}_{x_j} + a(x) f \overline{g} \right) dx$$

задает в $\mathring{H}^1(Q)$ скалярное произведение, эквивалентное скалярному произведению (3).

Так как $\mathring{H}^1(Q) \subset H^1(Q)$, то из теоремы 1 вытекает, что в $\mathring{H}^1(Q)$ можно ввести скалярное произведение, эквивалентное скалярному произведению (3), с помощью билинейной формы (1) при $\sigma(x)=1$ и $a(x)\geqslant 0$ п.в. в Q. Но для f(x) и g(x), принадлежащих $\mathring{H}^1(Q)$ значения билинейных форм W и W_1 совпадают. Теорема доказана.

Следствие 1. В частности, эквивалентным (3) скалярным произведением в $\mathring{H}^1(Q)$ является скалярное произведение

$$(f,g)'_{\mathring{H}^{1}(Q)} = \int_{Q} (\nabla f, \nabla \overline{g}) \, dx.$$

Из теоремы 2 вытекает также

Следствие 2. Существует постоянная C>0 такая, что для любой функции $f\in \mathring{H}^1(Q)$ имеет место неравенство Стеклова

$$\int_{Q} |f|^{2} dx \leqslant C \int_{Q} |\nabla f|^{2} dx.$$

Рассмотрим заданные на $H^1(Q)$ эрмитовы билинейные формы

$$W_2(f,g) = \int_Q f \, dx \cdot \int_Q \overline{g} \, dx$$
$$+ \int_Q \left(\sum_{i,j=1}^n a_{ij}(x) f_{x_i} \overline{g}_{x_j} + a(x) f \overline{g} \right) dx$$

И

$$W_3(f,g) = \int_{\partial Q} f \, dS \cdot \int_{\partial Q} \overline{g} \, dS$$
$$+ \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) f_{x_i} \overline{g}_{x_j} + a(x) f \overline{g} \right) dx$$

в которых, как и выше, $\mathbb{A}(x) = ||a_{ij}(x)||_{i,\dots,n}$ – вещественная симметрическая матрица, элементы которой принадлежат $L_{\infty}(Q)$, $a(x) \in L_{\infty}(Q)$.

ТЕОРЕМА 3. Если матрица $\mathbb{A}(x)$ положительно определена, $u \ a(x) \geqslant 0$ п.в. на Q, то билинейные формы $W_2(f,g) \ u \ W_3(f,g)$ порождают в $H^1(Q)$ скалярные произведения, эквивалентные скалярному произведению (3).

Эта теорема легко доказывается по тому же плану, что и теорема 1.

Так же как из теоремы 2 были получены следствия 1 и 2, из теоремы 3 немедленно вытекают следствия 3 и 4.

Следствие 3. В условиях теоремы 3 на подпространствах

$$H^1_1(Q) = \left\{ f(x) \in H^1(Q), \, \int_Q f(x) \, dx = 0 \right\}$$

u

$$H_2^1(Q) = \left\{ f(x) \in H^1(Q), \, \int_{\partial Q} f(x) \, dS = 0 \right\}$$

пространства $H^1(Q)$ билинейная форма

$$W_4(f,g) = \int_Q \left(\sum_{i,j=1}^n a_{ij}(x) f_{x_i} \overline{g}_{x_j} + a(x) f \overline{g} \right) dx$$

определяет скалярное произведение, эквивалентное скалярному произведению (3).

Следствие 4. Существуют постоянные $C_1>0$ и $C_2>0$ такие, что для всех функций $f\in H^1(Q)$ имеют место неравенства

$$\int_{Q} |f|^{2} dx \leq C_{1} \left(\left| \int_{Q} f dx \right|^{2} + \int_{Q} |\nabla f|^{2} dx \right),$$

$$\int_{Q} |f|^{2} dx \leq C_{2} \left(\left| \int_{\partial Q} f dS \right|^{2} + \int_{Q} |\nabla f|^{2} dx \right)$$

(неравенства Пуанкаре и Фридрихса).

Краевые задачи для эллиптических уравнений

§ 1. Вторая и третья краевые задачи для уравнения второго порядка

Рассмотрим следующую краевую задачу

$$-\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} a_i(x)u_{x_i} + a(x)u = f(x), \qquad x \in Q, (1)$$

$$\left(\left. \sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \nu_j(x) + \sigma(x) u \right) \right|_{\partial Q} = \varphi(x), \tag{2'}$$

где $\mathbb{A}(x) = \|a_{ij}(x)\|_{i,j=1,\dots,n}$ – вещественная симметрическая квадратная $n \times n$ -матрица, элементы которой $a_{ij}(x) \in C^1(\overline{Q}), \ i, \ j=1,\dots,n;$ эту матрицу для всех $x \in \overline{Q}$ считаем положительно определенной (условие эллиптичности уравнения (1)): т.е. существует постоянная $\gamma > 0$ такая, что при всех $x \in \overline{Q}$ и при любом векторе $\xi = (\xi_1,\dots,\xi_n) \in \mathbb{C}^n$ имеет место неравенство

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i \overline{\xi}_j \geqslant \gamma \sum_{i=1}^{n} |\xi_i|^2.$$
(3)

Функция $a(x)\in C(\overline{Q})$, функции $a_i(x)\in C^1(\overline{Q}),\ i=1,\dots,n,$ $\sigma(x)\in C(\partial Q),\ \nu=\nu(x)=(\nu_1(x),\dots,\nu_n(x))$ – вектор единичной нормали к ∂Q , внешней по отношению к области Q. На граничной поверхности ∂Q

$$\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \nu_j(x) = \sum_{i=1}^{n} u_{x_i} \sum_{j=1}^{n} a_{ij}(x) \nu_j(x) = A(x) \frac{\partial u}{\partial \nu'},$$

где ν' – единичный вектор *внешней конормали*, связанной с оператором в (1), к поверхности ∂Q :

$$\nu' = \nu'(x) = (\nu'_1(x), \dots, \nu'_n(x)),$$

$$\nu'_i = \frac{\sum_{j=1}^n a_{ij}(x)\nu_j(x)}{A(x)}, \qquad i = 1, \dots, n,$$

$$A(x) = \left(\sum_{i=1}^n \left(\sum_{j=1}^n a_{ij}(x)\nu_j(x)\right)^2\right)^{1/2}$$

(легко проверить, что A(x) > 0 для всех $x \in \partial Q$, а векторы ν и ν' составляют острый угол).

В связи со сказанным граничное условие (2') можно переписать в виде

$$\left(A(x) \frac{\partial u}{\partial \nu'} + \sigma(x) u \right) \Big|_{\partial Q} = \varphi(x). \tag{2}$$

Под классическим решением задачи (1), (2) (при $\sigma(x) \equiv 0$ задача (1), (2) называется второй краевой задачей, а в противном случае — третьей краевой задачей для уравнения (1)) понимается функция $u(x) \in C^2(Q) \cap C^1(\overline{Q})$, удовлетворяющая условиям (1) и (2); для существования такого решения, очевидно, необходимо, чтобы $f(x) \in C(Q)$, $\varphi(x) \in C(\partial Q)$.

Пусть u(x) – классическое решение задачи (1), (2), принадлежащее $C^2(\overline{Q})$; в этом случае $f \in C(\overline{Q})$. Умножим (1) на произвольную функцию $\overline{v(x)} \in C^1(\overline{Q})$ и проинтегрируем полученное равенство по Q. С помощью формулы Остроградского получим равенство

$$\begin{split} \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + \left(\sum_{i=1}^{n} a_{i}(x) u_{x_{i}} + a(x) u \right) \overline{v} \right) dx \\ + \int_{\partial Q} \sigma u \overline{v} \, dS &= \int_{Q} f(x) \overline{v} \, dx + \int_{\partial Q} \varphi(x) \overline{v} \, dS, \end{split} \tag{4'}$$

или эквивалентное ему (но более удобное для нас в дальнейшем) равенство

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + u \left(-\sum_{i=1}^{n} \left(a_{i}(x) \overline{v} \right)_{x_{i}} + a(x) \overline{v} \right) \right) dx
+ \int_{\partial Q} \left(\sigma + \sum_{i=1}^{n} a_{i}(x) \nu_{i}(x) \right) u \overline{v} dS = \int_{Q} f(x) \overline{v} dx + \int_{\partial Q} \varphi(x) \overline{v} dS,$$
(4)

которые в силу плотности множества $C^1(\overline{Q})$ в $H^1(Q)$ справедливы и для любой функции $v(x) \in H^1(Q)$.

Верно также и следующее утверждение: если принадлежащая $C^2(\overline{Q})$ функция u(x) удовлетворяет при всех $v(x) \in H^1(Q)$ равенству (4) (или (4')), то она является классическим решением задачи (1), (2).

Действительно, равенство (4'), которому функция u(x) удовлетворяет, при $v \in C_0^1(\overline{Q})$ имеет вид

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + \left(\sum_{i=1}^{n} a_{i}(x) u_{x_{i}} + au \right) \overline{v} \right) dx$$
$$= \int_{Q} f(x) \overline{v} dx, \qquad v \in C_{0}^{1}(\overline{Q}),$$

или после интегрирования по частям в первом члене левой части

$$\int_{Q} \left(-\sum_{i,j=1}^{n} \left(a_{ij}(x) u_{x_{i}} \right)_{x_{j}} + \sum_{i=1}^{n} a_{i}(x) u_{x_{i}} + a(x) u - f(x) \right) \overline{v} \, dx = 0, \qquad v \in C_{0}^{1}(\overline{Q}),$$

откуда вытекает, что функция u(x) удовлетворяет уравнению (1). После этого равенство (4) при любой функции $v \in C^1(\overline{Q})$ можно переписать следующим образом

$$\int_{Q} \left(-\sum_{i,j=1}^{n} \left(a_{ij}(x) u_{x_{i}} \right)_{x_{j}} + \sum_{i=1}^{n} a_{i}(x) u_{x_{i}} + a(x) u - f(x) \right) \overline{v} \, dx$$

$$+ \int_{\partial Q} \left(A(x) \frac{\partial u}{\partial \nu'} + \sigma(x) u - \varphi(x) \right) \overline{v} \, dS = 0, \qquad v \in C^{1}(\overline{Q}),$$

и, тем самым,

$$\int_{\partial Q} \left(A(x) \frac{\partial u}{\partial \nu'} + \sigma(x) u - \varphi(x) \right) \overline{v} \, dS = 0, \qquad v \in C^1(\overline{Q}),$$

откуда в силу произвольности функции $v(x) \in C^1(\overline{Q})$ следует выполнение граничного условия (2).

Из сказанного следует, что равенством (4) ((4')) естественно воспользоваться для определения обобщенного решения задачи (1), (2).

При определении обобщенного решения и при работе с ним нет необходимости в тех требованиях на данные задачи (1), (2), которые были на них наложены при определении классического решения.

В дальнейшем будем считать, что матрица $\mathbb{A}(x) \in L_{\infty}(Q)$, т.е. $a_{ij}(x) \in L_{\infty}(Q)$ для всех $i,j=1,\ldots,n,\ a(x) \in L_{\infty}(Q)$, $\sigma(x) \in L_{\infty}(\partial Q)$, и при этом, естественно, считаем, что неравенство (3) выполняется лишь для почти всех $x \in Q$; функции $a_i(x), i=1,\ldots,n,$ будем по-прежнему считать принадлежащими $C^1(\overline{Q})$, хотя и на них можно было бы ослабить требования; функции $f(x), x \in Q, \ u \ \varphi(x), x \in \partial Q, \ будут считаться такими, чтобы линейный функционал$

$$l_{f,\varphi}(v) = \int_{Q} f(x)\overline{v} \, dx + \int_{\partial Q} \varphi(x)\overline{v} \, dS, \qquad v \in H^{1}(Q), \tag{5}$$

был ограничен на $H^1(Q)$.

Функция $u(x) \in H^1(Q)$ называется обобщенным решением задачи (1), (2), если она при всех $v(x) \in H^1(Q)$ удовлетворяет равенству

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + u \left(-\sum_{i=1}^{n} \left(a_{i}(x) \overline{v} \right)_{x_{i}} + a(x) \overline{v} \right) \right) dx
+ \int_{\partial Q} \left(\sigma + \sum_{i=1}^{n} a_{i}(x) \nu_{i}(x) \right) u \overline{v} dS = l_{f,\varphi}(v), \qquad v(x) \in H^{1}(Q),$$
(6)

Рассмотрим сначала частный случай задачи (1), (2) – задачу

$$-\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} + a(x)u = f(x), \qquad x \in Q,$$
 (7)

$$\left(A(x) \frac{\partial u}{\partial \nu'} + \sigma(x) u \right) \bigg|_{\partial Q} = \varphi(x). \tag{2}$$

Обобщенное решение этой задачи – функция $u(x) \in H^1(Q)$, удовлетворяющая равенству

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + a(x) u \overline{v} \right) dx + \int_{\partial Q} \sigma u \overline{v} dS
= \int_{Q} f(x) \overline{v} dx + \int_{\partial Q} \varphi(x) \overline{v} dS,$$
(8)

при любой функции $v \in H^1(Q)$.

Предположим дополнительно, что $a(x)\geqslant 0$ п.в. в Q и $\sigma(x)\geqslant 0$ п.в. на ∂Q , причем $\operatorname{mes}\{a(x)>0\}+\operatorname{mes}\{\sigma(x)>0\}>0$. Тогда левую часть равенства (8) можно согласно теореме 1 параграфа § 9 предыдущей главы принять за скалярное произведение в $H^1(Q)$

$$(u,v)_{H^1(Q)} = \int_Q \left(\sum_{i,j=1}^n a_{ij}(x) u_{x_i} \overline{v}_{x_j} + a(x) u \overline{v} \right) dx + \int_{\partial Q} \sigma u \overline{v} \, dS,$$

а само равенство (8) переписать в виде

$$(u,v)_{H^1(Q)} = l_{f,\varphi}(v), \tag{9}$$

где $l_{f,\varphi}(v)$ — линейный функционал над $H^1(Q)$, определенный равенством (5).

Поскольку функционал $l_{f,\varphi}(v)$ ограничен в $H^1(Q)$, то по теореме Рисса в $H^1(Q)$ существует единственная функция F(x), для которой при всех $v \in H^1(Q)$ имеет место равенство

$$l_{f,\varphi}(v) = (F, v)_{H^1(Q)},$$
 (10)

при этом

$$||F||_{H^1(Q)} = ||l_{f,\omega}||.$$

В частности, если $f \in L_2(Q)$, $\varphi \in L_2(\partial Q)$, то

$$|l_{f,\varphi}(v)| \leq ||f||_{L_2(Q)} ||v||_{L_2(Q)} + ||\varphi||_{L_2(\partial Q)} ||v||_{L_2(\partial Q)}$$

$$\leq (C_1 ||f||_{L_2(Q)} + C_2 ||\varphi||_{L_2(\partial Q)}) ||v||_{H^1(Q)},$$

где $C_1>0$ и $C_2>0$ — постоянные из соответствующих теорем вложения, т.е. в этом случае

$$||F||_{H^1(Q)} = ||l_{f,\varphi}|| \le C_1 ||f||_{L_2(Q)} + C_2 ||\varphi||_{L_2(\partial Q)}.$$

Из (9) и (10) следует, что единственным обобщенным решением u(x) задачи (7), (2) является функция F(x), u(x) = F(x), и это решение удовлетворяет неравенству

$$||u||_{H^1(Q)} \le ||l_{f,\varphi}||,$$
 (11)

(на самом деле, $\|u\|_{H^1(Q)} = \|l_{f,\varphi}\|$), а в частном случае, когда $f \in L_2(Q)$ и $\varphi \in L_2(\partial Q)$

$$||u||_{H^1(Q)} \le C_1 ||f||_{L_2(Q)} + C_2 ||\varphi||_{L_2(\partial Q)}. \tag{11'}$$

Неравенства (11) и (11') выражают непрерывную зависимость решения от данных задачи (функций f и φ). Таким образом, доказано следующее утверждение

ТЕОРЕМА 1. Пусть $a(x) \ge 0$ п.в. в Q, $\sigma(x) \ge 0$ п.в. на ∂Q и $\operatorname{mes}\{a(x)>0\}+\operatorname{mes}\{\sigma(x)>0\}>0$. Тогда существует и единственно обобщенное решение u(x) задачи (7), (2). Это решение удовлетворяет неравенству (11)

$$||u||_{H^1(Q)} \le ||l_{f,\varphi}||,$$
 (11)

где $l_{f,\varphi}(v)$ – линейный ограниченный на $H^1(Q)$ функционал, заданный формулой (5), u, в частности, если $f \in L_2(Q)$, $\varphi \in L_2(\partial Q)$, то обобщенное решение u(x) удовлетворяет неравенству неравенству (11')

$$||u||_{H^1(Q)} \leqslant C_1 ||f||_{L_2(Q)} + C_2 ||\varphi||_{L_2(\partial Q)}, \tag{11'}$$

положительные постоянные C_1 и C_2 в котором не зависят от f и φ .

Рассмотрим теперь более общий случай – граничную задачу (1), (2). Интегральное равенство (6), определяющее обобщенное решение этой задачи представим в виде

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \overline{v}_{x_j} + u \overline{v} \right) dx - l_1(v) + l_2(v) = l_{f,\varphi}(v), \quad (12)$$

в котором линейные по $v \in H^1(Q)$ функционалы $l_1(v)$ и $l_2(v)$ имеют вид

$$l_1(v) = \int_Q u \left[(1 - a)\overline{v} + \sum_{i=1}^n (a_i \overline{v})_{x_i} \right] dx,$$

$$l_2(v) = \int_{\partial Q} u \left(\sigma + \sum_{i=1}^n a_i \nu_i(x) \right) \overline{v} dS,$$

а функционал $l_{f,\varphi}(v)$ определен равенством (5).

Первое слагаемое левой части равенства (12) примем, используя теорему 2 \S 9 предыдущей главы, за скалярное произведение в $H^1(Q)$

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \overline{v}_{x_j} + u \overline{v} \right) dx = (u,v)_{H^1(Q)}. \tag{13}$$

При каждом $u \in L_2(Q)$ функционал $l_1(v), v \in H^1(Q)$, ограничен:

$$|l_1(v)| \leq C_0 ||u||_{L_2(Q)} ||v||_{H^1(Q)}.$$

Следовательно, по теореме Рисса для каждого $u \in L_2(Q)$ существует функция $U_1(x) \in H^1(Q)$, для которой

$$l_1(v) = (U_1, v)_{H^1(Q)},$$
 (14)

причем

$$||U_1||_{H^1(Q)} = ||l_1|| \leqslant C_0 ||u||_{L_2(Q)}.$$

Это означает, что на $L_2(Q)$ определен линейный оператор A_1 из $L_2(Q)$ в $H^1(Q)$, действующий по формуле

$$A_1 u = U_1, (15)$$

причем оператор A_1 ограничен: $||A_1|| \leq C_0$.

Сужение оператора A_1 на $H^1(Q)$ (мы его по-прежнему будем обозначать через A_1) является вполне непрерывным оператором: любое ограниченное в $H^1(Q)$ множество является по теореме $1 \ \S \ 6$ главы 1 компактным в $L_2(Q)$ и, следовательно, переводится ограниченным из $L_2(Q)$ в $H^1(Q)$ оператором A_1 в компактное в $H^1(Q)$ множество. Окончательно, из (14) и (15) имеем равенство

$$l_1(v) = (A_1 u, v)_{H^1(Q)}. (16)$$

Совершенно аналогично получаем равенство

$$l_2(v) = (A_2 u, v)_{H^1(O)}, (17)$$

в котором A_2 — линейный ограниченный оператор из $L_2(\partial Q)$ в $H^1(Q)$, являющийся согласно теореме 1 из §8 предыдущей главы вполне непрерывным оператором из $H^1(Q)$ в $H^1(Q)$ (сужение на $H^1(Q)$ оператора A_2 мы обозначаем той же буквой).

Как и прежде, обозначим через F(x) единственную функцию из $H^1(Q)$, с помощью которой согласно теореме Рисса реализуется в скалярном произведении пространства $H^1(Q)$ значение ограниченного на $H^1(Q)$ функционала $l_{f,\omega}(v)$

$$l_{f,\varphi}(v) = (F, v)_{H^1(Q)},$$
 (10)

при этом

$$||F||_{H^1(Q)} = ||l_{f,\varphi}||.$$

Из равенств (12), (16), (17) и (10) получаем, что обобщенное решение задачи (1), (2) есть решение в $H^1(Q)$ операторного уравнения

$$u - Au = F, \qquad u \in H^1(Q), \tag{18}$$

где линейный вполне непрерывный оператор A из $H^1(Q)$ в $H^1(Q)$ определяется равенством

$$A = A_1 - A_2.$$

Из теорем Фредгольма следует, что для существования решения уравнения (18) при любой функции $F \in H^1(Q)$ необходимо и достаточно, чтобы число 1 не было характеристическим числом оператора A; при этом решение уравнения единственно и удовлетворяет неравенству

$$||u||_{H^1(Q)} \le C||F||_{H^1(Q)} = C||l_{f,\varphi}||$$
 (19)

с постоянной C>0, не зависящей от f и φ ,и, в частности, при $f\in L_2(Q)$ и $\varphi\in L_2(\partial Q)$

$$||u||_{H^1(Q)} \le C_1 ||f||_{L_2(Q)} + C_2 ||\varphi||_{L_2(\partial Q)}.$$
 (20)

Если 1 является характеристическим числом оператора A, то размерности линейных подпространств $N=\ker(E-A)$ и $N^*=$

 $\ker(E-A^*)$ пространства $H^1(Q)$, состоящих, соответственно, из решений однородного уравнения

$$u - Au = 0, u \in H^1(Q),$$
 (18₀)

и однородного уравнения

$$u^* - A^* u^* = 0, u^* \in H^1(Q), (18_0^*)$$

где A^* — оператор, сопряженный оператору A, одинаковы и конечны; эта размерность называется, напомним, кратностью характеристического числа. При этом для существования решения уравнения (18) необходимо и достаточно выполнения условия

$$F \mid N^*$$

При выполнении этого условия в подпространстве N^{\perp} пространства $H^1(Q)$, состоящем из всех функций пространства $H^1(Q)$, ортогональных подпространству N, N^{\perp} — ортогональное дополнение подпространства N, существует единственное решение уравнения (18); это решение удовлетворяет при некоторой постоянной C>0 неравенству (19) или, в частности, неравенству (20), если $f\in L_2(Q), \ \varphi\in L_2(\partial Q)$. Общее же решение уравнения (18) в этом случае отличается от найденного решения из N^{\perp} добавлением к нему произвольного элемента из N.

Таким образом, доказано следующее утверждение.

ТЕОРЕМА 2. Задача нахождения обобщенного решения задачи (1), (2) есть задача решения в пространстве $H^1(Q)$ операторного уравнения

$$u - Au = F$$
.

в котором A – линейный вполне непрерывный оператор из $H^1(Q)$ в $H^1(Q)$, а F(x) – функция из $H^1(Q)$, определенная равенством (10).

Если число 1 не является характеристическим числом оператора A, то обобщенное решение задачи (1), (2) существует, единственно и удовлетворяет неравенству

$$||u||_{H^1(Q)} \le C||l_{f,\varphi}||,$$
 (19)

u, в частности, если $f \in L_2(Q)$ и $\varphi \in L_2(\partial Q)$ – неравенству

$$||u||_{H^1(Q)} \le C_1 ||f||_{L_2(Q)} + C_2 ||\varphi||_{L_2(\partial Q)},$$
 (20)

в которых $C>0,\,C_1>0$ и $C_2>0$ — не зависящие от f и φ постоянные.

Пусть число 1 – характеристическое число оператора A, а $N = \ker(E - A)$ и $N^* = \ker(E - A^*)$ – собственные подпространства пространства $H^1(Q)$ для операторов A и A^* соответственно, отвечающие характеристическому числу 1. Для существования обобщенного решения задачи (1), (2) в этом случае необходимо и достаточно, чтобы выполнялось условие

$$F \perp N^*$$
;

при выполнении этого условия обобщенное решение задачи (1), (2) существует и единственно в подпространстве N^{\perp} , состоящем из всех функций из $H^1(Q)$, ортогональных (в скалярном произведении (13) пространства $H^1(Q)$) подпространству N. Это решение удовлетворяет неравенству (19) и, в частности, при $f \in L_2(Q)$ и $\varphi \in L_2(\partial Q)$ — неравенству (20). Общее обобщенное решение задачи (1), (2) есть сумма этого решения и произвольной функции из N.

Рассмотрим важный пример. Пусть $a(x)\equiv 0,\ a_i(x)\equiv 0,\ i=1,\dots,n,$ для $x\in Q,$ и $\sigma(x)\equiv 0$ для $x\in\partial Q,$ т.е. речь пойдет о второй краевой задаче

$$-\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} = f(x), \qquad x \in Q,$$
 (7')

$$\left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \nu_j(x) \right) \Big|_{\partial Q} = \varphi(x). \tag{2"}$$

В этом случае

$$l_1(v) = (u, v)_{L_2(Q)}, \qquad l_2(v) = 0,$$

и, следовательно, линейный вполне непрерывный оператор A из $H^1(Q)$ в $H^1(Q)$ в уравнении (18) удовлетворяет равенству

$$(Au, v)_{H^1(Q)} = (u, v)_{L_2(Q)},$$

скалярное произведение в $H^1(Q)$ в котором определено формулой (13). Таким образом, для всех u и v из $H^1(Q)$

$$\begin{split} (Au,v)_{H^1(Q)} &= (u,v)_{L_2(Q)} = \overline{(v,u)}_{L_2(Q)} \\ &= \overline{(Av,u)}_{H^1(Q)} = (u,Av)_{H^1(Q)}, \end{split}$$

т.е. оператор A в рассматриваемом случае самосопряженный – $A=A^*.$

Пусть $u \in H^1(Q)$ – решение уравнения (180) (совпадающего с (18%). Тогда

$$(u,u)_{H^1(Q)} = (u,u)_{L_2(Q)},$$

т.е. в силу (13)

$$\int_{Q} \sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \overline{u}_{x_j} dx = 0,$$

а это согласно (3) означает, что $u_{x_i}=0$ в Q для всех $i=1,\ldots,n$, т.е. u= const. Таким образом, в рассматриваемом случае 1 является характеристическим числом оператора A (и A^*); это характеристическое число однократное и подпространства собственных функций $N=N^*$ состоят из постоянных. Поэтому необходимое и достаточное условие существования обобщенного решения

$$l_{f,\varphi}(1) = (F,1)_{H^1(Q)} = 0,$$

в этом случае в силу (10) и (5) имеет вид

$$\int_{Q} f(x) dx + \int_{\partial Q} \varphi(x) dS = 0,$$

При выполнении этого условия существует единственное решение, подчиненное равенству

$$(u,1)_{H^1(Q)} = (u,1)_{L_2(Q)} = \int_Q u(x) dx = 0.$$

Это решение удовлетворяет неравенству (19) и, в частности, неравенству (20), если $f \in L_2(Q)$ и $\varphi \in L_2(\partial Q)$. Общее обобщенное решение задачи есть сумма этого решения и произвольной постоянной.

Таким образом, установлена справедливость следующего утверждения.

ТЕОРЕМА 3. Обобщенное решение задачи (7'), (2'') существует тогда и только тогда, когда выполнено условие

$$l_{f,\varphi}(1) = \int_{Q} f(x) dx + \int_{\partial Q} \varphi(x) dS = 0,$$

еде $l_{f,\varphi}(v)$ — линейный ограниченный функционал, определенный равенством (5).

При выполнении этого условия обобщенное решение существует и единственно в подпространстве функций из $H^1(Q)$, подчиненных условию

$$\int_{Q} u(x) \, dx = 0,$$

это решение удовлетворяет неравенству

$$||u||_{H^1(Q)} \le C||l_{f,\varphi}||,$$
 (19)

u, в частности, если $f \in L_2(Q)$ и $\varphi \in L_2(\partial Q)$ – неравенству

$$||u||_{H^1(Q)} \le C_1(||f||_{L_2(Q)} + ||\varphi||_{L_2(\partial Q)}),$$
 (20)

в которых постоянные C>0 и $C_1>0$ не зависят от f и φ . Общее обобщенное решение есть сумма этого обобщенного решения и произвольной постоянной.

§ 2. Первая краевая задача для уравнения второго порядка

Рассмотрим теперь первую краевую задачу для уравнения

$$-\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} + a(x)u = f(x), \qquad x \in Q,$$
 (1)

т.е. задачу нахождения решения этого уравнения, удовлетворяющего граничному условию

$$u\big|_{\partial Q} = \varphi(x);$$
 (2)

при этом будем считать, что $a_{ij}(x) = a_{ji}(x) \in C^1(\overline{Q}), i, j = 1, \ldots, n, a(x) \in C(\overline{Q}),$ и для всех $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ и всех $x \in \overline{Q}$ выполняется неравенство

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i \overline{\xi}_j \geqslant \gamma \sum_{i=1}^{n} |\xi_i|^2,$$
(3)

в котором постоянная $\gamma>0$. Случай более общего уравнения можно рассмотреть по аналогии с тем, как это сделано в предыдущем параграфе для третьей (и второй) краевой задачи.

Под классическим решением задачи (1), (2), как обычно, понимаем функцию $u(x) \in C^2(Q) \cap C(\overline{Q})$, удовлетворяющую условиям (1) и (2); таким образом, необходимыми условиями для существования классического решения являются условия: $f \in C(Q)$, $\varphi \in C(\partial Q)$.

Предположим, что u(x) является классическим решением задачи (1), (2) и пусть дополнительно $u \in H^1(Q)$, т.е. мы дополнительно предполагаем, что первые производные решения принадлежат $L_2(Q)$. Считая, что $f(x) \in L_2(Q)$, проинтегрируем по Q умноженное на $\overline{v} \in C_0^1(\overline{Q})$ равенство (1). В результате получим равенство

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + a(x) u \overline{v} \right) dx = \int_{Q} f(x) \overline{v} dx, \tag{4}$$

которое в силу плотности множества $C_0^1(Q)$ в $\mathring{H}^1(Q)$ (теорема 2 § 4 главы 1) остается справедливым и для всех функций $v \in \mathring{H}^1(Q)$.

Обобщенным решением задачи (1), (2) называется функция $u(x) \in H^1(Q)$, удовлетворяющая равенству (4) при любой $v \in \mathring{H}^1(Q)$ и след которой на ∂Q равен $\varphi(x)$.

В случае первой краевой задачи, как и в предыдущем параграфе в случае третьей (и второй) краевой задачи, при определении обобщенного решения естественно избавиться от излишних условий, наложенных на данные задачи при определении классического решения.

Будем считать, что коэффициенты $a_{ij}(x) = a_{ji}(x) \in L_{\infty}(Q)$, $i, j = 1, \ldots, n, a(x) \in L_{\infty}(Q)$; условие (3) считаем выполненным лишь для п.в. $x \in Q$. Граничную функцию $\varphi(x)$ естественно считать следом на ∂Q некоторой функции из $H^1(Q)$, а функцию f(x) будем предполагать такой, чтобы линейный функционал

$$l_f(v) = \int_Q f(x)\overline{v} \, dx, \qquad v \in \mathring{H}^1(Q), \tag{5}$$

был ограниченным на $\mathring{H}^1(Q)$.

Кроме того, поскольку здесь мы желаем ограничиться лишь самым простым случаем, будем считать, что $a(x) \geqslant 0$ n.e. в Q.

В связи со сказанным равенство (4), с помощью которого определено обобщенное решение задачи (1), (2), перепишем в виде

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \overline{v}_{x_j} + a(x) u \overline{v} \right) dx = l_f(v), \qquad v \in \mathring{H}^1(Q). \tag{6}$$

Прежде всего докажем единственность обобщенного решения. Пусть u_1 и u_2 – два решения. Их разность $u=u_1-u_2\in \mathring{H}^1(Q)$ и удовлетворяет при всех $v\in \mathring{H}^1(Q)$ равенству

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} \overline{v}_{x_j} + a(x) u \overline{v} \right) dx = 0,$$

которое можно переписать в виде

$$(u,v)_{\mathring{H}^{1}(Q)} = 0$$
 для всех $v \in \mathring{H}^{1}(Q)$,

если скалярное произведение в $\mathring{H}^1(Q)$ определить на основании теоремы 2 § 9 главы 1 формулой

$$(u', v')_{\mathring{H}^{1}(Q)} = \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u'_{x_{i}} \overline{v'_{x_{j}}} + a(x) u' \overline{v'} \right) dx, \qquad (7)$$

где $u', v' \in \mathring{H}^1(Q)$. Следовательно, u = 0, т.е. $u_1 = u_2$, что и требовалось установить.

Перейдем теперь к вопросу о существовании обобщенного решения. Согласно сделанному предположению существует функция $\Phi(x) \in H^1(Q)$, для которой граничная функция $\varphi(x), x \in \partial Q$, является следом на ∂Q : $\Phi\big|_{\partial Q} = \varphi(x)$. Сделаем в равенстве (6) замену $u = \Phi + w$ искомой функции $u \in H^1(Q)$ на функцию $w \in \mathring{H}^1(Q)$. В результате, для функции w(x) получаем равенство

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) w_{x_{i}} \overline{v}_{x_{j}} + a(x) w \overline{v} \right) dx$$

$$= l_{f}(v) - \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) \Phi_{x_{i}} \overline{v}_{x_{j}} + a(x) \Phi \overline{v} \right) dx,$$

которое должно выполняться для всех $v \in \mathring{H}^1(Q)$. Это равенство можно переписать в виде

$$(w,v)_{\mathring{H}^1(Q)} = l_{f,\Phi}(v),$$

где линейный по $v \in \mathring{H}^1(Q)$ функционал

$$l_{f,\Phi}(v) = l_f(v) - \int_Q \left(\sum_{i,j=1}^n a_{ij}(x) \Phi_{x_i} \overline{v}_{x_j} + a(x) \Phi \overline{v} \right) dx, \quad v \in \mathring{H}^1(Q),$$

ограничен в $\mathring{H}^1(Q)$, поскольку имеет место неравенство

$$|l_{f,\Phi}(v)| \leq ||l_f|| \, ||v||_{\mathring{H}^1(Q)} + C ||\Phi||_{H^1(Q)} \, ||v||_{\mathring{H}^1(Q)}$$
$$= (||l_f|| + C ||\Phi||_{H^1(Q)}) ||v||_{\mathring{H}^1(Q)},$$

постоянная C>0 в котором не зависит ни от v, ни от $\Phi,$ и, тем самым,

$$||l_{f,\Phi}|| \leq ||l_f|| + C||\Phi||_{H^1(Q)}.$$

Следовательно, по теореме Рисса существует единственная функция $F(x) \in \mathring{H}^1(Q)$, для которой при всех $v(x) \in \mathring{H}^1(Q)$ имеет место равенство

$$l_{f,\Phi}(v) = (F,v)_{\mathring{H}^1(Q)},$$

при этом

$$||F||_{\mathring{H}^1(Q)} = ||l_{f,\Phi}||,$$

где норма в $\mathring{H}^1(Q)$ порождена скалярным произведением (7).

Это означает, что функция

$$u(x) = \Phi(x) + F(x)$$

является обобщенным решением задачи (1), (2), и это решение непрерывно зависит от f и Φ (a, тем самым, и от f и φ):

$$||u||_{H^{1}(Q)} = ||\Phi + F||_{H^{1}(Q)}$$

$$\leq ||\Phi||_{H^{1}(Q)} + ||l_{f,\Phi}|| \leq ||l_{f}|| + C_{1}||\Phi||_{H^{1}(Q)}.$$
(8)

В частности, если $f \in L_2(Q)$, то в силу (5) и неравенства Стеклова (следствие 2 из теоремы 2 § 9 главы 1)

$$|l_f(v)| = |(f,v)_{L_2(Q)}| \leqslant ||f||_{L_2(Q)} ||v||_{L_2(Q)} \leqslant C_2 ||f||_{L_2(Q)} ||v||_{\mathring{H}^1(Q)}$$
 T.e.

$$||l_f|| \leqslant C_2 ||f||_{L_2(Q)}.$$

Следовательно, в этом случае неравенству (8) можно придать вид

$$||u||_{H^1(Q)} \le C_3(||f||_{L_2(Q)} + ||\Phi||_{H^1(Q)}),$$
 (8')

в котором постоянная $C_3 > 0$ не зависит от f и φ .

Поскольку постоянные C_1 и C_3 в (8) и (8') не зависят от Φ , то наряду с этими неравенствами имеют место и неравенства

$$||u||_{H^1(Q)} \le ||l_f|| + C_1 \inf_{\Phi \in H^1(Q), \Phi|_{\partial Q} = \varphi} ||\Phi||_{H^1(Q)},$$
 (8")

и, в частности, когда $f \in L_2(Q)$,

$$||u||_{H^1(Q)} \le C_3 (||f||_{L_2(Q)} + \inf_{\Phi \in H^1(Q), \Phi|_{\partial Q} = \varphi} ||\Phi||_{H^1(Q)}),$$
 (8"')

выражающее непрерывную зависимость решения от функций f и φ в "явном" виде.

Таким образом, установлена справедливость следующего утверждения.

ТЕОРЕМА 1. Пусть $a_{ij}(x) = a_{ji}(x) \in L_{\infty}(Q), i, j = 1, \ldots, n,$ $a(x) \in L_{\infty}(Q), a(x) \geqslant 0$ п.в. в Q, u для всех $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ и п.в. $x \in \overline{Q}$ выполняется неравенство (3). Тогда при любой функции $\varphi(x)$, которая является следом на ∂Q некоторой функции из $H^1(Q)$, и любой функции f, для которой определенный равенством (5) функционал $l_f(v), v \in \mathring{H}^1(Q)$, ограничен, существует и единственно обобщенное решение u(x) задачи (1), (2); это решение удовлетворяет неравенству (8") и, в частности, если $f \in L_2(Q)$, – неравенству (8").

Замечание 1. Нетрудно проверить, что множество заданных на ∂Q функций $\varphi(x)$, являющихся следами некоторых функций из $H^1(Q)$, образует банахово пространство $B(\partial Q)$ с нормой

$$\|\varphi\|_{B(\partial Q)} = \inf_{\Phi \in H^1(Q), \Phi|_{\partial Q} = \varphi} \|\Phi\|_{H^1(Q)}.$$

Сказанное позволяет неравенства (8'') и (8''') переписать соответственно в виде

$$||u||_{H^1(Q)} \le ||l_f|| + C_1 ||\varphi||_{B(\partial Q)}$$

И

$$||u||_{H^1(Q)} \le C_3(||f||_{L_2(Q)} + ||\varphi||_{B(\partial Q)}).$$

Из полученных в этом и предыдущем параграфах результатов вытекает, в частности, существование и единственность решения рассмотренной во введении задачи о равновесии мембраны. Напомним, что функция $u(x), x \in Q \subset \mathbb{R}^2$, задающая уравнение $u = u(x), x \in Q$, мембраны в состоянии равновесия, является экстремалью того или иного в зависимости от способа закрепления границы квадратичного функционала, характеризующего потенциальную энергию мембраны, и тем самым, представляет собой обобщенное решение соответствующей краевой задачи для эллиптического уравнения второго порядка. Аналогичная ситуация имеет место не только в задаче о равновесии мембраны, но и в ряде других механических задач. В связи с этим рассматриваемые нами обобщенные решения иногда называют энергетическими обобщенными решениями. Важным свойством таких решений является не только их связь с соответствующими физическими задачами, но и достаточная простота работы с ними, в чем мы уже частично убедились.

Вернемся к установленному в этом параграфе результату.

Из определения обобщенного решения и доказанной теоремы вытекает, что при наложенных на коэффициенты уравнения и на функцию f(x) условиях для существования обобщенного решения задачи (1), (2) необходимо и достаточно, чтобы $\varphi(x) \in B(\partial Q)$. В связи с этим возникает естественная потребность дать конструктивное описание элементов пространства $B(\partial Q)$.

Из теоремы 2 § 2 главы 1 вытекает, что любая функция $\varphi(x) \in C^1(\partial Q)$ является следом на ∂Q некоторой функции из $C^1(\overline{Q})$ и, тем самым, функции из $H^1(Q)$, т.е. $C^1(\partial Q) \subset B(\partial Q)$. Можно доказать, что $B(\partial Q)$ — гильбертово пространство $H^{1/2}(\partial Q)$

функций с половинным порядком гладкости. Поскольку изучение пространств H^{α} с нецелыми α , да еще в случае более или менее произвольных областей находятся вне рамок нашего курса, то мы ограничимся в этом направлении лишь изучением пространства $B(\partial Q)$ для случая, когда область Q есть круг в \mathbb{R}^2 . На этом примере, в частности, будет продемонстрировано, что множество $B(\partial Q)$ не достаточно богато: оно не содержит в себе, например, все непрерывные на границе функции, $C(\partial Q) \nsubseteq B(\partial Q)$, и что, тем самым, возможна ситуация, когда классическое решение задачи Дирихле с некоторой непрерывной граничной функцией существует (для уравнения Лапласа в круге), но обобщенного решения эта задача не имеет.

В связи с этим было введено более общее понятие обобщенного решения задачи (1), (2), обобщающее не только введенное выше, но и понятие классического решения. Это решение u(x) из $H^1_{\rm loc}(Q)$; уравнению (1) функция u(x) удовлетворяет в том смысле, что для нее выполняется равенство (4) при всех финитных функциях v(x) из $H^1(Q)$, а граничное условие (2) можно, например, в случае гладкой границы понимать как предел в определенной норме множества следов функции u(x) на аппроксимирующей границу изнутри области системе "параллельных" границе поверхностей. При рассмотрении обобщенных решений из $H^1_{\rm loc}(Q)$ от граничной функции можно предполагать лишь принадлежность $L_2(\partial Q)$. Мы в нашем курсе будем рассматривать лишь энергетические обобщенные решения. С обобщенными решениями из $H^1_{\rm loc}(Q)$ можно познакомиться в [2] и в работах авторов этих лекций.

Приведем теперь в случае, когда область Q есть круг в \mathbb{R}^2 , пример классического решения первой краевой задачи для уравнения Лапласа, которое не принадлежит $H^1(Q)$.

Пусть Q – круг $\{|x|<1\}\subset\mathbb{R}^2,\ x=(x_1,x_2),\ x_1=r\cos\theta,\ x_2=r\sin\theta,$ где r и θ – полярные координаты в $\mathbb{R}^2,\ 0\leqslant r<1,\ \theta\in[0,2\pi].$ Классическим решением задачи

$$\Delta u = 0, \qquad |x| < 1,$$

$$u|_{r=1} = \varphi_0(\theta) = \sum_{k=1}^{\infty} \frac{\cos k^3 \theta}{k^2},$$
(9)

(с непрерывной граничной функцией $\varphi_0(\theta)$) является функция

$$u_0(r,\theta) = \sum_{k=1}^{\infty} r^{k^3} \frac{\cos k^3 \theta}{k^2} \,.$$

Покажем, что $u_0(x) \nsubseteq H^1(|x| < 1)$. Действительно, для любого $R \in (0,1)$

$$\begin{split} \int_{|x| < R} |\nabla u_0|^2 \, dx &= \int_{|x| < R} \left((u_{0r})^2 + \frac{1}{r^2} (u_{0\theta})^2 \right) dx \\ &= 2 \int_{|x| < R} \left(\sum_{k=1}^{\infty} k r^{k^3 - 1} \sin k^3 \theta \right)^2 dx \\ &= 2\pi \int_0^1 r \left[\sum_{k=1}^{\infty} k^2 r^{2k^3 - 2} \right] dr = \pi \sum_{k=1}^{\infty} \frac{R^{2k^3}}{k} \,, \end{split}$$

т.е.

$$\int_{|x|< R} |\nabla u_0|^2 \to \infty \quad \text{при } R \to 1 - 0.$$

Следовательно, $u_0 \nsubseteq H^1(|x| < 1)$.

На самом деле, справедливо более сильное утверждение: в $H^1(|x|<1)$ не существует функции, след которой на границе совпадает с непрерывной функцией φ_0 из (9), и, тем самым, задача (9) вообще не имеет обобщенного решения. Это утверждение есть следствие каждого из следующих двух критериев, в формулировках и доказательствах которых, как и в только что приведенном примере, область Q есть круг $\{|x|<1\}\subset\mathbb{R}^2, x=(x_1,x_2), x_1=r\cos\theta, x_2=r\sin\theta,$ где r и θ – полярные координаты в \mathbb{R}^2 , $0\leqslant r<1,$ $\theta\in[0,2\pi].$

ТЕОРЕМА 2. Пусть функция $\varphi(\theta) \in L_2(0, 2\pi), u$

$$\varphi(\theta) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos k\theta + b_k \sin k\theta)$$
 (10)

— ее разложение в ряд Фурье. Для того чтобы функция $\varphi(\theta)$ была следом на $\{|x|=1\}$ некоторой функции из $H^1(|x|<1)$, необходимо и достаточно, чтобы сходился ряд

$$\sum_{k=1}^{\infty} k(a_k^2 + b_k^2). \tag{11}$$

Для функции $\varphi_0(\theta)$ из (9) коэффициенты $b_s=0,\,s=1,2,\ldots$, а коэффициенты $a_s=1/k^2$, если $s=k^3$ при некотором целом k>0, и $a_s=0$ в противном случае. Поэтому

$$\sum_{k=1}^{\infty} k(a_k^2 + b_k^2) = \sum_{k=1}^{\infty} k^3 \left(\frac{1}{k^2}\right)^2 = \infty,$$

и, тем самым, функция $\varphi_0(\theta)$ из (9) не является следом на окружности $\{|x|=1\}$ какой-либо функции из $H^1(|x|<1)$.

Для доказательства теоремы 2 рассмотрим в круге $\{|x|<1\}$ функцию

$$w(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} r^k (a_k \cos k\theta + b_k \sin k\theta). \tag{12}$$

Поскольку в силу равенства Парсеваля

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} (a_k^2 + b_k^2) = \frac{1}{2} \|\varphi\|_{L_2}(0, 2\pi) < \infty$$
 (13)

множество коэффициентов Фурье функции φ ограничено, то ряд в (12) и ряды, полученные из него дифференцированием любого порядка, равномерно сходятся на любом замкнутом подмножестве круга $\{|x|<1\}$. Следовательно, $w(x)\in C^\infty(|x|<1)$ и является гармонической функцией (каждый член ряда в (12) есть гармонический многочлен). Имеет место следующее утверждение.

ЛЕММА. Для того чтобы определенная рядом (12) функция w(x) принадлежала пространству $H^1(|x|<1)$, необходимо и достаточно, чтобы сходился ряд (11).

Обозначим через $w_m(x)$ частичную сумму ряда (12):

$$w_m(x) = \frac{a_0}{2} + \sum_{k=1}^{m} r^k (a_k \cos k\theta + b_k \sin k\theta).$$

Так как все функции системы $\{1, r^k \cos k\vartheta, r^k \sin k\vartheta, k=1,2,\dots\}$ попарно ортогональны в $L_2(|x|<1)$ и

$$||r^k \cos k\vartheta||_{L_2(|x|<1)}^2 = ||r^k \sin k\vartheta||_{L_2(|x|<1)}^2 = \frac{\pi}{2(k+1)}$$

при k = 1, 2, ..., то для любых p и $q, q > p \geqslant 0$,

$$||w_q - w_p||_{L_2(|x|<1)}^2 = \frac{\pi}{2} \sum_{k=n+1}^q \frac{a_k^2 + b_k^2}{k+1}.$$

Поэтому из сходимости ряда (13) вытекает сходимость в $L_2(|x|<1)$ последовательности $w_m(x), m=1,2,\ldots$ Следовательно, функция $w(x)\in L_2(|x|<1)$ и ряд (12) сходится к ней в $L_2(|x|<1)$.

Пусть сходится ряд (11). Тогда (при $q > p \geqslant 0$)

$$||w_q - w_p||_{H^1(|x|<1)}^2 = \int_{|x|<1} [(w_q - w_p)^2 + |\nabla(w_q - w_p)|^2] dx$$

$$= \int_0^1 r dr \int_0^{2\pi} \left[(w_q - w_p)^2 + (w_{qr} - w_{pr})^2 + \frac{1}{r^2} (w_{q\theta} - w_{p\theta})^2 \right] d\theta$$

$$= \frac{\pi}{2} \sum_{k=p+1}^q \frac{a_k^2 + b_k^2}{k+1} + \pi \sum_{k=p+1}^q k(a_k^2 + b_k^2) \to 0$$

при $p, q \to \infty$. Т.е. последовательность $w_m(x), m = 1, 2, \ldots$, сходится в $H^1(|x| < 1)$. Следовательно, $w(x) \in H^1(|x| < 1)$.

Пусть теперь $w(x) \in H^1(|x| < 1)$. Так как для любого R < 1 последовательность норм

$$||w_m||_{H^1(|x|$$

монотонно не убывая, стремится при $m \to \infty$ к $\|w\|_{H^1(|x| < R)}^2$, то при всех R < 1 и всех m имеет место неравенство

$$\begin{split} \sum_{k=1}^m R^{2k} k(a_k^2 + b_k^2) &\leqslant \frac{1}{\pi} \, \|w_m\|_{H^1(|x| < R)}^2 \\ &\leqslant \frac{1}{\pi} \, \|w\|_{H^1(|x| < R)}^2 \leqslant \frac{1}{\pi} \, \|w\|_{H^1(|x| < 1)}^2. \end{split}$$

Следовательно, частичные суммы ряда (11) ограничены:

$$\sum_{k=1}^{m} k(a_k^2 + b_k^2) \leqslant \frac{1}{\pi} \|w\|_{H^1(|x|<1)}^2.$$

т.е. ряд (11) сходится. Лемма доказана.

Перейдем к доказательству теоремы 2. Достаточность немедленно вытекает из леммы, поскольку в случае сходимости ряда (11) функция w(x) из (12) принадлежит $H^1(|x|<1)$ и ее след на окружности $\{|x|=1\}$ равен $\varphi(\theta)$ (функция $\varphi(\theta)$ является пределом в $L_2(0,2\pi)$ последовательности частичных сумм ряда (10), которые являются значениями на границе соответствующих принадлежащих $C^1(|x|\leqslant 1)$ частичных сумм сходящегося в $H^1(Q)$ ряда (12).

Докажем необходимость. Пусть существует функция $\Phi(x) \in H^1(|x|<1)$, для которой $\Phi\big|_{|x|=1}=\varphi$. Тогда в силу теоремы 1 существует обобщенное решение краевой задачи

$$\Delta u = 0, |x| < 1,$$
$$u|_{|x|=1} = \varphi.$$

(она является частным случаем задачи (1), (2)). Известно (см., например, [6], [7]), что обобщенное решение этой задачи $u(x) \in C^{\infty}(|x| < 1)$ и является гармонической функцией в $\{|x| < 1\}$. Разложим $u(x) = u(r,\theta)$ при фиксированном r < 1 в равномерно и абсолютно сходящийся ряд Фурье:

$$u(r,\theta) = \frac{U_0(r)}{2} + \sum_{k=1}^{\infty} (U_k(r)\cos k\theta + V_k(r)\sin k\theta),$$

где

$$U_k(r) = \frac{1}{\pi} \int_0^{2\pi} u(r, \theta) \cos k\theta \, d\theta, \qquad k = 0, 1, 2, \dots,$$
$$V_k(r) = \frac{1}{\pi} \int_0^{2\pi} u(r, \theta) \sin k\theta \, d\theta, \qquad k = 1, 2, \dots.$$

Функции $U_k(r)$ (и $V_k(r)$), $k=0,1,\ldots$, бесконечно дифференцируемы при 0< r<1 и ограничены при $r\to +0$. Поскольку $u\in H^1(|x|<1)$, то в силу непрерывности следа функций из $H^1(|x|<1)$, установленного в § 3 главы 1,

$$\int_0^{2\pi} \left(u(r,\theta) - \varphi(\theta) \right)^2 d\theta \to 0 \quad \text{при } r \to 1 - 0$$

для всех $k = 0, 1, \dots$ Следовательно, имеем

$$\int_0^{2\pi} \left(u(r,\theta) - \varphi(\theta) \right) \cos k\theta \, d\theta \to 0$$
$$\left(\int_0^{2\pi} \left(u(r,\theta) - \varphi(\theta) \right) \sin k\theta \, d\theta \to 0 \right)$$

при $r \to 1 - 0$.

Таким образом, все функции $U_k(r)$ ($V_k(r)$) непрерывны слева в точке r=1 и $U_k(1)=a_k$ ($V_k(1)=b_k$), $k=0,1,\ldots$

Так как для $r \in (0,1)$

$$\Delta u = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\vartheta\vartheta} = 0,$$

то для таких r

$$U_k''(r) = \frac{1}{\pi} \int_0^{2\pi} u_{rr}(r,\theta) \cos k\theta \, d\theta = -\frac{1}{\pi r} \int_0^{2\pi} u_r(r,\theta) \cos k\theta \, d\theta$$
$$-\frac{1}{\pi r^2} \int_0^{2\pi} u_{\theta\theta}(r,\theta) \cos k\theta \, d\theta = -\frac{1}{r} U_k' + \frac{k^2}{r^2} U_k$$

при $k = 0, 1, \dots$

Это означает, что для любых $k=0,1,\dots$ функция $U_k(r)$ удовлетворяет при 0< r<1 обыкновенному дифференциальному уравнению (Эйлера)

$$y'' + \frac{1}{r}y' - \frac{k^2}{r^2}y = 0.$$

Поскольку общее решение этого уравнения имеет вид $Br^k + Cr^{-k}$ при $k \neq 0$ и $B + C \ln r$ при k = 0, то $U_k(r) = a_k r^k$, $k = 0, 1, \ldots$ Аналогично показывается, что $V_k(r) = b_k r^k$, $k = 1, 2 \ldots$

Таким образом, функция u, принадлежащая $H^1(|x| < 1)$, совпадает с функцией w из (12). А тогда в силу леммы сходится ряд (11). Теорема доказана.

Приведем еще один критерий того, чтобы функция $\varphi=\varphi(\theta)$ была следом на границе круга $\{|x|<1\}$ функции из $H^1(|x|<1)$.

ТЕОРЕМА 3. Для того чтобы функция $\varphi(\vartheta)$ была следом на границе круга $\{|x|<1\}$ функции из $H^1(|x|<1)$ необходимо и достаточно, чтобы сходился интеграл

$$\int_{0}^{2\pi} \frac{dt}{t^{2}} \int_{0}^{2\pi} \left(\varphi(\theta + t) - \varphi(\theta) \right)^{2} d\theta < \infty.$$

Для функции $\varphi(\theta)$, разложенной в ряд Фурье (10) имеем

$$\varphi(\theta+t) - \varphi(\theta) = \sum_{k=1}^{\infty} a_k \left(\cos k\theta(\cos kt - 1) - \sin k\theta \sin kt\right)$$

$$+ b_k \left(\sin k\theta(\cos kt - 1) + \cos k\theta \sin kt\right)$$

$$= \sum_{k=1}^{\infty} \left(\cos k\theta[a_k(\cos kt - 1) + b_k \sin kt]\right)$$

$$+ \sin k\theta[b_k(\cos kt - 1) - a_k \sin kt]).$$

Следовательно,

$$\int_{0}^{2\pi} (\varphi(\theta+t) - \varphi(\theta))^{2} d\theta$$

$$= \pi \sum_{k=1}^{\infty} [(a_{k}(\cos kt - 1) + b_{k} \sin kt)^{2} + (b_{k}(\cos kt - 1) - a_{k} \sin kt)^{2}]$$

$$= \pi \sum_{k=1}^{\infty} (a_{k}^{2} + b_{k}^{2})[(\cos kt - 1)^{2} + \sin^{2}kt]$$

$$= 2\pi \sum_{k=1}^{\infty} (a_{k}^{2} + b_{k}^{2})(1 - \cos kt) = 4\pi \sum_{k=1}^{\infty} (a_{k}^{2} + b_{k}^{2})\sin^{2}\frac{kt}{2}.$$

Поэтому

$$\int_0^{2\pi} \frac{dt}{t^2} \int_0^{2\pi} (\varphi(\vartheta + t) - \varphi(\vartheta))^2 d\vartheta = 4\pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2) \int_0^{2\pi} \frac{\sin^2 \frac{kt}{2}}{t^2} dt$$
$$= 2\pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2) k \int_0^{k\pi} \frac{\sin^2 \tau}{\tau^2} d\tau.$$

Так как

$$\int_0^{k\pi} \frac{\sin^2 \tau}{\tau^2} d\tau \to \int_0^\infty \frac{\sin^2 \tau}{\tau^2} d\tau > 0 \quad \text{при } k \to \infty,$$

то сходимость ряда (10) и сходимость интеграла в формулировке теоремы 3 эквивалентны. Теорема доказана.

§ 3. Задача о собственных значениях и собственных функциях

В этом параграфе сначала мы рассмотрим третью (вторую) краевую задачу:

$$-\sum_{i,j=1}^{n} (a_{ij}(x)u_{x_i})_{x_j} + a(x)u = \lambda u, \qquad x \in Q,$$
 (1)

$$\left(\left. \sum_{i,j=1}^{n} \left(a_{ij}(x) u_{x_i} \right) \nu_j(x) + \sigma(x) u \right) \right|_{\partial Q} = 0, \tag{2}$$

в которой все коэффициенты – вещественнозначные функции, $a_{ij}(x)=a_{ji}(x)\in C^1(\overline{Q}), i, j=1,\ldots,n$, при всех $\xi=(\xi_1,\ldots,\xi_n)\in\mathbb{C}^n$ и всех $x\in\overline{Q}$ выполняется неравенство

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_i \overline{\xi}_j \geqslant \gamma \sum_{i} |\xi_i|^2 \tag{3}$$

с постоянной $\gamma>0,\ a(x)\in C(\overline{Q}),\ \sigma(x)\in C(\partial Q),\$ через $\nu(x)=(\nu_1(x),\dots,\nu_n(x))$ обозначен единичный вектор внешней по отношению к области Q нормали к границе $\partial Q,\ \lambda$ – числовой параметр.

Поскольку нас будут интересовать обобщенные решения этой задачи, то как и в $\S 1$ разумно снизить требования на коэффициенты в (1) и (2).

Будем считать, что вещественнозначные функции $a_{ij}(x) = a_{ji}(x) \in L_{\infty}(Q), i, j = 1, \ldots, n$, неравенство (3) выполняется для всех $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ и п.в. $x \in Q$, $a(x) \in L_{\infty}(Q)$, $\sigma(x) \in L_{\infty}(\partial Q)$.

Кроме того, для простоты будем считать, что $\sigma(x) \geqslant 0$ n.в. на ∂Q .

В рассматриваемом случае определение обобщенного решения задачи (1), (2) выглядит следующим образом – это функция $u(x) \in H^1(Q)$, удовлетворяющая при всех $v(x) \in H^1(Q)$ равенству

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + a(x) u \overline{v} \right) dx + \int_{\partial Q} \sigma(x) u \overline{v} dS = \lambda \int_{Q} u \overline{v} dx.$$

Число λ называется собственным значением задачи (1), (2), если при этом значении λ существует функция $u(x) \in H^1(Q)$,

 $\operatorname{mes}\{u(x) \neq 0\} > 0$, удовлетворяющая равенству (4) при любой $v(x) \in H^1(Q)$; функция u(x) называется обобщенной собственной функцией задачи (1), (2), отвечающей собственному значению λ .

Возьмем произвольное число m>- vrai $\min_{x\in Q}a(x)$. Тогда a(x)+m>0 п.в. в Q. Представим равенство (4) в виде

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + (a(x) + m) u \overline{v} \right) dx + \int_{\partial Q} \sigma(x) u \overline{v} dS$$
$$= (\lambda + m) \int_{Q} u \overline{v} dx, \qquad v \in H^{1}(Q),$$

или, что то же самое, в виде

$$(u,v)_{H^1(Q)} = (\lambda + m)(u,v)_{L_2(Q)}$$
 для всех $v \in H^1(Q)$, (5)

если скалярное произведение в $H^1(Q)$ согласно теореме 1 § 9 главы 1 определить формулой

$$(u,v)_{H^{1}(Q)} = \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + (a(x) + m) u \overline{v} \right) dx + \int_{\partial Q} \sigma(x) u \overline{v} dS.$$

$$(6)$$

Поскольку при любом $u \in L_2(Q)$ линейный функционал $l_u(v) = (u,v)_{L_2(Q)}$ ограничен:

$$|l_u(v)| = |(u, v)_{L_2(Q)}| \leqslant C ||u||_{L_2(Q)} ||v||_{H^1(Q)},$$

$$||l_u|| \leqslant C ||u||_{L_2(Q)},$$

то по теореме Рисса при любом $u \in L_2(Q)$ существует единственная функция $U(x) \in H^1(Q)$, для которой

$$(u,v)_{L_2(Q)}=(U,v)_{H^1(Q)}$$
 при всех $v\in H^1(Q)$,
$$\|U\|_{H^1(Q)}=\|l_u\|.$$

Следовательно, на $L_2(Q)$ задан линейный ограниченный оператор A из $L_2(Q)$ в $H^1(Q)$:

$$Au = U,$$

$$||Au||_{H^1(Q)} = ||U||_{H^1(Q)} \le C||u||_{L_2(Q)}, \qquad u \in L_2(Q),$$

откуда

$$||A|| \leqslant C$$
,

при этом для всех $u \in L_2(Q)$ и $v \in H^1(Q)$ имеет место равенство

$$(u,v)_{L_2(Q)} = (Au,v)_{H^1(Q)}.$$

Поскольку уравнение $Au=0,\ u\in L_2(Q),$ в силу этого равенства имеет решение только u=0, то оператор A имеет обратный $A^{-1}.$

Сужение оператора A на $H^1(Q)$ (мы обозначаем это сужение той же буквой A) в силу теоремы 1 § 6 главы 1 является вполне непрерывным оператором из $H^1(Q)$ в $H^1(Q)$. Так как при всех $v, u \in H^1(Q)$

$$(Au, v)_{H^{1}(Q)} = (u, v)_{L_{2}(Q)}$$

$$= \overline{(v, u)}_{L_{2}(Q)} = \overline{(Av, u)}_{H^{1}(Q)} = (u, Av)_{H^{1}(Q)},$$

то оператор A из $H^1(Q)$ в $H^1(Q)$ самосопряженный, $A = A^*$, и поскольку

$$(Au, u)_{H^1(Q)} = (u, u)_{L_2(Q)} > 0$$

для всех $u \neq 0$, то оператор A положительный.

Равенство (5) с помощью оператора A можно записать в виде

$$(u, v)_{H^1(Q)} = (\lambda + m)(Au, v)_{H^1(Q)}$$
 при $v \in H^1(Q)$. (7)

Следовательно, задача разыскания собственных значений и собственных функций эквивалентна задаче отыскания характеристических чисел и собственных элементов оператора A:

$$u = (\lambda + m)Au, \qquad u \in H^1(Q).$$

Число λ является собственным значением нашей задачи тогда и только тогда, когда число $\mu = \lambda + m$ является характеристическим числом оператора A, а обобщенные собственные функции являются соответствующими собственными элементами этого оператора.

Собственные функции, отвечающие различным собственным значениям, ортогональны (в скалярном произведении (6) пространства $H^1(Q)$).

Поскольку функция Cu(x) вместе с собственной функцией u(x), где постоянная $C \neq 0$, тоже является собственной функцией, отвечающей тому же собственному значению, то собственные функции можно считать нормированными в $H^1(Q)$ (в норме, порождаемой скалярным произведением (6)): $\|u\|_{H^1(Q)} = 1$. Множество собственных функций, отвечающих собственному значению λ образует линейное подпространство M_λ пространства $H^1(Q)$; по второй теореме Фредгольма его размерность, называемая кратностью $k(\lambda)$ собственного значения, конечна: $\dim M_\lambda = k(\lambda) < \infty$. В M_λ можно выбрать ортонормированный (в скалярном произведении (6)) базис, состоящий из $k(\lambda)$ собственных функций, отвечающих собственному значению λ .

Из теорем Фредгольма и теоремы Гильберта–Шмидта следует, что множество собственных значений является непустым счетным множеством вещественных чисел $\{\lambda_i, i=1,2,\dots\}$, которое можно расположить в порядке невозрастания:

$$-m < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_k \leqslant \ldots, \qquad \lambda_k \to \infty \quad \text{при } k \to \infty, \quad (8)$$

причем каждое собственное значение в этой последовательности повторяется столько раз, какова его кратность. Соответствующая последовательность собственных функций

$$u_1(x), \dots, u_k(x), \dots \tag{9}$$

образует ортонормированный в скалярном произведении (6) базис пространства $H^1(Q)$:

$$(u_1, u_2)_{H^1(O)} = \delta_{i,j}, \quad i, j = 1, 2, \dots$$

В силу (7) для всех $i, j=1,2,\ldots$, имеем равенство

$$(u_i, u_j)_{H^1(Q)} = (\lambda_i + m)(u_i, u_j)_{L_2(Q)},$$

из которого вытекает, что

$$(u_i, u_j)_{L_2(Q)} = \frac{1}{\lambda_i + m} \delta_{ij}, \quad i, j = 1, 2, \dots,$$

т.е. последовательность (9) ортогональна в $L_2(Q)$, а последовательность

$$\frac{u_1(x)}{\sqrt{\lambda_1 + m}}, \dots, \frac{u_k(x)}{\sqrt{\lambda_k + m}}, \dots, \tag{10}$$

является ортонормированной системой в $L_2(Q)$.

Поскольку $H^1(Q)$ является всюду плотным в $L_2(Q)$ множеством, то последовательность (10) является ортонормированным базисом пространства $L_2(Q)$.

Таким образом, доказана следующая

ТЕОРЕМА 1. Пусть коэффициенты $a_{ij}(x)$, $i,j=1,\ldots,n$, a(x), $\sigma(x)$ general gene

$$\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n \leqslant \ldots$$

 $npu \ \text{этом} \ \lambda_1 \geqslant \text{vrai} \min_{x \in Q} a(x) \ u \ \lambda_n \to \infty \ npu \ n \to \infty.$

В этой последовательности каждое собственное значение повторяется столько раз, какова его кратность. Соответствующая последовательность обобщенных собственных функций

$$u_1(x), u_2(x), \ldots, u_n(x), \ldots$$

образует ортонормированный в скалярном произведении (6) базис пространства $H^1(Q)$. Система

$$\frac{u_1(x)}{\|u_1\|_{L_2(Q)}}\,,\,\frac{u_2(x)}{\|u_2\|_{L_2(Q)}}\,,\ldots,\frac{u_n(x)}{\|u_n\|_{L_2(Q)}}\,,\ldots$$

является ортонормированным базисом пространства $L_2(Q)$.

Совершенно аналогично рассматривается и задача на собственные значения в случае граничного условия первого рода:

$$-\sum_{i,j=1}^{n} \left(a_{ij}(x)u_{x_i} \right)_{x_j} + a(x)u = \lambda u, \qquad x \in Q, \tag{1}$$

$$u\big|_{\partial Q} = 0, \tag{11}$$

в которой все коэффициенты – вещественнозначные функции, $a_{ij}(x) = a_{ji}(x) \in C^1(\overline{Q}), i, j = 1, \ldots, n$, при всех $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ и всех $x \in \overline{Q}$ выполняется неравенство

$$\sum_{i,j=1}^{n} a_{ij}(x)\xi_{i}\overline{\xi_{j}} \geqslant \gamma \sum_{i} |\xi_{i}|^{2}$$
(3)

с постоянной $\gamma > 0, \ a(x) \in C(\overline{Q}), \ \lambda$ – числовой параметр.

Поскольку нас будут интересовать обобщенные решения этой задачи, то как и в $\S 2$ разумно снизить требования на коэффициенты в (1) и (2).

Будем считать, что вещественнозначные функции $a_{ij}(x)=a_{ji}(x)\in L_{\infty}(Q),\, i,\, j=1,\ldots,n,$ неравенство (3) выполняется для всех $\xi=(\xi_1,\ldots,\xi_n)\in\mathbb{C}^n$ и п.в. $x\in Q,\, a(x)\in L_{\infty}(Q).$

В рассматриваемом случае определение обобщенного решения задачи (1), (11) выглядит, напомним, следующим образом: это функция $u(x) \in \mathring{H}^1(Q)$, удовлетворяющая при всех $v(x) \in \mathring{H}^1(Q)$ равенству

$$\int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + a(x) u \overline{v} \right) dx = \lambda \int_{Q} u \overline{v} dx.$$
 (12)

Число λ называется собственным значением задачи (1), (11), если при этом значении λ существует функция $u(x) \in \mathring{H}^1(Q)$, $\operatorname{mes}\{u(x) \neq 0\} > 0$, удовлетворяющая равенству (12) при любой $v(x) \in \mathring{H}^1(Q)$; функция u(x) называется обобщенной собственной функцией задачи (1), (11), отвечающей собственному значению λ .

Введем обозначение m=- vrai $\min_{x\in Q}a(x)$ (тогда $a(x)+m\geqslant 0$ п.в. в Q) и перепишем (12) в виде

$$\begin{split} \int_{Q} & \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + \left(a(x) + m \right) u \overline{v} \right) dx \\ & = (\lambda + m) \int_{Q} u \overline{v} \, dx, \qquad v \in \mathring{H}^{1}(Q), \end{split}$$

или, что то же самое, в виде

$$(u,v)_{\mathring{H}^1(Q)} = (\lambda + m)(u,v)_{L_2(Q)}, \qquad v \in \mathring{H}^1(Q),$$
 (13)

если скалярное произведение в $\mathring{H}^1(Q)$ согласно теореме 2 § 9 главы 1 определить по формуле

$$(u,v)_{\mathring{H}^{1}(Q)} = \int_{Q} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} \overline{v}_{x_{j}} + (a(x) + m) u \overline{v} \right) dx.$$
 (14)

Интегральное равенство (13) аналогично интегральному равенству (5), которое получено при рассмотрении задачи (1), (2),

в нем лишь роль пространства $H^1(Q)$ играет его подпространство $\mathring{H}^1(Q)$. Проводя на основании равенства (13) те же рассуждения, что выше были проведены на основании равенства (5), конечно, с естественной заменой $H^1(Q)$ на $\mathring{H}^1(Q)$, убедимся в справедливости следующего утверждения.

ТЕОРЕМА 2. Пусть коэффициенты $a_{ij}(x), i, j = 1, \ldots, n, a(x)$ в (1) вещественнозначные функции, $a_{ij}(x) = a_{ji}(x) \in L_{\infty}(Q)$, $i, j = 1, \ldots, n, a(x) \in L_{\infty}(Q)$. Тогда множество всех собственных значений задачи (1), (11) есть счетное множество вещественных чисел

$$\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n \leqslant \ldots$$

 $npu \ \text{этом} \ \lambda_1 > - \text{vrai} \min_{x \in Q} a(x) \ u \ \lambda_n \to \infty \ npu \ n \to \infty.$

В этой последовательности каждое собственное значение повторяется столько раз, какова его кратность. Соответствующая последовательность обобщенных собственных функций

$$u_1(x), u_2(x), \dots, u_n(x), \dots$$

образует ортонормированный в скалярном произведении (14) базис пространства $\mathring{H}^1(Q)$. Система

$$\frac{u_1(x)}{\|u_1\|_{L_2(Q)}}, \frac{u_2(x)}{\|u_2\|_{L_2(Q)}}, \dots, \frac{u_n(x)}{\|u_n\|_{L_2(Q)}}, \dots$$

является ортонормированным базисом пространства $L_2(Q)$.

Список литературы

Цитированная литература

- [1] С. Л. Соболев, Некоторые применения функционального анализа в математической физике, Наука, М., 1988.
- [2] В.П. Михайлов, Дифференциальные уравнения в частных производных, Наука, М., 1983.
- [3] Г. М. Фихтенгольц, Курс дифференциального и интегрального исчисления, т. 1, ГИТТЛ, М., 1951.
- [4] В. С. Владимиров, Уравнения математической физики, Наука, М., 1988.
- [5] В. С. Владимиров, В. В. Жаринов, Уравнения математической физики, Физико-математическая литература, М., 2000.
- [6] С. Л. Соболев, Уравнения математической физики, ГИТТЛ, М., 1954.
- [7] В. П. Михайлов, Лекции по уравнениям математической физики, Физматлит, М., 2001.

Рекомендуемые учебники по общим вопросам теории функций и функционального анализа

- [8] А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, Наука, М., 1972.
- [9] Л. А. Люстерник, В. И. Соболев, Элементы функционального анализа, Наука, М., 1965.
- [10] Л. В. Канторович, Г. П. Акилов, Функциональный анализ в нормированных пространствах, ГИТТЛ, М., 1959.
- [11] В.С. Владимиров, Обобщенные функции в математической физике, Наука, М., 1979.
- [12] Ю. Н. Дрожжинов, Б. И. Завьялов, Введение в теорию обобщенных функций, Лекционные курсы НОЦ, 5, Математический институт им. В. А. Стеклова РАН, М., 2006.
- [13] О. В. Бесов, В. П. Ильин, С. М. Никольский, Интегральные представления функций и теоремы вложения, Наука, М., 1975.
- [14] Ф. Рисс, Б. Секефальви-Надь, Лекции по функциональному анализу, ИЛ, М., 1954.
- [15] И.П. Натансон, Теория функций вещественной переменной, ГИТТЛ, М., 1957.

Часть II

В первой части курса были установлены основные свойства пространств Соболева и изучена разрешимость краевых задач для линейных эллиптических уравнений второго порядка. Вторая часть посвящена доказательству более тонких свойств обобщенных решений этих уравнений. В частности, в ней доказывается, что обобщенное решение однородного уравнения с измеримыми и ограниченными коэффициентами, принадлежащее по определению пространству $W^1_{2,\mathrm{loc}}(Q),$ на самом деле непрерывно внутри рассматриваемой области Q, а для решений задачи Дирихле справедлив принцип максимума. Более того, решение непрерывно по Гёльдеру внутри Q. Доказательство этого фундаментального результата Е. Де Джорджи и Дж. Нэша (см. [1], [2]) является основной целью данной части и его потребности во многом о пределили выбор материала. О роли этого результата в развитии теории квазилинейных уравнений, а также в решении 19-ой и 20-ой проблем Гильберта, см., например, [3], [4].

Теорема о гёльдеровой непрерывности справедлива и для решений общего (в том числе и неоднородного) эллиптического уравнения второго порядка. Однако мы ограничимся простейшим случаем уравнения в самосопряженной форме без младших членов, в котором легче увидеть основные идеи доказательства. С возможными обобщениями этого результата можно ознакомиться, например, в книгах [3], [4]. В основе изложения лежит доказательство, предложенное Мозером (см. [5]). Оно потребует знания некоторых дополнительных свойств пространств Соболева; их изложению посвящена глава 3. Доказательству принципа максимума и вытекающего из него утверждения об однозначной разрешимости задачи Дирихле посвящена глава 4. Там же рассмотрены пространства с отрицательным показателем гладкости и доказана теорема об изоморфизме. Последняя глава содержит слабое неравенство Гарнака и доказательство теоремы о гёльдеровой непрерывности решений.

Некоторые дополнительные сведения из теории пространств Соболева

В этой главе будут приведены некоторые свойства пространств Соболева, которые нам понадобятся при изучении свойств решений эллиптических уравнений. Будет доказан критерий принадлежности измеримой функции пространству $L_{\infty}(Q)$, установлена теорема вложения $W_2^1(Q)$ в $L_p(Q)$ и получена специальная оценка нормы в $L_p(Q)$ через интеграл Дирихле и норму в L_2 по множеству заданной меры. Кроме того, мы рассмотрим не изучавшийся в первой части вопрос об обобщенных производных сложной функции.

§ 1. Пространства L_p и L_{∞}

Пусть $\mathscr{E} \subset \mathbb{R}^n, \ n \geqslant 2$, — измеримое (относительно меры Лебега в \mathbb{R}^n) множество, mes $\mathscr{E} > 0$, mes — мера Лебега. Всюду в этой части мы будем рассматривать только вещественнозначные функции. Напомним, что пространство $L_p(\mathscr{E}), p \geqslant 1$, состоит из определенных в \mathscr{E} измеримых функций, p-ая степень модуля которых суммируема (по \mathscr{E}); при этом функции из $L_p(\mathscr{E})$ считаются равными (образуют один элемент этого пространства), если их значения совпадают почти всюду. Норму в $L_p(\mathscr{E})$ будем далее обозначать через $\|\cdot\|_{L_p(\mathscr{E})}$ или через $\|\cdot\|_p$,

$$||f||_{L_p(\mathscr{E})} = ||f||_p = \left(\int_{\mathscr{E}} |f(x)|^p dx\right)^{1/p}.$$

Известно, что $L_p(\mathscr{E})$ является сепарабельным банаховым пространством. Напомним, что метрическое пространство называется сепарабельным, если в нем существует счетное всюду плотное множество, т.е. замыкание этого счетного множества совпадает со всем пространством (см., например, [6], [7]).

Для любых функций $f \in L_p(\mathscr{E})$ и $g \in L_q(\mathscr{E})$, где 1/p+1/q=1, их произведение fg принадлежит $L_1(\mathscr{E})$ и справедливо неравенство Гёльдера

$$\int_{\mathscr{E}} |f(x)g(x)| \, dx \leqslant ||f||_p ||g||_q.$$

Если мера множества $\mathscr E$ конечна (mes $\mathscr E<+\infty$), то из неравенства Гёльдера немедленно следует, что семейство пространств $L_p(\mathscr E)$, $p\geqslant 1$, монотонно убывает по вложению: если $p_1< p_2$, то $L_{p_2}(Q)\subset L_{p_1}(Q)$, при этом для всех $f\in L_{p_2}(\mathscr E)$ справедлива оценка

$$||f||_{p_1} \leqslant (\operatorname{mes} \mathscr{E})^{\frac{p_2 - p_1}{p_1 p_2}} ||f||_{p_2}.$$

Далее нам потребуется следующее обобщенное неравенство Γ ёльdepa.

ЛЕММА 1. Пусть $f_1 \in L_{p_1}(\mathscr{E}), f_2 \in L_{p_2}(\mathscr{E}), \ldots, f_m \in L_{p_m}(\mathscr{E}),$ где $1/p_1 + 1/p_2 + \cdots + 1/p_m = 1$. Тогда произведение $f_1 f_2 \ldots f_m \in L_1(\mathscr{E})$ и

$$\int_{\mathcal{E}} |f_1(x)f_2(x)\dots f_m(x)| \, dx \leqslant ||f_1||_{p_1} \, ||f_2||_{p_2} \dots ||f_m||_{p_m}. \tag{1}$$

Доказательство естественно провести индукцией по числу функций в системе. При m=2 утверждение верно (оно совпадает с неравенством Гёльдера). Предположим, что оно справедливо при m=k-1, и докажем его при m=k. В силу неравенства Гёльдера

$$\int_{\mathscr{E}} |f_1(x)f_2(x)\dots f_k(x)| \, dx
\leq \left(\int_{\mathscr{E}} |f_1(x)|^{p_1} \, dx \right)^{1/p_1} \left(\int_{\mathscr{E}} |f_2(x)\dots f_k(x)|^{q_1} \, dx \right)^{1/q_1}, \quad (2)$$

где $1/p_1+1/q_1=1$. Возьмем $r_i=p_i/q_1,\ i=2,\ldots,k$. Так как $1/r_2+\cdots+1/r_k=q_1(1/p_2+\cdots+1/p_k)=1$, то по индукционному предположению

$$\int_{\mathscr{E}} |f_2(x)|^{q_1} \dots |f_k(x)|^{q_1} dx \leqslant ||f_2|^{q_1}||_{r_2} \dots ||f_m|^{q_1}||_{r_m}.$$

Подставляя полученное неравенство в (2), получаем (1).

Перейдем теперь к изучению пространства существенно ограниченных функций $L_{\infty}(\mathscr{E})$. Напомним, что это пространство состоит из всех измеримых функций f, каждая из которых удовлетворяет условию: существует такая постоянная M=M(f), что $\max\{x\in\mathscr{E}:|f(x)|>M\}=0$. Легко видеть, что это условие эквивалентно условию ограниченности множества чисел K, для которых $\max\{x\in\mathscr{E}:|f(x)|>K\}>0$. Наименьшая из постоянных M (равная, очевидно, точной верхней грани чисел K) называется нормой f в $L_{\infty}(\mathscr{E})$; будем обозначать ее через $\|f\|_{L_{\infty}(\mathscr{E})}$ или через $\|f\|_{\infty}$,

$$\begin{split} \|f\|_{L_{\infty}(\mathscr{E})} &= \|f\|_{\infty} \\ &= \min \big\{ M : \operatorname{mes} \{ x \in \mathscr{E} : |f(x)| > M \} = 0 \big\} \\ &= \sup \big\{ K : \operatorname{mes} \{ x \in \mathscr{E} : |f(x)| > K \} > 0 \big\} = \operatorname{vrai} \sup_{\mathscr{E}} |f|. \end{split}$$

Конечно, как и для пространств $L_p(\mathscr{E})$, функции из $L_{\infty}(\mathscr{E})$ считаем равными, если их значения совпадают почти всюду в \mathscr{E} .

Будем предполагать, что mes $\mathscr{E}<+\infty$. Тогда пространство $L_{\infty}(\mathscr{E})$ вложено во все пространства $L_p(\mathscr{E})$. Нетрудно убедиться, что $L_{\infty}(\mathscr{E})$ не совпадает с пересечением $L_p(Q), \, p\geqslant 1$. Далее нам понадобится следующий критерий принадлежности функции пространству $L_{\infty}(\mathscr{E})$.

ТЕОРЕМА 1. Функция f принадлежит пространству $L_{\infty}(\mathscr{E})$ тогда и только тогда, когда она принадлежит всем пространствам $L_p(\mathscr{E}), \ p \geqslant 1, \ u$ существует такая постоянная $C, \ u$ то для всех $p \geqslant 1 \ \|f\|_p \leqslant C$. При этом

$$||f||_p \to ||f||_\infty \quad npu \ p \to \infty.$$
 (3)

Доказательство. Прежде всего заметим, что выражение

$$\left(\frac{1}{\operatorname{mes}\mathscr{E}}\int_{\mathscr{E}}|f(x)|^p\,dx\right)^{1/p} = \|f\|_p'$$

задает эквивалентную норму в пространстве $L_p(\mathscr{E})$. В силу неравенства Гёльдера для любой функции f из пересечения $\bigcap_{p\geqslant 1}L_p(\mathscr{E})$ семейство норм $\|f\|'_p$ монотонно не убывает (по p). А так как $\|f\|'_p\sim \|f\|_p$ при $p\to\infty$, то в доказательстве теоремы можно рассматривать как нормы $\|f\|_p$, так и нормы $\|f\|'_p$.

Утверждение о необходимости очевидно: из ограниченности измеримой функции f следует суммируемость $|f|^p$. А так как

 $||f||_p' \leqslant ||f||_{\infty}$, то ограничено, а следовательно, и сходится при $p \to \infty$ семейство норм функции f в $L_p(\mathscr{E})$. При этом

$$\lim_{p \to \infty} ||f||_p' = \lim_{p \to \infty} ||f||_p \leqslant ||f||_{\infty}. \tag{4}$$

Докажем утверждение о достаточности. Пусть функция f принадлежит пересечению пространств $L_p(\mathscr E), \, p\geqslant 1$, и с некоторой постоянной C выполняется условие: $\|f\|_p\leqslant C$ для всех $p\geqslant 1$. Возьмем произвольное неотрицательное число K, для которого мера множества $\mathscr E_K=\{x\in\mathscr E:|f(x)|>K\}$ положительна. Поскольку для всех p

$$K^p \operatorname{mes} \mathscr{E}_K \leqslant \int_{\mathscr{E}_K} |f(x)|^p dx \leqslant \int_{\mathscr{E}} |f(x)|^p dx,$$

то каждое такое число K должно удовлетворять оценке

$$K \leqslant \lim_{p \to \infty} \frac{\|f\|_p}{(\operatorname{mes} \mathscr{E}_K)^{1/p}} = \lim_{p \to \infty} \|f\|_p \leqslant C.$$

Следовательно, $f \in L_{\infty}(\mathscr{E})$ и

$$||f||_{\infty} = \sup\{K : \operatorname{mes} \mathscr{E}_K > 0\} \leqslant \lim_{p \to \infty} ||f||_p.$$

Последнее неравенство вместе с (4) дают (3).

§ 2. Вложение пространства $W_2^1(Q)$ в $L_p(Q)$

Пусть Q – ограниченная область \mathbb{R}^n , $n \geqslant 2$; гладкость ее границы (если это не оговорено особо) мы предполагать не будем. В этом параграфе будут доказаны теоремы вложения пространств $\mathring{W}_{2}^{1}(Q)$ и $W_{2}^{1}(Q)$ в $L_{p}(Q)$; при этом мы будем следить за зависимостью постоянной от области Q. Кроме того. В $\S 9$ главы 1 были доказаны теоремы об эквивалентных нормировках пространств $W_2^1(Q)$ и $\mathring{W}_2^1(Q)$, из которых следовали оценки квадрата нормы в $L_2(Q)$ через сумму интеграла Дирихле и квадрата интеграла по Q от рассматриваемой функции из $W_2^1(Q)$ (неравенство Пуанкаре) и через интеграл Дирихле для функций из $\mathring{W}_{2}^{1}(Q)$ (неравенство Стеклова). Из этих теорем (точнее, из теоремы 1 § 9 главы 1) нетрудно получить и оценку интеграла по Q от квадрата функции f (из $W_2^1(Q)$) через сумму интеграла Дирихле этой функции и интеграла от f по некоторому множеству положительной меры. В конце этого параграфа мы убедимся (см. лемму 1), что постоянная в обсуждаемой оценке зависит не от вида и расположения в Q этого множества, а только от его меры (считаем, что область Q фиксирована). Более подробную информацию о пространствах Соболева, в частности, теоремы вложения при минимальных предположениях относительно гладкости границы области можно найти, например, в [8].

Прежде всего, договоримся, что мы будем понимать под пространствами $W_2^1(Q)$ и $\mathring{W}_2^1(Q)$; определения этих пространств были даны для случая области с гладкой границей, а мы от этого требования отказались. Рассмотрим множество $C_0^\infty(\mathbb{R}^n)$ бесконечно дифференцируемых во всем пространстве \mathbb{R}^n и финитных функций. Под $C^\infty(\overline{Q})$ будем понимать множество сужений на Q функций из $C_0^\infty(\mathbb{R}^n)$. На $C^\infty(\overline{Q})$ введем скалярное произведение

$$(f,g)_{W_2^1(Q)} = \int_Q \left[\left(\nabla f(x), \nabla g(x) \right) + f(x)g(x) \right] dx; \tag{5}$$

напомним, что мы договорились рассматривать вещественнозначные функции. Если последовательность фундаментальна в полученном нормированном пространстве, то она, очевидно, фундаментальна в $L_2(Q)$. Добавим к функциям из $C^{\infty}(\overline{Q})$ пределы (элементы $L_2(Q)$) всех фундаментальных (в норме, порожденной скалярным произведением (5)) последовательностей функций из $C^{\infty}(\overline{Q})$. Полученное таким образом замыкание $C^{\infty}(\overline{Q})$

по норме, порожденной скалярным произведением (5), является гильбертовым пространством с тем же скалярным произведением (оно изоморфно пополнению $C^{\infty}(\overline{Q})$); его мы и будем обозначать через $W_2^1(Q)$. Отметим, что в случае области с гладкой границей приведенное определение эквивалентно (в силу теоремы 4 § 2 главы 1) определению, использованному в первой части. Под пространством $W_2^1(Q)$ будем понимать замыкание по той же норме множества финитных бесконечно дифференцируемых в Qфункций. Если граница ∂Q области Q состоит (как в части I) из конечного числа гладких поверхностей, то след на ∂Q функций из $\mathring{W}_{2}^{1}(Q)$, очевидно, равен нулю. А теорема 2 §4 главы 1 дает справедливость в этом случае и обратного утверждения: если след на ∂Q функции из $W_2^1(Q)$ равен нулю, то она является пределом (в норме, порожденной скалярным произведением (5)) некоторой последовательности функций из $C_0^{\infty}(Q)$. Таким образом, и новое определение пространства $\mathring{W}^1_2(Q)$ является расширением определения из главы 1 на области с негладкой границей. Отметим также, что в приведенных определениях вместо бесконечно дифференцируемых функций можно рассматривать непрерывно дифференцируемые функции: функция из $C^{1}(\overline{Q})$, очевидно, принадлежит $W_2^1(Q)$, а если она еще и финитна, то и $\mathring{W}_2^1(Q)$. Так же естественно определить пространства $W_2^1(Q)$ и $\mathring{W}_2^1(Q)$ и в случае неограниченной области Q; заметим, что если $Q = \mathbb{R}^n$, то так определенные пространства $W_2^1(Q)$ и $\mathring{W}_2^1(Q)$ совпадают.

Аналогично, под пространством $W_p^k(Q)$ естественно понимать замыкание $C^\infty(\overline{Q})$ по норме этого пространство (см. часть I); $\mathring{W}_n^k(Q)$ – это замыкание $C_0^\infty(Q)$ по той же норме.

Начнем изучение указанных в названии параграфа вложений со случая пространства $\mathring{W}^1_2(Q)$. В этом случае нет необходимости требовать ограниченность области Q.

ТЕОРЕМА 1. Пусть размерность пространства n не меньше трех. Тогда $\mathring{W}^1_2(Q) \subset L_{\frac{2n}{n-2}}(Q)$. При этом для любой функции f из $\mathring{W}^1_2(Q)$ справедлива оценка

$$||f||_{L_{\frac{2n}{n-2}}(Q)} \le \frac{2(n-1)}{n-2} |||\nabla f|||_{L_2(Q)}.$$
 (6)

Eсли n=2 u $\mathrm{mes}\, Q<\infty,$ mo для $\mathrm{\it scex}\, p\geqslant 1$ $\mathring{W}^1_2(Q)\subset L_p(Q)$ u

$$||f||_{L_p(Q)} \le \frac{p}{2} (\text{mes } Q)^{1/p} |||\nabla f|||_{L_2(Q)}, \qquad f \in \mathring{W}_2^1(Q).$$
 (6')

Замечание 1. Если mes $Q < \infty$, то из первого утверждения теоремы 1 немедленно следует (в силу монотонности по вложению семейства пространств $L_p(Q)$), что все $L_p(Q)$, $p \in [1, \frac{2n}{n-2}]$, содержат $\mathring{W}_2^1(Q)$. При этом

$$||f||_{L_p(Q)} \le (\operatorname{mes} Q)^{\frac{p(2-n)+2n}{2np}} ||f||_{L_{\frac{2n}{n-2}}(Q)}$$

$$\le \frac{2(n-1)}{n-2} (\operatorname{mes} Q)^{\frac{p(2-n)+2n}{2np}} ||\nabla f||_{L_2(Q)}.$$

В частности, при p=2 имеем неравенство Стеклова

$$||f||_{L_2(Q)} \le \frac{2(n-1)}{n-2} (\text{mes } Q)^{1/n} |||\nabla f|||_{L_2(Q)},$$
 (6")

в котором постоянная зависит только от размерности пространства n и меры области Q.

Доказательство теоремы 1. Возьмем произвольную функцию f из $C_0^\infty(Q)$; доопределим ее нулем вне Q. Тогда для любой точки $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ и любого $i,1\leqslant i\leqslant n,$

$$|f(x)| = \left| \int_{-\infty}^{x_i} \frac{\partial f}{\partial x_i}(x_i', t_i) dt_i \right|,$$

здесь $(x_i', t_i) = (x_1, \dots, x_{i-1}, t_i, x_{i+1}, \dots, x_n)$. Перемножая n таких равенств, соответствующих $i = 1, \dots, n$, и возводя произведение в степень 1/(n-1), имеем

$$|f(x)|^{n/(n-1)} \leqslant \left(\prod_{i=1}^{n} \int_{-\infty}^{+\infty} \left| \frac{\partial f}{\partial x_i}(x_i', t_i) \right| dt_i \right)^{1/(n-1)}.$$

92

Интегрируя это неравенство по x_1 и применяя обобщенное неравенство Гёльдера (1) с $p_1 = p_2 = \cdots = p_{n-1} = n-1$, получим

$$\int_{-\infty}^{+\infty} |f(x_1, x_2, \dots, x_n)|^{n/(n-1)} dx_1$$

$$\leq \left(\int_{-\infty}^{+\infty} \left| \frac{\partial f}{\partial x_1}(x_1', t_1) \right| dt_1 \right)^{1/(n-1)}$$

$$\times \int_{-\infty}^{+\infty} \prod_{i=2}^{n} \left(\int_{-\infty}^{+\infty} \left| \frac{\partial f}{\partial x_i}(x_i', t_i) \right| dt_i \right)^{1/(n-1)} dx_1$$

$$\leq \left(\int_{-\infty}^{+\infty} \left| \frac{\partial f}{\partial x_1}(x_1', t_1) \right| dt_1 \right)^{1/(n-1)}$$

$$\times \prod_{i=2}^{n} \left(\int_{-\infty}^{+\infty} dt_i \int_{-\infty}^{+\infty} \left| \frac{\partial f}{\partial x_i}(x_i', t_i) \right| dx_1 \right)^{1/(n-1)}.$$

Откуда, интегрируя по остальным переменным $(x_k, k=2,\ldots,n)$ и каждый раз применяя обобщенное неравенство Гёльдера с теми же показателями, имеем

$$\begin{split} \int_{\mathbb{R}^n} |f(x)|^{n/(n-1)} \, dx \\ & \leqslant \left[\prod_{i=1}^n \int_{\mathbb{R}^n} \left| \frac{\partial f}{\partial x_i}(x) \right| dx \right]^{1/(n-1)} \leqslant \left(\int_{\mathbb{R}^n} |\nabla f(x)| \, dx \right)^{n/(n-1)}. \end{split}$$

Таким образом, мы доказали (напомним, что f=0 вне Q) справедливость для всех $f\in C_0^\infty(Q)$ оценки

$$||f||_{L_{n/(n-1)}(Q)} \le \int_{Q} |\nabla f(x)| dx = |||\nabla f|||_{L_{1}(Q)}.$$
 (7)

Замечание 2. Из полученного неравенства (7) немедленно следует, что для любой области $Q \subset \mathbb{R}^n$, где $n \geq 2$, пространство $\mathring{W}_1^1(Q)$ вложено в $L_{n/(n-1)}(Q)$ и для всех $f \in \mathring{W}_1^1(Q)$ справедливо (7).

Действительно, возьмем произвольную функцию $f \in \mathring{W}^1_1(Q)$ и пусть $\{f_m\}$ – последовательность функций из $C_0^\infty(Q)$, сходящаяся к f в $\mathring{W}^1_1(Q)$. Из (7) следует фундаментальность этой последовательности и в $L_{n/(n-1)}(Q)$. Легко видеть, что предел в $L_{n/(n-1)}(Q)$

этой последовательности совпадает (п.в. в Q) с f (Докажите!) и его норма в $L_{n/(n-1)}(Q)$ – предел норм f_m в этом пространстве – удовлетворяет (7) (предел норм $|\nabla f_m|$ в $L_1(Q)$, конечно, равен норме $|\nabla f|$ в $L_1(Q)$).

Вернемся к доказательству теоремы 1. Пусть, по-прежнему, $f \in C_0^\infty(Q)$, а n>2. Применим к непрерывно дифференцируемой и финитной в Q функции $|f(x)|^\gamma$, где $\gamma=\frac{2(n-1)}{n-2}>2$, оценку (7); для таких функций она справедлива в силу замечания 2. Получим

$$|||f|^{\gamma}||_{L_{n/(n-1)(Q)}} = \left(\int_{Q} |f(x)|^{\frac{\gamma n}{n-1}} dx\right)^{\frac{n-1}{n}}$$

$$\leq \gamma \int_{Q} |f(x)|^{\gamma-1} |\nabla f(x)| dx \leq \gamma |||f|^{\gamma-1} ||_{L_{2}(Q)} |||\nabla f|||_{L_{2}(Q)}.$$

Или, учитывая выбранное значение γ , имеем оценку

$$\left(\int_{Q} |f(x)|^{\frac{2n}{n-2}} dx\right)^{\frac{n-1}{n}} \leqslant \frac{2(n-1)}{n-2} \left(\int_{Q} |f(x)|^{\frac{2n}{n-2}} dx\right)^{\frac{1}{2}} \||\nabla f||_{L_{2}(Q)},$$

которая, очевидно, совпадает с (6). Из доказанной для гладких финитных функций оценки (6) вытекает, как и в замечании 2, первое утверждение доказываемой теоремы.

Докажем второе утверждение. Пусть теперь размерность пространства n равна двум, $f \in C_0^{\infty}(Q)$. Тогда (доказанное для всех $n \ge 2$) неравенство (7) имеет вид

$$||f||_{L_2(Q)} \le |||\nabla f|||_{L_1(Q)}.$$

Возьмем произвольное число $\gamma > 1$ и применим (7) к функции $|f(x)|^{\gamma}$. Используя неравенство Гёльдера, получим оценку

$$\left(\int_{Q} |f(x)|^{2\gamma} dx \right)^{\frac{1}{2}} \\
\leqslant \gamma \int_{Q} |f(x)|^{\gamma-1} |\nabla f(x)| dx \leqslant \gamma \| |f|^{\gamma-1} \|_{L_{2}(Q)} \| |\nabla f| \|_{L_{2}(Q)} \\
\leqslant \gamma \left(\int_{Q} |f(x)|^{2(\gamma-1)\frac{\gamma}{\gamma-1}} dx \right)^{\frac{\gamma-1}{2\gamma}} (\text{mes } Q)^{\frac{1}{2\gamma}} \| |\nabla f| \|_{L_{2}(Q)},$$

которая, очевидно, совпадает с (6'), $p = 2\gamma > 2$. Для $p \in [1,2]$ неравенство (6') получается из доказанного с помощью неравенства Гёльдера. Утверждение о вложении $\mathring{W}_{2}^{1}(Q)$ в $L_{p}(Q)$ и

справедливость (6') для всех $f \in \mathring{W}^1_2(Q)$ устанавливается, как и в замечании 2, с помощью приближения произвольной функции их $\mathring{W}^1_2(Q)$ гладкими финитными функциями.

В случае ограниченной области Q с гладкой (класса C^1) границей из доказанной теоремы 1 и теоремы 1 § 2 главы 1 немедленно вытекает справедливость следующего утверждения.

Следствие 1. Пусть Q — ограниченная область \mathbb{R}^n с гладкой границей. Тогда $W_2^1(Q) \subset L_p(Q)$ для $p \in [1, \frac{2n}{n-2}]$ при $n \geqslant 3$ и для всех $p \geqslant 1$ при n=2. При этом справедлива оценка

$$||f||_{L_p(Q)} \leqslant C||f||_{W_2^1(Q)},$$

в которой постоянная C зависит от размерности пространства n, показателя суммируемости p и области $Q;\ C=C(n,p,Q).$

Пусть теперь Q — шар единичного радиуса,

$$Q = \mathcal{B}_1 = \{ x \in \mathbb{R}^n : |x| < 1 \}.$$

ЛЕММА 1. Для произвольной положительной постоянной c_0 найдется такая постоянная $C = C(n, c_0)$, что для любого множества $\mathscr{E} \subset \mathscr{B}_1$, мера которого не меньше c_0 , и всех функций $f \in W_2^1(\mathscr{B}_1)$ справедливо неравенство

$$\int_{\mathcal{R}_{\bullet}} f^{2}(x) dx \leqslant C \left[\int_{\mathcal{R}_{\bullet}} |\nabla f|^{2}(x) dx + \int_{\mathcal{E}} f^{2}(x) dx \right]. \tag{8}$$

Доказательство. Возьмем две произвольные точки x и y шара \mathcal{B}_1 . Наряду с декартовыми координатами точки $y,\ y=(y_1,\dots,y_n)$ будем рассматривать и ее сферические координаты с центром в точке x: $y=x+r\omega,\ r=|y-x|,\ |\omega|=1$. Пусть g – произвольная функция из $C_0^\infty(\mathcal{B}_1)$. Так как

$$g(x) = g(y) - \int_0^r \frac{d}{dt} [g(x + t\omega)] dt,$$

то

$$|g(x)| \le |g(y)| + \int_0^r |\nabla g(x + t\omega)| dt.$$

Интегрируя это неравенство по множеству $\mathscr E$ (по переменным y) и заменяя во втором слагаемом правой части интеграл по $\mathscr E$ на

интеграл по всему шару \mathscr{B}_1 , получаем

$$\operatorname{mes} \mathscr{E}|g(x)| \leqslant \int_{\mathscr{E}} |g(y)| \, dy + \int_{\mathscr{B}_1} \left[\int_0^r |\nabla g(x+t\omega)| \, dt \right] dy.$$

Доопределим функцию $|\nabla g|$ нулем вне \mathscr{B}_1 и обозначим ее через $h\colon h(z)=|\nabla g(z)|$ при $z\in\mathscr{B}_1$ и h(z)=0 при $z\notin\mathscr{B}_1$. Так как

$$\begin{split} \int_{\mathscr{B}_1} \left[\int_0^r |h(x+t\omega)| \, dt \right] dy \\ &= \int_0^2 r^{n-1} \left[\int_{|\omega|=1} \left(\int_0^r h(x+t\omega) \, dt \right) dS_\omega \right] dr \\ &\leqslant \int_0^2 r^{n-1} \left[\int_{|\omega|=1} \left(\int_0^2 h(x+t\omega) \, dt \right) dS_\omega \right] dr \\ &= \frac{2^n}{n} \int_{\{z:|z-x|<2\}} \frac{h(z)}{|z-x|^{n-1}} \, dz = \frac{2^n}{n} \int_{\mathscr{B}_1} \frac{|\nabla g(z)|}{|z-x|^{n-1}} \, dz, \end{split}$$

то для всех точек x из \mathscr{B}_1

$$|g(x)| \le \frac{1}{c_0} \int_{\mathcal{E}} |g(y)| \, dy + \frac{2^n}{nc_0} \int_{\mathcal{Q}_1} \frac{|\nabla g(z)|}{|z - x|^{n-1}} \, dz.$$

Интегрируя последнее неравенство по шару \mathscr{B}_1 , получаем, что для любой функции $g \in C_0^{\infty}(\mathscr{B}_1)$ справедлива оценка

$$\int_{\mathcal{B}_{1}} |g(x)| dx \leqslant \frac{C(n)}{c_{0}} \int_{\mathcal{E}} |g(y)| dy + \frac{2^{n}}{nc_{0}} \int_{\mathcal{B}_{1}} \left[\int_{\mathcal{B}_{1}} \frac{|\nabla g(z)|}{|z - x|^{n-1}} dz \right] dx$$

$$\leqslant C(n, c_{0}) \left[\int_{\mathcal{E}} |g(x)| dx + \int_{\mathcal{B}_{1}} |\nabla g(x)| dx \right] \tag{8'}$$

с зависящей только от n и c_0 постоянной $C(n, c_0)$.

Замечание 3. Приближая произвольную функцию g, принадлежащую $W_1^1(\mathcal{B}_1)$, функциями из $C_0^{\infty}(\mathcal{B}_1)$, немедленно получаем (8') для $g \in W_1^1(\mathcal{B}_1)$.

Вернемся к доказательству леммы 1. Возьмем произвольную $f\in C_0^\infty(\mathscr{B}_1)$ и к функции $g(x)=f^2(x)$ применим (8'). Получим неравенство

$$\int_{\mathcal{B}_1} f^2(x) \, dx \leqslant C(n, c_0) \left[\int_{\mathcal{E}} f^2(x) \, dx + \int_{\mathcal{B}_1} |f(x)| \, |\nabla f(x)| \, dx \right],$$

из которого немедленно вытекает доказываемая оценка (8) для $f \in C_0^{\infty}(\mathcal{B}_1)$. Справедливость (8) для всех $f \in W_2^1(\mathcal{B}_1)$ получается стандартным приемом с помощью приближения гладкими функциями.

Из следствия 1 и леммы 1 немедленно вытекает следующее утверждение, описывающее зависимость от радиуса шара ρ постоянной в оценке квадрата нормы в $L_p(\mathscr{B}_{\rho})$ через интеграл Дирихле и квадрат нормы в $L_2(\mathscr{E})$, $\mathscr{B}_{\rho} = \{x \in \mathbb{R}^n : |x| < \rho\}$.

Следствие 2. Для произвольной положительной постоянной c_0 и для любого показателя $p \in [1, \frac{2n}{n-2}]$ при $n \geq 3$ и $p \geq 1$ при n = 2 найдется такая постоянная $C = C(n, c_0, p)$, что для любого множества $\mathscr{E} \subset \mathscr{B}_{\rho}$, мера которого не меньше $c_0 \rho^n$, и для всех функций $f \in W_2^1(\mathscr{B}_1)$ справедливо неравенство

$$\left[\rho^{-n} \int_{\mathscr{B}_{\rho}} |f(x)|^{p} dx\right]^{2/p}$$

$$\leq C \left[\rho^{2-n} \int_{\mathscr{B}_{\rho}} |\nabla f|^{2}(x) dx + \rho^{-n} \int_{\mathscr{E}} f^{2}(x) dx\right]. \tag{9}$$

Доказательство этого утверждения очевидно: подставляя в оценку нормы в $L_p(\mathcal{B}_1)$ следствия 1 неравенство (8), имеем (9) для единичного шара; для шара произвольного радиуса неравенство (9) получается с помощью растяжения.

Замечание 4. Оценка вида (9), конечно, верна и для любой ограниченной области Q с гладкой границей. Для ее доказательства достаточно продолжить (с сохранением принадлежности W_2^1) функцию в содержащий область Q шар и применить к ней (9), взяв $\mathscr{E} \subset Q$; конечно, постоянная в полученной оценке будет зависеть не только от n, c_0 и p, но еще и от области Q.

§ 3. Обобщенные производные сложной функции

Пусть f — отображение $\mathbb R$ в $\mathbb R$. Следующее утверждение дает достаточное условие принадлежности пространству $W_2^1(Q)$ суперпозиции отображений $F=f\circ u$ для всех $u\in W_2^1(Q)$. Напомним, что область Q мы договорились считать ограниченной.

ТЕОРЕМА 1. Пусть функция f непрерывно дифференцируема на всей оси, а ее производная ограничена. Тогда для любой $u \in W_2^1(Q)$ сложная функция F(x) = f(u(x)) принадлежит $W_2^1(Q)$, а ее обобщенные производные имеют вид

$$\frac{\partial F}{\partial x_i}(x) = f'(u(x))\frac{\partial u}{\partial x_i}(x), \qquad i = 1, 2, \dots, n.$$

Доказательство. Прежде всего заметим, что из ограниченности производной функции f следует оценка

$$|F(x)|^2 = |f(u(x))|^2 = |f(0) + \int_0^{u(x)} f'(t) dt|^2$$

$$\leq 2K^2 u^2(x) + 2f^2(0), \qquad K = \sup_{t \in \mathbb{R}} |f'(t)|,$$

которая вместе с очевидной измеримостью F(x) дает принадлежность функции F пространству $L_2(Q)$. Аналогично, функции

$$f'(u(x))\frac{\partial u}{\partial x_i}(x), \qquad i=1,2,\ldots,n,$$

измеримы и их квадраты мажорируются суммируемой функцией:

$$\left| f'(u(x)) \frac{\partial u}{\partial x_i}(x) \right|^2 \leqslant K^2 |\nabla u(x)|^2.$$

Следовательно, и они принадлежат $L_2(Q)$.

Пусть последовательность $\{u_k\}$ функций из $C^{\infty}(\overline{Q})$ сходится к функции u в $W_2^1(Q)$. Выделим из нее сходящуюся п.в. (к u) подпоследовательность; будем обозначать эту подпоследовательность также через $\{u_k\}$; заметим, что последовательности $f(u_k(x)) - f(u(x))$ и $f'(u_k(x)) - f'(u(x))$ п.в. стремятся к нулю при $k \to \infty$. А так как

$$|f(u_k(x)) - f(u(x))|^2 \le K^2 |u_k(x) - u(x)|^2,$$

то по теореме Лебега последовательность гладких функций $f \circ u_k$ сходится к $f \circ u$ в $L_2(Q)$. Покажем, что и последовательности производных $(\partial f \circ u_k)/\partial x_i$ сходятся в $L_2(Q)$ к $(f' \circ u)\partial u/\partial x_i$. Действительно,

$$\| |(f' \circ u_k) \nabla u_k - (f' \circ u) \nabla u| \|_{L_2(Q)}$$

$$\leq \| |f' \circ u_k - f' \circ u| |\nabla u| \|_{L_2(Q)} + \| |f' \circ u_k| |\nabla u_k - \nabla u| \|_{L_2(Q)}.$$

Первое слагаемое в правой части последнего неравенства стремится к нулю в силу теоремы Лебега, так как

$$\left| f'(u_k(x)) - f'(u(x)) \right|^2 \leqslant K^2.$$

Второе слагаемое оценивается величиной $K \| |\nabla u_k - \nabla u| \|_{L_2(Q)}$, которая стремится к нулю при $k \to \infty$. Следовательно, функции $f'(u(x))\partial u/\partial x_i(x)$ являются обобщенными производными функции F(x), а F является пределом в норме $W_2^1(Q)$ последовательности гладких функций.

Замечание 1. Пусть I — одно из следующих множеств: либо это отрезок [a,b], либо одна из полуосей $[a,+\infty)$ или $(-\infty,b]$. Предположим, что функция u принимает значения из этого множества: $u(x) \in I$ для п.в. x из Q. Тогда, как легко видеть, для справедливости теоремы 1 достаточно потребовать, чтобы функция f была непрерывно дифференцируема на I и ее производная была ограничена на этом множестве. Для доказательства этого утверждения достаточно линейно продолжить f на всю ось.

ЛЕММА 1. Для любой функции и из $W_2^1(Q)$ функция $u^+(x) = \max\{u(x),0\}$ принадлежит $W_2^1(Q)$. При этом

$$\frac{\partial u^{+}}{\partial x_{i}}(x) = \begin{cases} \frac{\partial u}{\partial x_{i}}(x) & \text{ons } x : u(x) > 0\\ 0 & \text{ons } x : u(x) \leqslant 0. \end{cases}$$
(10)

Замечание 2. Так как

$$u^{-}(x) = \min\{u(x), 0\} = -[(-u)^{+}(x)],$$
$$|u(x)| = u^{+}(x) - u^{-}(x),$$
$$\max\{u(x), v(x)\} = (u(x) - v(x))^{+} + (v(x) - u(x))^{+},$$
$$\min\{u(x), v(x)\} = -\max\{-u(x), -v(x)\},$$

то из леммы 1 вытекает принадлежность и этих функций пространству $W^1_2(Q),$ если ему принадлежат функции u и v.

Очевидно также, что и функция $u^{(a)}=(u-a)^+$ принадлежит пространству $W_2^1(Q)$ при любом $a\in\mathbb{R}.$ При этом

$$\frac{\partial u^{(a)}}{\partial x_i}(x) = \begin{cases} \frac{\partial u}{\partial x_i}(x) & \text{при } u(x) > a \\ 0 & \text{при } u(x) \leqslant a. \end{cases}$$

Отсюда, в частности, следует, что

$$\max\{x \in Q : u(x) = a, |\nabla u(x)| > 0\} = 0$$

при всех a.

Доказательство леммы 1. Возьмем произвольное положительное число ε и пусть

$$f_\varepsilon(t) = \begin{cases} (t^2 + \varepsilon^2)^{1/2} - \varepsilon & \text{при } t > 0 \\ 0 & \text{при } t \leqslant 0. \end{cases}$$

Очевидно, что функция f_{ε} непрерывно дифференцируема на всей оси, принимает неотрицательные значения, а ее производная имеет вид

$$f_\varepsilon'(t) = \begin{cases} \frac{t}{(t^2 + \varepsilon^2)^{1/2}} & \text{при } t > 0 \\ 0 & \text{при } t \leqslant 0. \end{cases}$$

Отметим, что для всех $t \in \mathbb{R} \ |f_{\varepsilon}'(t)| \leq 1$. В силу теоремы 1 при любом $\varepsilon > 0$ $f_{\varepsilon}(u(x)) \in W_2^1(Q)$ и

$$\frac{\partial}{\partial x_i} f_{\varepsilon} (u(x)) = f'_{\varepsilon} (u(x)) \frac{\partial u}{\partial x_i} (x).$$

Семейство функций $f_{\varepsilon}(u(x))$ стремится к функции $u^+(x)$ в $L_2(Q)$ при $\varepsilon \to +0$, поскольку $f_{\varepsilon}(u(x)) \to u^+(x)$ при $\varepsilon \to +0$ п.в. и $|f_{\varepsilon}(u(x)) - u^+(x)| \leqslant |u(x)|$. Также в силу теоремы Лебега производная $f_{\varepsilon}(u(x))$ по x_i сходится в $L_2(Q)$ к функции, стоящей в правой части формулы (10), так как

$$f'_{\varepsilon}(u(x))\frac{\partial u}{\partial x_{\varepsilon}}(x) o \frac{\partial u}{\partial x_{\varepsilon}}(x)$$
 при $\varepsilon o +0$

в тех точках x, в которых u(x) > 0, и

$$f_{arepsilon}'ig(u(x)ig)rac{\partial u}{\partial x_i}(x) o 0$$
 при $arepsilon o +0$

в остальных точках, а квадрат разности этих функций оценивается квадратом модуля градиента u. Следовательно, $u^+ \in W_2^1(Q)$, а заданные формулой (10) функции являются ее обобщенными производными.

Замечание 3. Из леммы 1 немедленно следует, что в теореме 1 вместо условия гладкости функции f можно потребовать, чтобы она была кусочно гладкой, т.е. чтобы f была непрерывной, а ее производная существовала и была непрерывной всюду, кроме конечного числа точек, в которых она имеет конечные пределы слева и справа, и была ограниченной.

Докажем это утверждение для случая одной точки излома функции f. Не ограничивая общность, можно считать, что точкой излома является точка t=0 (если $u\in W_2^1(Q)$, то и $u-\mathrm{const}\in W_2^1(Q)$; напомним, область Q ограничена). В этом случае $f(u(x))=f(u^+(x))+f(u^-(x))-f(0)$ и в силу замечания 1 для каждого из слагаемых справедливо утверждение теоремы 1. Ясно, что с помощью того же приема доказывается утверждение и в случае нескольких точек излома.

Задачи к главе 3

Задачи к главе 3

Пусть $\mathscr{A}-\sigma$ -алгебра (σ -кольцо с единицей) подмножеств некоторого множества X, а $\mu-\sigma$ -аддитивная мера (конечная: $\mu(X)<\infty$) на \mathscr{A} (см. [6], [7]). Отождествим множества A и B из \mathscr{A} , если их симметрическая разность является множеством меры нуль ($\mu(A\bigtriangleup B)=0$), и рассмотрим метрическое пространство \mathscr{M} , элементами которого являются множества из \mathscr{A} , а расстояние $\rho(A,B)=\mu(A\bigtriangleup B)$.

Задача 1. Докажите, что метрическое пространство ${\mathscr M}$ является полным.

Рассмотрим множество μ -измеримых функций f, для которых функция $|f|^p$ суммируема (μ -интегрируема) по X (см. [6], [7]). Отождествим функции, если их значения совпадают μ -п.в. Введем на нем норму

$$||f||_{L_p(X:\mu)} = \left(\int_X |f(x)|^p d\mu(x)\right)^{1/p}.$$

Будем обозначать это пространство через $L_p(X; \mu)$.

Задача 2. Пусть (X,\mathscr{A},μ) удовлетворяют условиям задачи 1. Докажите, что пространство $L_p(X;\mu)$ банахово.

Задача 3. Пусть (X, \mathscr{A}, μ) удовлетворяют условиям задачи 1, а \mathscr{M} – метрическое пространство из той же задачи. Докажите, что пространство $L_p(X;\mu)$ сепарабельно тогда и только тогда, когда сепарабельно метрическое пространство \mathscr{M} (μ – мера со счетным базисом, см. [6]).

Пространство $L_{\infty}(X;\mu)$ состоит из μ -измеримых функций f, каждая из которых удовлетворяет условию: существует такая постоянная M, что $\mu\{x\in X:|f(x)|>M\}=0$; функции считаем равными, если их значения совпадают μ -п.в. Легко видеть, что это условие эквивалентно условию ограниченности множества чисел K, для которых $\mu\{x\in X:|f(x)|>K\}>0$. Наименьшая из таких постоянных M (равная, очевидно, точной верхней грани чисел K) называется нормой f в $L_{\infty}(X;\mu)$; будем обозначать ее через $\|f\|_{L_{\infty}(X;\mu)}$.

Задача 4. Пусть (X,\mathscr{A},μ) удовлетворяют условиям задачи 1. Докажите, что функция f принадлежит пространству

 $L_{\infty}(X;\mu)$ тогда и только тогда, когда она принадлежит всем пространствам $L_p(X;\mu),\, p\geqslant 1$, и существует такая постоянная C, что для всех $p\geqslant 1$ $\|f\|_{L_p(X:\mu)}\leqslant C$. При этом $\|f\|_{L_p(X:\mu)}\to \|f\|_{L_{\infty}(X;\mu)}$ при $p\to\infty$.

Задача 5. Докажите справедливость следующего утверждения. Пусть $u\in W^1_{2,\mathrm{loc}}(Q)$ и $\mathrm{mes}\{x\in Q:u(x)=a\}>0.$ Тогда $|\nabla u(x)|=0$ п.в. на $\{x\in Q:u(x)=a\}.$

Задача 6. Докажите справедливость следующего утверждения. Пусть $u \in W_2^1(Q)$, а $v \in \mathring{W}_2^1(Q)$. Тогда $uv \in \mathring{W}_1^1(Q)$.

Задача 7. Докажите, что утверждение теоремы 1 § 3 остается справедливым, если от функции f потребовать непрерывность, выпуклость и ограниченность производной (которая существует всюду, кроме, быть может, счетного множества точек).

Задача 8. Приведите пример функции из $W_2^1(Q)$, значения которой нельзя так изменить на множество меры нуль, чтобы она стала непрерывной хотя бы в одной точке.

Задача 9. Приведите пример функции из $W_2^1(Q)$, значения которой нельзя так изменить на множестве меры нуль, чтобы она стала ограниченной хотя бы в каком-нибудь шаре $\mathscr{B} \subset \overline{Q}$.

Задача 10. Пусть $f \in W_2^1(Q)$, Γ – гладкая поверхность, $\Gamma \subset \overline{Q}$, а $u_0 = u|_{\Gamma}$ – след функции u на Γ (см. часть I). Докажите, что $(u_0)^+(x) = \max\{u(x), 0\}$ является следом функции u^+ на Γ .

Разрешимость задачи Дирихле для общего линейного эллиптического уравнения второго порядка

Хорошо известно (см., например, [9], [10], [11], [12], [13], [3], [4]), что для классических решений однородного эллиптического уравнения (при некоторых условиях на коэффициенты) справедлив принцип максимума: наибольшее и наименьшее значения непрерывного в замыкании ограниченной области решения достигается на границе этой области. Аналогичное утверждение имеет место и в случае обобщенного решения. Так как мы не можем говорить о значениях обобщенного решения в точках, то в формулировке этой теоремы следует вместо наибольшего и наименьших значений говорить о существенных максимуме и минимуме. В частности, из ограниченности следа решения на границе следует ограниченность решения в области; как мы уже отмечали раньше (см. также задачу 9 в конце предыдущей главы), ограниченность не вытекает из принадлежности пространству $W_2^1(Q)$. В § 2 изучаются пространства $W_2^{-1}(Q)$ и $\mathring{W}_2^{-1}(Q)$. Там же доказана теорема об изоморфизме. В § 3 будут установлены условия однозначной разрешимости задачи Дирихле.

§ 1. Принцип максимума

Рассмотрим общее линейное однородное уравнение второго порядка. Главную часть будем записывать в самосопряженной форме, что позволяет налагать менее жесткие ограничения на гладкость коэффициентов.

$$-(\nabla, A(x)\nabla u) - (\nabla, B(x)u) + (C(x), \nabla u) + c(x)u = 0, \qquad x \in Q,$$
(1₀)

где $A(x)=(a_{i,j}(x))$ – симметрическая, равномерно (по $x\in Q$) положительно определенная $n\times n$ -матрица с измеримыми и ограниченными коэффициентами, т.е. $a_{i,j}=a_{j,i}\in L_\infty(Q)$ и существует такая постоянная $\gamma>0$, что для почти всех $x\in Q$ и всех $\xi\in\mathbb{R}^n$ выполняются неравенства

$$\gamma |\xi|^2 \leqslant (\xi, A(x)\xi) \leqslant \gamma^{-1} |\xi|^2, \tag{2}$$

здесь и всюду далее под (\cdot, \cdot) понимаем скалярное произведение в \mathbb{R}^n ; $(\nabla, B) = \text{div}B$. Будем считать, что векторные поля B, C и скалярное поле c измеримы и ограничены в Q:

$$B(x) = (b_1(x), \dots, b_n(x)), \qquad C(x) = (c_1(x), \dots, c_n(x)),$$

где
$$b_i \in L_{\infty}(Q), c_i \in L_{\infty}(Q), i = 1, 2, ..., n; c \in L_{\infty}(Q).$$

Условия измеримости и ограниченности коэффициентов уравнения и условие эллиптичности (2) всюду далее будем предполагать, не отмечая это особо, выполненными. Условие ограниченности коэффициентов при младших членах можно ослабить (по этому поводу см. [3]).

Стоящее в левой части уравнения (1_0) выражение будем обозначать через $\mathscr{L}u$. Мы не будем сейчас описывать область определения и область значений оператора \mathscr{L} . Отметим только, что он не определен даже на бесконечно дифференцируемых функциях, если его образами считать регулярные (принадлежащие $L_{1,\text{loc}}(Q)$) функции: произведение $a_{i,j}\partial u/\partial x_j$ функции $a_{i,j}$ из $L_{\infty}(Q)$ на гладкую функцию $\partial u/\partial x_j$ не обязано иметь обобщенную производную. Первое слагаемое в выражении $\mathscr{L}u$ является в общем случае обобщенной функцией. Описанию возникающего здесь класса обобщенных функций посвящен § 2 этой главы; подробнее с теорией обобщенных функций можно ознакомиться, например, в книгах [10], [14], [15].

Под решением уравнения (1_0) , как и в первой части, будем понимать функцию u из $W^1_{2,\text{loc}}(Q)$, которая удовлетворяет уравнению (1_0) в смысле равенства обобщенных функций, т.е. выполняется интегральное тождество

$$\int_{Q} \left\{ \left(\nabla \eta(x), \left[A(x) \nabla u(x) + B(x) u(x) \right] \right) + \eta(x) \left[\left(C(x), \nabla u(x) \right) + c(x) u(x) \right] \right\} dx = 0, \tag{1'_0}$$

для всех $\eta \in C_0^\infty(Q)$; далее такие функции η будем называть пробными функциями. С помощью приближения гладкими функциями легко убедиться, что тождество $(1_0')$ выполняется для всех финитных функций η из $W_2^1(Q)$. Если же решение u, дополнительно, принадлежит пространству $W_2^1(Q)$, то $(1_0')$ имеет место для всех $\eta \in \mathring{W}_2^1(Q)$.

Напомним, что для измеримой функции д

$$\begin{split} \operatorname{vrai}\sup_{Q}g &= \sup \big\{ K : \operatorname{mes} \{ x \in Q : g(x) > K \} > 0 \big\} \\ &= \min \big\{ M : \operatorname{mes} \{ x \in Q : g(x) > M \} = 0 \big\}, \\ \operatorname{vrai}\inf_{Q}g &= \inf \big\{ K : \operatorname{mes} \{ x \in Q : g(x) < K \} > 0 \big\}. \end{split}$$

В случае области с гладкой границей ∂Q и $g \in W_2^1(Q)$ аналогично определяется существенные точные верхняя и нижняя грани множества значений функции на ∂Q : вместо функции g нужно взять ее след на ∂Q , а вместо n-мерной меры Лебега следует использовать меру Лебега на этой (n-1)-мерной поверхности. Заметим, что если $m \geqslant \text{vrai sup}_{\partial Q} g$, то след на ∂Q функции $g^{(m)}$ равен нулю (см. задачу 10, глава 3), т.е. $g^{(m)} \in \mathring{W}_2^1(Q)$. Обратное утверждение очевидно. Таким образом, для $\partial Q \in C^1$

$$g(x)\leqslant m$$
 на ∂Q \Leftrightarrow $g^{(m)}\in \mathring{W}^1_2(Q).$

Это свойство примем за определение в случае негладкой границы.

Определение 1. Пусть $g \in W_2^1(Q)$. Будем говорить, что $g(x) \leqslant m$ на ∂Q , если $g^{(m)} = (g-m)^+ \in \mathring{W}_2^1(Q)$; vrai $\sup_{\partial Q} g = \inf\{m: g^{(m)} \in \mathring{W}_2^1(Q)\}$. Аналогично, $g(x) \geqslant m$ на ∂Q , если $(g-m)^- \in \mathring{W}_2^1(Q)$; vrai $\inf_{\in \partial Q} g = \sup\{m: (g-m)^- \in \mathring{W}_2^1(Q)\}$.

Замечание 1. Нетрудно убедиться, что для любой функции $g \in W^1_2(Q)$ справедливы неравенства

vrai $\sup_{\partial Q}g\leqslant \operatorname{vrai}\sup_{Q}g$ и vrai $\inf_{\partial Q}g\geqslant \operatorname{vrai}\inf_{Q}g.$

Действительно, для любого числа $M\geqslant {\rm vrai}\, {\rm sup}_Q\, g$ функция $g^{(M)}=(g-M)^+$ равна нулю п.в. (по определению) и, конечно, принадлежит $\mathring{W}^1_2(Q)$. Тем самым, $g(x)\leqslant M$ на ∂Q . Утверждение о нижних гранях доказывается, как обычно, применением доказанного утверждения о верхних гранях к функции -g.

Определение 2. Принадлежащая пространству $W^1_{2,\text{loc}}(Q)$ функция v называется субрешением уравнения (1_0) , если для всех неотрицательных пробных функций $\eta \in C_0^\infty(Q)$ выполняется неравенство

$$\int_{Q} \left[\left(\nabla \eta(x), A(x) \nabla v(x) + B(x) v(x) \right) + \eta(x) \left(\left(C(x), \nabla v(x) \right) + c(x) v(x) \right) \right] dx \leqslant 0.$$
(3)

Для краткости будем записывать (3) также в виде: $\mathcal{L}v \leq 0$.

Замечание 2. Приближая пробные функции гладкими, легко убедиться, что неравенство (3) выполняется для всех неотрицательных финитных функций η из $W_2^1(Q)$. Если же субрешение v, дополнительно, принадлежит пространству $W_2^1(Q)$, то (3) имеет место для всех $\eta \in \mathring{W}_2^1(Q)$, $\eta(x) \geqslant 0$ (п.в. в Q). Конечно, любое решение является субрешением.

Рассмотрим сначала простейший случай уравнения без младших членов, в котором принцип максимума доказывается совсем просто. Пусть B(x)=0, C(x)=0, c(x)=0 п.в. в Q, т.е. уравнение (1_0) имеет вид

$$\mathcal{L}_0 u = -(\nabla, A(x)\nabla u) = 0, \qquad x \in Q. \tag{4_0}$$

ПРИНЦИП МАКСИМУМА. Для любого принадлежащего пространству $W_2^1(Q)$ субрешения v уравнения (4_0) справедливо равенство

$$\operatorname{vrai} \sup_{\partial O} v = \operatorname{vrai} \sup_{O} v \tag{5}$$

В частности, для любого решения u уравнения (4_0) , принадлежащего пространству $W_2^1(Q)$, отсюда следует справедливость равенств

 $\operatorname{vrai} \sup\nolimits_{\partial Q} u = \operatorname{vrai} \sup\nolimits_{Q} u \quad \text{if} \quad \operatorname{vrai} \inf\nolimits_{\partial Q} \ u = \operatorname{vrai} \inf\nolimits_{Q} u, \quad (5')$

поскольку и u и -u являются субрешениями.

Доказательство. Пусть $m={\rm vrai}\,{\rm sup}_{\partial Q}\,v<+\infty$. Положим $\eta=v^{(m)}=(v-m)^+$. Так как $\eta\in \mathring{W}^1_2(Q)$ и $\eta(x)\geqslant 0$, то функцию η можно подставить в определяющее субрешение неравенство (3) (с $B(x)=0,\ C(x)=0,\ c(x)=0$). А так как в силу леммы 1 §3 предыдущей главы

$$\nabla \eta(x) = \nabla (v - m)^{+}(x) = \nabla (v - m)(x) = \nabla v(x)$$

для тех точек x, в которых v(x)>m, и $\nabla \eta(x)=0$ при $v(x)\leqslant m$, то

$$0 \geqslant \int_{Q} (\nabla \eta(x), A(x) \nabla v(x)) dx$$

$$= \int_{\{x: v(x) > m\}} (\nabla v^{(m)}(x), A(x) \nabla v(x)) dx$$

$$= \int_{Q} (\nabla v^{(m)}(x), A(x) \nabla v^{(m)}(x)) dx.$$

Откуда с помощью (2) и неравенства Стеклова (напомним, что $v^{(m)} \in \mathring{W}_2^1(Q)$):

$$\int_{Q} [v^{(m)}(x)]^{2} dx \leqslant \operatorname{const} \int_{Q} |\nabla v^{(m)}(x)|^{2} dx$$

получаем, что $v^{(m)}(x)=0$ (п.в.), т.е. vrai $\sup_Q v\leqslant m$. Вместе с замечанием 1 это дает доказываемое равенство (5).

Рассмотрим теперь случай общего уравнения (1_0) . Пусть сначала коэффициенты являются гладкими функциями. Тогда уравнение (1_0) можно переписать в виде

$$-(\nabla, A(x)\nabla u) + (C(x) - B(x), \nabla u) + [c(x) - (\nabla, B(x))]u = 0$$

и для справедливости принципа максимума следует потребовать неотрицательность коэффициента при u:

$$c(x) - (\nabla, B(x)) \geqslant 0$$
 для $\in Q$. (6')

Ясно, что в общем случае условие должно быть таким, чтобы оно переходило в (6'), если коэффициенты гладкие. Т.е. нужно записать (6') в виде, не использующем производные B. Для этого

заметим, что (6') эквивалентно (для $B \in C^1(\overline{Q})$) выполнению неравенства

$$\int_{O} \left[c(x)\eta(x) + \left(B(x), \nabla \eta(x) \right) \right] dx \geqslant 0 \tag{6}$$

для всех неотрицательных $\eta \in C_0^{\infty}(Q)$.

В таком виде это условие обеспечивает справедливость принципа максимума и в случае измеримых и ограниченных коэффициентов уравнения.

Пусть теперь коэффициенты уравнения (1_0) измеримы и ограничены, B и c удовлетворяют условию (6). Отметим, что в силу плотности $C_0^{\infty}(Q)$ в $\mathring{W}_1^1(Q)$ это неравенство справедливо для всех неотрицательных $\eta \in \mathring{W}_1^1(Q)$.

ТЕОРЕМА 1 (ПРИНЦИП МАКСИМУМА). Пусть выполнено условие (6). Тогда для любого субрешения v уравнения (1_0) , принадлежащего пространству $W_2^1(Q)$, справедливо равенство (5).

Доказательство. Предположим, что доказываемое утверждение неверно, т.е. $m={\rm vrai}\,{\rm sup}_Q\,v<{\rm vrai}\,{\rm sup}_Q\,v=M\;(m<+\infty,M\leqslant+\infty).$ Возьмем произвольное число $l\in[m,M)$ и положим $\eta=v^{(l)}$. Подставляя такую пробную функцию в (3), получаем

$$\begin{split} 0 \geqslant & \int_Q \left[\left(\nabla v^{(l)}(x), A(x) \nabla v(x) + B(x) v(x) \right) \right. \\ & + v^{(l)}(x) \left(\left(C(x), \nabla v(x) \right) + c(x) v(x) \right) \right] dx \\ = & \int_Q \left[\left(\nabla v^{(l)}(x), A(x) \nabla v^{(l)}(x) \right) + \left(B(x), \nabla [v(x) v^{(l)}(x)] \right) \right. \\ & + c(x) v(x) v^{(l)}(x) + v^{(l)}(x) \left(C(x) - B(x), \nabla v(x) \right) \right] dx \end{split}$$

Откуда, в силу (2) и (6) (неотрицательная функция $v(x)v^{(l)}(x)$ принадлежит $\mathring{W}_1^1(Q)$, задача 6, глава 3),

$$\gamma \int_{Q} |\nabla v^{(l)}(x)|^{2} dx \leqslant \int_{Q} \left(\nabla v^{(l)}(x), A(x) \nabla v^{(l)}(x) \right) dx$$

$$\leqslant \left| \int_{Q} \left(C(x) - B(x), \nabla v(x) \right) v^{(l)}(x) dx \right|. \tag{7}$$

Отметим, что если бы мы рассматривали случай уравнения с самосопряженным оператором (B=C), то из последних неравенств следовало бы, что $v^{(l)}=0$ и утверждение было бы доказано. Продолжим доказательство в общем случае.

Пусть $\mathscr{E}_l = \{x \in Q : v(x) > l \ \text{и} \ |\nabla v(x)| > 0\}$. Возьмем некоторое $p \in (2, \frac{2n}{n-2})$ и оценим правую часть (7) с помощью неравенства Гёльдера и теоремы вложения $\mathring{W}_2^1(Q)$ в $L_p(Q)$ (см. замечание $1\ \S 2$ главы 3)

$$\begin{split} \left| \int_{Q} \left(C(x) - B(x), \nabla v(x) \right) v^{(l)}(x) \, dx \right| \\ &= \left| \int_{\mathcal{E}_{l}} v^{(l)}(x) \left(C(x) - B(x), \nabla v^{(l)}(x) \right) \, dx \right| \\ &\leqslant \|B - C\|_{L_{\infty}(Q)} \|v^{(l)}\|_{L_{2}(\mathcal{E}_{l})} \| |\nabla v^{(l)}| \|_{L_{2}(Q)} \\ &\leqslant \|B - C\|_{L_{\infty}(Q)} \left[\operatorname{mes} \mathcal{E}_{l} \right]^{1 - \frac{1}{p}} \|v^{(l)}\|_{L_{p}(Q)} \| |\nabla v^{(l)}| \|_{L_{2}(Q)} \\ &\leqslant \operatorname{const} \left[\operatorname{mes} \mathcal{E}_{l} \right]^{1 - \frac{1}{p}} \| |\nabla v^{(l)}| \|_{L_{2}(Q)}^{2}, \end{split}$$

где положительная постоянная (const) зависит только от n, p, $\|B - C\|_{L_{\infty}(Q)}$ и меры области Q (не зависит от l!). Подставляя полученную оценку в (7), имеем

$$\operatorname{mes} \mathscr{E}_l \geqslant \operatorname{const} > 0$$
 для всех $l \in [m, M)$.

А так как оценивающая снизу меру множества \mathscr{E}_l постоянная не зависит от l, то, устремляя l к $M=\mathrm{vrai}\,\mathrm{sup}_Q v$, получаем, что $M<+\infty$ и $\mathrm{mes}\{x\in Q:v(x)=M,|\nabla v(x)|>0\}>0.$ Но это невозможно (см. замечание 2 § 3 главы 3). Полученное противоречие доказывает теорему.

Из теоремы 1 немедленно вытекает

Следствие 1. Для любого принадлежащего пространству $W_2^1(Q)$ решения уравнения (1_0) справедливы равенства (5').

§ 2. Пространства $\mathring{W}_{2}^{-1}(Q)$ и $W_{2}^{-1}(Q)$

В первой части была установлена (см. § 2 главы 2) однозначная разрешимость задачи Дирихле для уравнения $\mathcal{L}u=g$ в случае B=C=0. При этом отмечалось, что на правую часть уравнения g можно налагать более слабые условия, чем ее принадлежность пространству $L_2(Q)$. На этом вопросе мы остановимся подробнее в этом параграфе. Будет получено описание множество всех правых частей g, для которых существует решение задачи Дирихле с однородным граничным условием в случае простейшего уравнения $\mathcal{L}_0u=g$. Тем самым будет дано описание области значений оператора \mathcal{L}_0 с областью определения $\mathring{W}_2^1(Q)$.

Рассмотрим задачу Дирихле с однородным граничным условием

$$u\mid_{\partial Q} = 0 \tag{80}$$

для простейшего эллиптического уравнения второго порядка

$$\mathcal{L}_0 u = -\sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{i,j}(x) \frac{\partial u}{\partial x_j} \right) = g(x), \qquad x \in Q.$$
 (4)

Напомним, что мы считаем коэффициенты $a_{i,j} = a_{j,i}$ уравнения измеримыми ограниченными функциями. Уравнение (4) равномерно эллиптично в Q, т.е. выполнено условие (2).

Напомним также, что для $g \in L_2(Q)$ обобщенным решением рассматриваемой задачи Дирихле (задачи (4), (8_0)) называется функция $u \in \mathring{W}^1_2(Q)$, которая удовлетворяет интегральному тождеству

$$\int_{O} (\nabla \eta(x), A(x) \nabla u(x)) dx = \int_{O} \eta(x) g(x) dx$$

для всех $\eta \in \mathring{W}_{2}^{1}(Q)$.

Так как левая часть этого равенства задает эквивалентное скалярное произведение

$$(\eta, u)'_{\mathring{W}_{2}^{1}(Q)} = \int_{Q} \left(\nabla \eta(x), A(x) \nabla u(x) \right) dx \tag{9}$$

в пространстве $\mathring{W}^1_2(Q)$ (см. теорему $2 \S 9$ главы 1), то интегральное тождество можно переписать в виде

$$(\eta, u)'_{\mathring{W}_{2}^{1}(Q)} = \int_{Q} \eta(x)g(x) dx.$$
 (10)

Однозначная разрешимость (существование и единственность решения) задачи Дирихле (4), (80) немедленно вытекает из теоремы Рисса о представлении линейного ограниченного функционала скалярным произведением, поскольку правая часть (10) является линейным непрерывным функционалом (η – его аргумент) на пространстве $\mathring{W}_{2}^{1}(Q)$.

Ясно, что множество правых частей g уравнения (4), для которых существует решение рассматриваемой задачи, является множеством всех линейных непрерывных функционалов на $\mathring{W}_{2}^{1}(Q)$; причем действие функционалов следует реализовывать, как это принято в теории обобщенных функций, исходя из скалярного произведения в $L_{2}(Q)$.

Легко видеть, что условие принадлежности правой части g пространству $L_2(Q)$, достаточное для ограниченности задаваемого ей функционала l_g ,

$$\langle l_g, \eta \rangle = \int_Q g(x)\eta(x) dx,$$
 (11)

не является необходимым; $\langle l_g,\eta\rangle$ — значение функционала l_g на элементе η пространства $\mathring{W}^1_2(Q)$. Например, его можно ослабить, потребовав принадлежность g пространству $L_{\frac{2n}{n+2}}(Q)$ при $n\geqslant 3$ и пространству $L_p(Q)$ с каким-нибудь p>1 при n=2, задачи 1 и 2 этой главы. Кроме того, линейный непрерывный функционал на $\mathring{W}^1_2(Q)$ может задаваться и нерегулярной обобщенной функцией: определенный равенством

$$\langle l_F, \eta \rangle = -\int_Q \left(\nabla \eta(x), F(x) \right) dx,$$
 (12)

где $F=(f_1,\ldots,f_n)\in [L_2(Q)]^n$, линейный функционал l_F также является ограниченным функционалом на $\mathring{W}^1_2(Q)$, а его норма не превосходит нормы |F| в $L_2(Q)$. Действительно, для всех $\eta\in\mathring{W}^1_2(Q)$

$$|\langle l_F, \eta \rangle| \leqslant \| |\nabla \eta| \|_{L_2(Q)} \| |F| \|_{L_2(Q)} = \| \eta \|_{\mathring{W}_2^1(Q)} \| |F| \|_{L_2(Q)};$$

$$(\eta, u)_{\mathring{W}_2^1(Q)} = \int_Q (\nabla \eta(x), \nabla u(x)) dx, \qquad \| \eta \|_{\mathring{W}_2^1(Q)}^2 = (\eta, \eta)_{\mathring{W}_2^1(Q)}.$$

$$(13)$$

Функционал l_F с $f_i=f\in L_2(Q)$ и $f_j=0$ при $j\neq i$, будем называть производной функции f по переменной x_i и обозначать $\partial f/\partial x_i$; отметим, что так определенная производная не является обобщенной производной, мы не требуем ее регулярность (принадлежность $L_{1,\text{loc}}(Q)$). В общем случае задаваемый формулой (11) функционал l_F будем называть дивергенцией векторного поля F и обозначать (∇ , F) = $\operatorname{div} F$.

Из ограниченности функционала $l_F = \text{div } F, \ F \in [L_2(Q)]^n$ немедленно следует однозначная разрешимость задачи (4), (8₀) и в случае g = div F; под решением такой задачи естественно понимать функцию u из $\mathring{W}^1_2(Q)$, удовлетворяющую интегральному тождеству

$$\int_{Q} (\nabla \eta(x), A(x) \nabla u(x)) dx = \int_{Q} (\nabla \eta(x), F(x)) dx \qquad (14)$$

для всех $\eta \in \mathring{W}_{2}^{1}(Q)$.

Множество всех обобщенных функций g из $\mathscr{D}'(Q)$ (g – линейный непрерывный функционал на пространстве основных функций $\mathscr{D}(Q)$), для которых справедлива оценка

$$|\langle g, \eta \rangle| \leqslant C \|\eta\|_{\mathring{W}_{0}^{1}(Q)}$$
 для всех $\eta \in C_{0}^{\infty}(Q)$ (15)

с некоторой постоянной C=C(g), будем называть *пространством* $\mathring{W}_2^{-1}(Q)$; $\langle g,\eta\rangle$ – значение обобщенной функции g на основной функции η . Очевидно, что каждая такая обобщенная функция продолжается по непрерывности (напомним, что по определению $C_0^\infty(Q)$ всюду плотно в $\mathring{W}_2^1(Q)$) до ограниченного функционала на $\mathring{W}_2^1(Q)$. Наименьшая из постоянных C, с которыми справедливо (15), является нормой этого функционала; будем называть ее нормой g в $\mathring{W}_2^{-1}(Q)$ и обозначать $\|g\|_{\mathring{W}_2^{-1}(Q)}$,

$$||g||_{\mathring{W}_{2}^{-1}(Q)} = \sup_{\eta \in \mathring{W}_{2}^{1}(Q), \eta \neq 0} \frac{|\langle g, \eta \rangle|}{||\eta||_{\mathring{W}_{2}^{1}(Q)}}.$$
 (16)

А так как на $\mathring{W}_2^{-1}(Q)$ любой линейный ограниченный функционал можно рассматривать, как удовлетворяющую условию (15) обобщенную функцию (сужение этого функционала на $C_0^\infty(Q)$; из (15), очевидно, следует непрерывность этого сужения в топологии $\mathscr{D}(Q)$), то введенное пространство $\mathring{W}_2^{-1}(Q)$ является сопряженным к пространству $\mathring{W}_2^1(Q)$, а следовательно, гильбертовым пространством.

Определение 1. Обобщенным решением задачи (4), (8₀) с $g \in \mathring{W}_{2}^{-1}(Q)$ будем называть функцию из $\mathring{W}_{2}^{1}(Q)$, которая удовлетворяет тождеству

$$\int_{Q} \left(\nabla \eta(x), A(x) \nabla u(x) \right) dx = \langle \eta, g \rangle \quad \text{для всех } \eta \in \mathring{W}_{2}^{1}(Q). \tag{14'}$$

Тождество (14') – это реализация функционала η в гильбертовом пространстве $\mathring{W}^1_2(Q)$ в виде скалярного произведения (9). Поэтому и в этом случае обобщенное решение существует для любой $g \in \mathring{W}^{-1}_2(Q)$ и единственно.

Следующая теорема дает общий вид линейного ограниченного функционала на $\mathring{W}^1_2(Q)$.

Теорема 1.

$$g \in \mathring{W}_{2}^{-1}(Q) \Leftrightarrow g = -\operatorname{div} F,$$

 $r\partial e \ F \in [L_2(Q)]^n.$

Доказательство. То, что заданный формулой (12) с $F \in [L_2(Q)]^n$ линейный функционал l_F является ограниченным, т.е. является элементом $\mathring{W}_2^{-1}(Q)$, доказано выше. Докажем обратное утверждение. Пусть g – произвольный линейный ограниченный функционал на $\mathring{W}_2^1(Q)$. Обозначим через w такой элемент пространства $\mathring{W}_2^1(Q)$, который реализует функционал g в скалярном произведении (13), т.е.

$$\langle g,\eta \rangle = \int_Q \left(
abla w(x),
abla \eta(x)
ight) dx, \quad$$
для всех $\eta \in \mathring{W}^1_2(Q)$

(w – решение задачи Дирихле с однородным граничным условием для уравнения Пуассона – $\triangle w = g$). А последнее тождество и означает, что $g = -\operatorname{div} F$ с $F = \nabla w \in [L_2(Q)]^n$.

Замечание 1. На самом деле доказано более сильное утверждение: для любого $g \in \mathring{W}_2^{-1}(Q)$ существует и единственно такое потенциальное векторное поле $F_g = \nabla w_g$ с принадлежащим пространству $\mathring{W}_2^1(Q)$ потенциалом w_g , что $g = -\operatorname{div} F_g$; при этом

$$(g,h)_{\mathring{W}_{2}^{-1}(Q)} = (F_g,F_h)_{[L_2(Q)]^n}.$$

Определим теперь оператор \mathscr{L}_0 : $\mathring{W}_2^1(Q) \to \mathring{W}_2^{-1}(Q)$ следующим правилом: для каждой функции u из $\mathring{W}_2^1(Q)$ $\mathscr{L}_0 u = -\operatorname{div} F$, где $F = A\nabla \ u \in [L_2(Q)]^n$. Оценка

$$\|\mathscr{L}_{0}u\|_{\mathring{W}_{2}^{-1}(Q)} = \|\operatorname{div} F\|_{\mathring{W}_{2}^{-1}(Q)} = \sup_{\eta \in \mathring{W}_{2}^{1}(Q), \eta \neq 0} \frac{|\langle \operatorname{div} F, \eta \rangle|}{\|\eta\|_{\mathring{W}_{2}^{1}(Q)}}$$

$$\leq \||F|\|_{L_{2}(Q)} = \||A\nabla u|\|_{L_{2}(Q)} \leq C(\|a_{i,j}\|_{L_{\infty}(Q)})\|u\|_{\mathring{W}_{2}^{1}(Q)}$$

доказывает ограниченность этого оператора. Область значений оператора \mathcal{L}_0 совпадает со всем пространством $\mathring{W}_2^{-1}(Q)$, поскольку решение задачи (4), (8_0) существует для всех $g\in\mathring{W}_2^{-1}(Q)$. А так как решение этой задачи единственно, то оператор \mathcal{L}_0 обратим. Обратный оператор (он ставит в соответствие каждому элементу g из $\mathring{W}_2^{-1}(Q)$ решение $u=\mathcal{L}_0^{-1}g$ задачи Дирихле (4), (8_0) с правой частью g) будем обозначать символом \mathcal{L}_0^{-1} . Более того, из (14') следует также равенство

$$\|u\|'_{\mathring{W}_{2}^{1}(Q)} = \|\mathscr{L}_{0}u\|_{\mathring{W}_{2}^{-1}(Q)}$$
 для любого $u \in \mathring{W}_{2}^{1}(Q),$ (17)

где $\|\cdot\|'_{\mathring{W}_{2}^{1}(Q)}$ – норма в $\mathring{W}_{2}^{1}(Q)$, порожденная скалярным произведением (9). Таким образом, доказано следующее утверждение.

ТЕОРЕМА 2. Отображение $\mathcal{L}_0: \mathring{W}_2^1(Q) \mapsto \mathring{W}_2^{-1}(Q)$ является изоморфизмом гильбертовых пространств $\mathring{W}_2^1(Q)$ и $\mathring{W}_2^{-1}(Q)$.

Напомним, что каждая функция g из $L_2(Q)$ задает функционал $l_g \in \mathring{W}_2^{-1}(Q)$ равенством (11); при этом $\|l_g\|_{\mathring{W}_2^{-1}(Q)} \leqslant \|g\|_{L_2(Q)}$. В силу плотности множества функций из $\mathring{W}_2^1(Q)$ в пространстве $L_2(Q)$ каждый такой функционал задается единственной функцией. Отождествляя такие функционалы l_g с задающими их функциями g, получаем вложение $L_2(Q)$ в $\mathring{W}_2^{-1}(Q)$.

Итак, мы имеем вложения

$$\mathring{W}_{2}^{1}(Q) \subset L_{2}(Q) \subset \mathring{W}_{2}^{-1}(Q) = \mathscr{L}_{0}\mathring{W}_{2}^{1}(Q).$$

Причем первое из них $(\mathring{W}_2^1(Q)$ в $L_2(Q))$ вполне непрерывно (теорема 1 §6 главы 1). Докажем, что и второе вложение вполне непрерывно.

ТЕОРЕМА 3. Оператор вложения $L_2(Q)$ в $\mathring{W}_2^{-1}(Q)$ вполне непрерывен.

Доказательство. Нужно доказать, что единичный шар в $L_2(Q)$ является компактным множеством в $\mathring{W}_2^{-1}(Q)$ (тогда, очевидно, и любое ограниченное в $L_2(Q)$ множество будет компактным в $\mathring{W}_2^{-1}(Q)$).

Возьмем произвольную последовательность $\{f_k\}$ элементов единичного шара в $L_2(Q)$: $\|f_k\|_{L_2(Q)} \leqslant 1, \ k=1,2,\dots$ В силу слабой компактности ограниченного множества в гильбертовом пространстве из этой последовательности можно выделить слабо сходящуюся подпоследовательность. Чтобы не загромождать формулы индексами, обозначим эту подпоследовательность снова через $\{f_k\}$. Ее слабый предел обозначим через $f \in L_2(Q)$:

$$(f_k-f,\eta)_{L_2(Q)} \to 0$$
 при $k\to\infty$ для всех $\eta\in L_2(Q)$. (18)

Докажем, что

$$||f - f_k||_{\mathring{W}_2^{-1}(Q)} = \sup_{\|\eta\|_{\mathring{W}_2^{-1}(Q)} = 1} |(f - f_k, \eta)_{L_2(Q)}| \to 0, \qquad k \to \infty.$$
(19)

(сходимость равномерна по единичной сфере в $\mathring{W}_{2}^{1}(Q)$).

Предположим, что (19) не верно, т.е. $\exists \varepsilon > 0 \ \forall N \ \exists k > N$ и $\exists \eta_k \in \mathring{W}^1_2(Q), \|\eta_k\|_{\mathring{W}^1_2(Q)} = 1$, для которых $|(f - f_k, \eta_k)_{L_2(Q)}| \geqslant \varepsilon$. Т.е. найдется подпоследовательность, снова обозначим ее $\{f_k\}$, и лежащая на единичной сфере в $\mathring{W}^1_2(Q)$, а следовательно, ограниченная в $\mathring{W}^1_2(Q)$ последовательность $\{\eta_k\}$, для которых

$$|(f - f_k, \eta_k)_{L_2(Q)}| \geqslant \varepsilon. \tag{20}$$

В силу компактности вложения $\mathring{W}_{2}^{1}(Q)$ в $L_{2}(Q)$ из последовательности $\{\eta_{k}\}$ можно выделить сходящуюся (сильно) в $L_{2}(Q)$ подпоследовательность $\{\eta_{k_{m}}\}$:

$$\eta_{k_m} \to \eta$$
 в $L_2(Q)$ при $m \to \infty$. (21)

Возьмем соответствующую ей подпоследовательность $\{f_{k_m}\}$. Для них в силу (20), (18) и (21) имеем

$$\begin{split} &0<\varepsilon\leqslant |(f-f_{k_m},\eta_{k_m})_{L_2(Q)}|\\ &\leqslant |(f_{k_m},\eta-\eta_{k_m})_{L_2(Q)}|+|(f-f_{k_m},\eta)_{L_2(Q)}|+|(f,\eta_{k_m}-\eta)_{L_2(Q)}|\\ &\leqslant 2\|\eta-\eta_{k_m}\|_{L_2(Q)}+|(f-f_{k_m},\eta)_{L_2(Q)}|\to 0\quad\text{при }m\to\infty. \end{split}$$

Полученное противоречие доказывает (19), а следовательно, и теорему 3.

Кратко остановимся на сопряженном к $W_2^1(Q)$ пространстве $W_2^{-1}(Q)$. Так как $\mathring{W}_2^1(Q)$ является подпространством пространства $W_2^1(Q)$, то согласно теореме Хана-Банаха каждый линейный непрерывный функционал на $\mathring{W}_2^1(Q)$ может быть продолжен на $W_2^1(Q)$ с сохранением нормы. Например, можно доопределить этот функционал нулем на ортогональном дополнении к $\mathring{W}_2^1(Q)$. Продолжение функционала, конечно, не единственно; произвол в выборе продолжения определяется пространством линейных ограниченных функционалов на ортогональном дополнении к $\mathring{W}_2^1(Q)$ в $W_2^1(Q)$.

Пространство $W_2^{-1}(Q)$ естественно рассматривать как множество всех обобщенных функций g из $\mathscr{D}'(\mathbb{R}^n)$ с носителями в \overline{Q} , для которых справедлива оценка

$$|\langle g,\eta \rangle| \leqslant C \|\eta\|_{W^1_2(Q)}$$
 для всех $\eta \in C_0^\infty(\mathbb{R}^n)$ (15')

с некоторой постоянной C=C(g). Действительно, если g – линейный непрерывный функционал на $W_2^1(Q)$, то он, конечно, определен и на всех $\eta\in C^\infty(\overline{Q})\subset W_2^1(Q)$. Следовательно, его можно отождествить с обобщенной функцией из $\mathscr{D}'(\mathbb{R}^n)$ с носителем в \overline{Q} , для которой справедлива оценка (15'): каждой функции $\eta\in C_0^\infty(\mathbb{R}^n)$ ставится в соответствие значение функционала g на сужении этой функции на \overline{Q} . Если же g – удовлетворяющая (15') обобщенная функция, то этот функционал распространяется по непрерывности на все пространство $W_2^1(Q)$; напомним, что множество $C^\infty(\overline{Q})$ (множество сужений на \overline{Q} функций из $C_0^\infty(\mathbb{R}^n)$) всюду плотно в $W_2^1(Q)$.

Наименьшую из постоянных C, с которыми справедливо (15′) будем называть нормой g в $W_2^{-1}(Q)$ и обозначать $\|g\|_{W_2^{-1}(Q)}$:

$$||g||_{W_2^{-1}(Q)} = \sup_{\eta \in W_2^1(Q), \eta \neq 0} \frac{|\langle g, \eta \rangle|}{||\eta||_{W_2^1(Q)}}.$$
 (16')

Легко видеть, что формулы (11) с $g \in L_2(Q)$ и (12) с $F \in [L_2(Q)]^n$ определяют ограниченные функционалы и на $W_2^1(Q)$. Однако, в отличии от пространства $\mathring{W}_2^{-1}(Q)$ не все элементы $W_2^{-1}(Q)$ задаются формулой (12). Чтобы в этом убедиться, достаточно заметить, что все заданные формулой (12) функционалы имеют равное нулю значение на функции $\eta = \text{const} \in W_2^1(Q)$ (область Q мы считаем ограниченной). Общий вид линейного непрерывного функционала на $W_2^1(Q)$ дает следующая

Teopema 2'.

$$g \in W_2^{-1}(Q) \quad \Leftrightarrow \quad g = -\operatorname{div} F + f,$$

где $F \in [L_2(Q)]^n$, $a f \in L_2(Q)$.

Доказательство. То, что заданные формулами (12) с $F \in [L_2(Q)]^n$ и (11) с $f \in L_2(Q)$ линейные функционалы l_F и l_f является ограниченными, т.е. являются элементами $W_2^{-1}(Q)$, доказано выше. Докажем обратное утверждение. Пусть g – произвольный линейный ограниченный функционал на $W_2^1(Q)$. Обозначим через w такой элемент пространства $W_2^1(Q)$, который реализует функционал g в скалярном произведении

$$(\eta, w)_{W_2^1(Q)} = \int_Q \left[\left(\nabla \eta(x), \nabla w(x) \right) + \eta w \right] dx, \tag{13'}$$

т.е.

$$\langle g,\eta\rangle = \int_Q \left[\left(\nabla w(x),\nabla \eta(x)\right) + \eta w\right] dx, \quad \text{для всех } \eta \in W^1_2(Q)$$

(w – решение задачи Неймана с однородным граничным условием для уравнения — $\triangle w + w = g$). Последнее тождество означает, что функционал $g = -\operatorname{div} F + l_f$ с $F = \nabla w \in [L_2(Q)]^n$ и $f = w \in L_2(Q)$.

§ 3. Теоремы об однозначной разрешимости задачи Дирихле

В этом параграфе мы докажем две теоремы об однозначной разрешимости задачи Дирихле для эллиптического уравнения второго порядка в произвольной ограниченной области $Q \subset \mathbb{R}^n$. При этом правую часть уравнения будем брать из пространства $\mathring{W}_2^{-1}(Q)$. В силу теоремы $1 \ \S \ 2$ этой главы ее можно записать в виде $-\operatorname{div} F \subset F \in [L_2(Q)]^n$.

Рассмотрим задачу Дирихле для общего линейного уравнения второго порядка

$$-(\nabla, A(x)\nabla u) - (\nabla, B(x)u) + (C(x), \nabla u) + c(x)u = -\operatorname{div} F(x), \qquad x \in Q, \qquad (1) u \mid_{\partial Q} = \varphi.$$
 (8)

Здесь, как и выше, $A(x)=(a_{i,j}(x))$ – симметрическая, равномерно (по $x\in Q$) положительно определенная $n\times n$ -матрица с измеримыми и ограниченными коэффициентами, векторные поля B,C и скалярное поле c измеримы и ограничены в Q. Граничную функцию φ будем считать определенной в области Q и принадлежащей пространству $W_2^1(Q)$. Под решением рассматриваемой задачи (1), (8) будем понимать функцию u из $W_2^1(Q)$, которая удовлетворяет уравнению (1) в смысле равенства обобщенных функций, т.е.

$$\int_{Q} \left\{ \left(\nabla \eta(x), \left[A(x) \nabla u(x) + B(x) u(x) \right] \right) + \eta(x) \left[\left(C(x), \nabla u(x) \right) + c(x) u(x) \right] \right\} dx = \int_{Q} \left(\nabla \eta(x), F(x) \right) dx \tag{1'}$$

для всех $\eta \in C_0^\infty(Q)$, и удовлетворяет граничному условию (8) в следующем смысле:

$$u - \varphi \in \mathring{W}_2^1(Q). \tag{8'}$$

В случае области с гладкой границей условие (8') эквивалентно условию (8), понимаемому в обычном смысле: следы на ∂Q функций u и φ совпадают. Отметим также, что интегральное тождество (1') выполняется для всех η из $\mathring{W}^1_2(Q)$.

Как и в § 2 главы 2 первой части курса сведем задачу к случаю однородных краевых условий: функция $v=u-\varphi$ принадлежит пространству $\mathring{W}^1_2(Q)$ и удовлетворяет уравнению

$$-(\nabla, A(x)\nabla v) - (\nabla, B(x)v) + (C(x), \nabla v) + c(x)v = g(x) - \operatorname{div} G(x), \qquad x \in Q,$$
 (22)

в котором

$$g = (C(x), \nabla \varphi) + c(x)\varphi \in L_2(Q),$$

$$G = F(x) + A(x)\nabla \varphi + B(x)\varphi \in [L_2(Q)]^n.$$

Отметим очевидные оценки

$$||g||_{L_2(Q)} \leqslant \operatorname{const} ||\varphi||_{W_2^1(Q)}, \tag{23}$$

$$||G||_{[L_2(Q)]^n} \leqslant \operatorname{const} \left[||F||_{[L_2(Q)]^n} + ||\varphi||_{W_2^1(Q)} \right],$$
 (24)

в которых постоянные зависят только от норм в $L_{\infty}(Q)$ коэффициентов уравнения.

Перепишем изучаемую задачу в виде $\mathscr{L}v=g-\mathrm{div}\,G$, где оператор \mathscr{L} , действующий из $\mathring{W}_2^1(Q)$ в $\mathring{W}_2^{-1}(Q)$, определен равенством

$$\mathscr{L}w = -\operatorname{div}[A(x)\nabla w + B(x)w] + (C(x), \nabla w) + c(x)w \in \mathring{W}_{2}^{-1}(Q)$$

для всех $w\in \mathring{W}_{2}^{1}(Q)$, а $g-\operatorname{div} G\in \mathring{W}_{2}^{-1}(Q)$. Так как осуществляемое оператором \mathscr{L}_{0}^{-1} отображение пространства $\mathring{W}_{2}^{-1}(Q)$ на $\mathring{W}_{2}^{1}(Q)$ является изоморфизмом, то задача (22), (8) эквивалентна следующему уравнению в пространстве $\mathring{W}_{2}^{1}(Q)$

$$v + \mathcal{B}_1 v + \mathcal{B}_2 v + \mathcal{B}_3 v = h, \tag{25}$$

в котором операторы $\mathscr{B}_1,\,\mathscr{B}_2$ и \mathscr{B}_3 (действующие в $\mathring{W}_2^1(Q)$) определены равенствами

$$\mathscr{B}_1 w = -\mathscr{L}_0^{-1} \operatorname{div}(Bw), \tag{26_1}$$

$$\mathscr{B}_2 w = \mathscr{L}_0^{-1}(C, \nabla w), \tag{26_2}$$

$$\mathscr{B}_3 w = \mathscr{L}_0^{-1}(cw), \tag{26_3}$$

а $h = \mathcal{L}_0^{-1}(g - \operatorname{div} G)$. В силу (17), (23) и (24) имеем оценку

$$||h||_{\mathring{W}_{2}^{1}(Q)} \leq \operatorname{const}\left[||F||_{[L_{2}(Q)]^{n}} + ||\varphi||_{W_{2}^{1}(Q)}\right]$$
 (27)

для всех $F \in [L_2(Q)]^n$ и всех $\varphi \in W_2^1(Q)$, в которой постоянная зависит только от постоянной эллиптичности γ и норм коэффициентов в $L_\infty(Q)$.

ЛЕММА. Операторы \mathcal{B}_1 , \mathcal{B}_2 и \mathcal{B}_3 вполне непрерывны.

Доказательство. По теореме 1 §6 главы 1 (теорема о компактности вложения $\mathring{W}_{2}^{1}(Q)$ в $L_{2}(Q)$) любое ограниченное множество в $\mathring{W}_{2}^{1}(Q)$ компактно в $L_{2}(Q)$. Оператор умножения на функцию $B \in L_{\infty}(Q)$, очевидно, ограничен в $L_{2}(Q)$, оператор div, как доказано в §2, ограничен из $L_{2}(Q)$ в $\mathring{W}_{2}^{-1}(Q)$, а оператор \mathscr{L}^{-1} является ограниченным оператором из $\mathring{W}_{2}^{-1}(Q)$ в $\mathring{W}_{2}^{1}(Q)$ (теорема 2 § 2 этой главы). Поэтому оператор \mathscr{B}_{1} переводит ограниченные множества в компактные.

Столь же просто доказывается полная непрерывность оператора \mathscr{B}_2 . Оператор $w\mapsto (C,\nabla w)$ ограничен из $\mathring{W}_2^1(Q)$ в $L_2(Q)$. А так как вложение $L_2(Q)$ в $\mathring{W}_2^{-1}(Q)$ вполне непрерывно (теорема 3 § 2), то этот оператор переводит каждое ограниченное множество пространства $\mathring{W}_2^1(Q)$ в компактное множество в $\mathring{W}_2^{-1}(Q)$. Полная непрерывность \mathscr{B}_2 теперь немедленно следует из ограниченности оператора $\mathscr{B}_1^{-1}(Q)$ в $\mathring{W}_2^{-1}(Q)$. Утверждение о полной непрерывности оператора \mathscr{B}_3 очевидно.

Итак, мы свели (как и в первой части) задачу Дирихле к операторному уравнению (25) с вполне непрерывным оператором $\mathcal{B}_1+\mathcal{B}_2+\mathcal{B}_3$ в пространстве $\mathring{W}_2^1(Q)$. В силу теорем Фредгольма для разрешимости такого уравнения необходима и достаточна ортогональность правой части h уравнения (25) подпространству решений сопряженной однородной задачи. В частности, если решение (25) единственно (тогда однородная сопряженная задача имеет только тривиальное решение), то оно существует для всех $h \in \mathring{W}_2^1(Q)$. При этом для всех $h \in \mathring{W}_2^1(Q)$ справедлива оценка

$$||v||_{\mathring{W}_{2}^{1}(Q)} \leqslant \operatorname{const} ||h||_{\mathring{W}_{2}^{1}(Q)}$$

с зависящей только от коэффициентов уравнения постоянной. Из нее и (27) следует оценка

$$||u||_{\mathring{W}_{2}^{1}(Q)} \leq \operatorname{const}\left[||F||_{[L_{2}(Q)]^{n}} + ||\varphi||_{W_{2}^{1}(Q)}\right]$$
 (28)

для всех $F \in [L_2(Q)]^n$ и $\varphi \in W_2^1(Q)$.

Таким образом, если доказать единственность решения задачи (1), (8), то получим ее разрешимость для всех $F \in [L_2(Q)]^n$, $\varphi \in W_2^1(Q)$, а также справедливость оценки (28). Единственность решения немедленно вытекает из принципа максимума (теорема 1 § 1 главы 4, см. следствие 1 из этой теоремы). Тем самым мы доказали следующее утверждение.

ТЕОРЕМА 1. Пусть коэффициенты уравнения (1) удовлетворяют условию

$$\int_{O} \left[c(x)\eta(x) + \left(B(x), \nabla \eta(x) \right) \right] dx \geqslant 0$$

для всех неотрицательных функций η из $C_0^\infty(Q)$. Тогда для любых $F \in [L_2(Q)]^n$ и $\varphi \in W_2^1(Q)$ существует решение задачи (1), (8). Это решение единственно и для него справедлива оценка

$$||u||_{\mathring{W}_{2}^{1}(Q)} \leq \operatorname{const}\left[||F||_{[L_{2}(Q)]^{n}} + ||\varphi||_{W_{2}^{1}(Q)}\right]$$

c независящей от F и φ постоянной.

Другое достаточное условие однозначной разрешимости дает следующее утверждение.

ТЕОРЕМА 2. Пусть коэффициенты уравнения (1) удовлетворяют условию

$$\int_{Q} \left[c(x)\eta(x) + \frac{1}{2} \left(B(x) + C(x), \nabla \eta(x) \right) \right] dx \geqslant 0$$
 (29)

для всех неотрицательных функций η из $C_0^\infty(Q)$. Тогда для любых $F \in [L_2(Q)]^n$ и $\varphi \in W_2^1(Q)$ существует решение задачи (1), (8). Это решение единственно и для него справедлива оценка

$$||u||_{\mathring{W}_{2}^{1}(Q)} \leq \operatorname{const}\left[||F||_{[L_{2}(Q)]^{n}} + ||\varphi||_{W_{2}^{1}(Q)}\right]$$

c независящей от F и φ постоянной.

Доказательство. Прежде всего заметим, что неравенство (29) справедливо для всех $\eta \in \mathring{W}^1_1(Q)$. Для доказательства этого факта достаточно приблизить произвольную функцию η , принадлежащую $\mathring{W}^1_1(Q)$, функциями из $C_0^\infty(Q)$; напомним, что по принятому в этой части определению множество бесконечно дифференцируемых и финитных в Q функций всюду плотно во всех соболевских пространствах.

Пусть u – решение однородной задачи (1_0) , (8_0) , т.е. $u \in \mathring{W}_2^1(Q)$ и удовлетворяет интегральному тождеству $(1'_0)$ для всех пробных функций η из $\mathring{W}_2^1(Q)$. Подставляя в это тождество $\eta = u$, получим

$$\begin{split} 0 &= \int_Q \left\{ \left(\nabla u(x), \left[A(x) \nabla u(x) + B(x) u(x) \right] \right) \right. \\ &+ u(x) \left[\left(C(x), \nabla u(x) \right) + c(x) u(x) \right] \right\} dx \\ &= \int_Q \left(\nabla u(x), A(x) \nabla u(x) \right) dx \\ &+ \int_Q \left[\frac{1}{2} \left(B(x) + C(x), \nabla u^2(x) \right) + c(x) u^2(x) \right] dx. \end{split}$$

Так как согласно условию (29) (с $\eta = u^2 \in \mathring{W}_1^1(Q)$) второе слагаемое в правой части последнего равенства неотрицательно, то

$$\int_{Q} (\nabla u(x), A(x)\nabla u(x)) dx \le 0.$$

Откуда в силу (2) u=0, что и доказывает единственность решения.

Задачи к главе 4

Задача 1. Пусть Q – область $\mathbb{R}^n,\ n>2,$ а $g\in L_{\frac{2n}{n+2}}(Q)$. Докажите, что определенный формулой

$$\langle l_g, \eta \rangle = \int_Q \eta(x) g(x) dx$$

функционал l_g является линейным непрерывным функционалом на пространстве $\mathring{W}^1_2(Q)$.

Задача 2. Пусть $g\in L_{\frac{2n}{n+2}}(Q)$, а Q – ограниченная область \mathbb{R}^n , n>2, с гладкой границей. Докажите, что определенный формулой

$$\langle l_g, \eta \rangle = \int_Q \eta(x)g(x) dx$$

функционал l_g является линейным непрерывным функционалом на пространстве $W_2^1(Q)$.

Задача 3. Пусть Q — ограниченная область \mathbb{R}^2 , а $g \in L_p(Q)$ с некоторым p > 1. Докажите, что определенный формулой

$$\langle l_g, \eta \rangle = \int_Q \eta(x)g(x) dx$$

функционал l_g является линейным непрерывным функционалом на пространстве $\mathring{W}_2^1(Q)$.

Задача 4. Пусть Q – ограниченная область \mathbb{R}^2 с гладкой границей, а $g\in L_p(Q)$ с некоторым p>1. Докажите, что определенный формулой

$$\langle l_g, \eta \rangle = \int_Q \eta(x) g(x) dx$$

функционал l_g является линейным непрерывным функционалом на пространстве $W_2^1(Q)$.

Задача 5. Докажите, что множество заданных равенством (11) функционалов l_g , $g \in L_2(Q)$, всюду плотно в сопряженном к $\mathring{W}^1_2(Q)$ пространстве.

Задача 6. Докажите, что пространство векторных полей $[L_2(Q)]^n$ разлагается в прямую сумму двух ортогональных подпространств $\mathring{J}(Q)$ и G(Q), где $\mathring{J}(Q)$ – подпространство потенциальных векторных полей с принадлежащим $\mathring{W}_2^1(Q)$ потенциалом

$$\mathring{J}(Q) = \left\{ F = \nabla w, \ w \in \mathring{W}_2^1(Q) \right\},\,$$

а G(Q) – пространство соленоидальных векторных полей

$$G(Q) = \{ F \in [L_2(Q)]^n : \operatorname{div} F = 0 \}.$$

Непрерывность по Гёльдеру решений эллиптических уравнений

Известно, что решение эллиптического уравнения с достаточно гладкими коэффициентами принадлежит пространству $W_{2,\text{loc}}^{k+2}(Q)$, если правая часть принадлежит $W_{2,\text{loc}}^k(Q)$, $k\geqslant 0$ (см., например, [12]). Из этого утверждения и теорем вложения (§ 9 первой главы) следует гладкость решения и в классических терминах. Однако, от условия гладкости коэффициентов в теореме о принадлежности решения $W_2^{k+2}(Q)$, как нетрудно увидеть, освободиться нельзя. Тем не менее, некоторой гладкостью решение обладает и без дополнительных условий; как утверждает теорема Е. Де Джорджи и Дж. Нэша оно непрерывно по Гёльдеру внутри рассматриваемой области. Доказательству этого результата и посвящена настоящая глава.

Мы ограничимся случаем однородного уравнения без младших членов

$$-(\nabla, A(x)\nabla u) = 0, \qquad x \in Q.$$
 (1)

Область $Q\subset\mathbb{R}^n$ будем считать ограниченной, хотя основной результат о внутренней непрерывности по Гёльдеру имеет локальный характер и поэтому справедлив в произвольной области. Как и ранее, мы будем предполагать, что коэффициенты уравнения – элементы $a_{i,j}$ симметрической матрицы A – измеримые и ограниченные функции. Напомним, что мы всегда предполагаем выполненным условие равномерной эллиптичности: существует такая постоянная $\gamma>0$, что для почти всех $x\in Q$ и всех $\xi\in\mathbb{R}^n$ имеют место неравенства

$$\gamma |\xi|^2 \leqslant (\xi, A(x)\xi) \leqslant \gamma^{-1} |\xi|^2. \tag{2}$$

126 Глава <u>5</u>

§ 1. Субрешения эллиптического уравнения

В этом параграфе мы будем изучать свойства субрешений уравнения (1). В теореме 1 § 3 главы 3 было доказано, что суперпозиция $v=f\circ u$ гладкого отображения $f\colon \mathbb{R}\mapsto \mathbb{R}$ и $u\in W^1_{2,\mathrm{loc}}(Q)$ принадлежит $W^1_{2,\mathrm{loc}}(Q)$, если производная функции f ограничена. Условие ограниченности f', как легко видеть, существенно; без него функции

$$\frac{\partial v}{\partial x_i}(x) = f'(u(x)) \frac{\partial u}{\partial x_i}(x)$$

не обязаны принадлежать $L_{2,\text{loc}}(Q)$. В этом параграфе будет доказано (теорема 2), что если u – неотрицательное субрешение уравнения (1), а функция f монотонно не убывает и выпукла вниз, то от условия ограниченности производной f можно отказаться, заменив его требованием принадлежности сложной функции v пространству $L_{2,\text{loc}}(Q)$. Более того, функция v также будет субрешением. Доказательство этого результата опирается на оценку интеграла Дирихле субрешения через его норму в L_2 . С этого утверждения, имеющего и самостоятельное значение, мы начнем изучение обсуждаемых вопросов.

Прежде всего напомним определение субрешения. Принадлежащая пространству $W^1_{2,\mathrm{loc}}(Q)$ функция v называется *субрешением уравнения* (1) в области Q, если для всех неотрицательных пробных функций $\eta \in C_0^\infty(Q)$ выполняется неравенство

$$\int_{O} \left(\nabla \eta(x), A(x) \nabla v(x) \right) dx \leqslant 0. \tag{3}$$

Если $u \in W^1_{2,\mathrm{loc}}(Q)$ и для всех $\eta \in C^\infty_0(Q)$ выполняется равенство

$$\int_{Q} (\nabla \eta(x), A(x) \nabla u(x)) dx = 0, \qquad (1')$$

то функция u называется обобщенным peшением уравнения (1) в Q. Далее мы будем рассматривать только обобщенные решения. Поэтому прилагательное "обобщенное" обычно будем опускать. Как отмечалось выше, неравенство (3) выполняется для всех неотрицательных финитных функций из $W_2^1(Q)$. Аналогично, и равенство (1') справедливо для всех финитных функций

из $W_2^1(Q)$. Конечно, решение уравнения (1) является его субрешением. Отметим также, что если функция v является слабым пределом в $W_2^1(Q')$ для всех $Q' \subseteq Q$ последовательности субрешений, то и она является субрешением.

ТЕОРЕМА 1. Пусть v – неотрицательное субрешение уравнения (1). Тогда для любой точки $x^0 \in Q$ и всех положительных чисел ρ и σ , удовлетворяющих условию $\rho+\sigma < \mathrm{dist}(x^0,\partial Q)$, справедлива оценка

$$\int_{\mathscr{B}_{\rho}(x^0)} |\nabla v(x)|^2 dx \leqslant \frac{1}{\gamma^2 \sigma^2} \int_{\mathscr{B}_{\rho+\sigma}(x^0)} v^2(x) dx. \tag{4}$$

Здесь и всюду далее $\mathscr{B}_r(x^0)$ — шар в \mathbb{R}^n радиуса r с центром в точке x^0 , $\mathrm{dist}(x^0,\partial Q)$ — расстояние от точки x^0 до множества ∂Q .

Доказательство. Возьмем функцию

$$\zeta(x) = \begin{cases} 1 & \text{в } \mathscr{B}_{\rho}(x^0), \\ \frac{\rho + \sigma - |x - x^0|}{\sigma} & \text{при } \rho \leqslant |x - x^0| \leqslant \rho + \sigma, \\ 0 & \text{вне шара } \mathscr{B}_{\rho + \sigma}(x^0). \end{cases}$$

Эта функция финитна в Q, удовлетворяет условию Липшица и $|\nabla \zeta(x)| \leq 1/\sigma$ для п.в. x. Функция $\eta = \zeta^2 v$ неотрицательна, финитна в Q и, как легко видеть, принадлежит пространству $W_2^1(Q)$. Подставляя ее в (3), получим

$$0 \geqslant \int_{Q} \left(\nabla \zeta^{2}(x) v(x), A(x) \nabla v(x) \right) dx$$

$$= \int_{Q} \left(\nabla \left(\zeta(x) v(x) \right), A(x) \nabla \left(\zeta(x) v(x) \right) \right) dx$$

$$- \int_{Q} v^{2}(x) \left(\nabla \zeta(x), A(x) \nabla \zeta(x) \right) dx, \tag{5}$$

поскольку

$$\begin{split} \left(\nabla(\zeta^2 v), A\nabla v\right) &= \left(\zeta\nabla(\zeta v) + \zeta v\nabla\zeta, A\nabla v\right) \\ &= \left(\nabla(\zeta v), A\nabla(\zeta v)\right) - v\left(\nabla(\zeta v), A\nabla\zeta\right) + v\left(\nabla\zeta, A\nabla(\zeta v)\right) \\ &- v^2(\nabla\zeta, A\nabla\zeta) = \left(\nabla(\zeta v), A\nabla(\zeta v)\right) - v^2(\nabla\zeta, A\nabla\zeta). \end{split}$$

Оценка (4) вытекает из (5) в силу (2):

$$\begin{split} \gamma \int_{\mathscr{B}_{\rho}(x^{0})} &|\nabla v(x)|^{2} \, dx \leqslant \gamma \int_{Q} \left|\nabla \left(\zeta(x)v(x)\right)\right|^{2} \, dx \\ &\leqslant \int_{Q} \left(\nabla \left(\zeta(x)v(x)\right), A(x)\nabla \left(\zeta(x)v(x)\right)\right) \\ &\leqslant \int_{Q} v^{2}(x) \left(\nabla \zeta(x), A(x)\nabla \zeta(x)\right) \, dx \leqslant \frac{1}{\gamma \sigma^{2}} \int_{\mathscr{B}_{\rho+\sigma}(x^{0})} v^{2}(x) \, dx. \end{split}$$

Замечание 1. Если субрешение v является решением уравнения (1), то утверждение теоремы 1 справедливо и без условия его неотрицательности.

Перейдем теперь к изучению суперпозиции отображений. Будем рассматривать кусочно гладкие функции f (f непрерывна на всей оси и ее производная существует и непрерывна всюду, кроме, быть может, конечного числа точек, в которых она имеет пределы слева и справа). Будем также предполагать, что функция f выпукла вниз (ее производная f' монотонно не убывает).

ТЕОРЕМА 2. Пусть f – неотрицательная, кусочно гладкая, выпуклая вниз функция, $u \in W^1_{2,loc}(Q)$ и $v = f \circ u \in L_{2,loc}(Q)$. Тогда справедливы следующие утверждения

1) если u – решение уравнения (1) в Q, то v – субрешение уравнения (1) в Q (в частности, $v \in W^1_{2,loc}(Q)$); при этом

$$\nabla v(x) = f'(u(x))\nabla u(x); \tag{6}$$

2) если u — субрешение уравнения (1) в Q u, дополнительно, производная f' функции f неотрицательна, то v — субрешение уравнения (1) в Q; при этом справедливо равенство (6).

Доказательство. **1.** Докажем сначала утверждение теоремы при более жестких ограничениях на функцию f. Пусть $f \in C^2(\mathbb{R})$, для всех $t \in \mathbb{R}$ $f(t) \geqslant 0$, $f''(t) \geqslant 0$, и пусть существует такое число M, что

$$f''(t) = 0$$
 для всех $t \in (-\infty, -M) \cup (M, +\infty)$. (7)

В этом случае требование $v \in L_{2,loc}(Q)$, конечно, излишне.

Так как из (7) следует ограниченность производной функции f, то по теореме 1 § 3 главы 3 $v = f \circ u \in W^1_{2,\text{loc}}(Q)$, и справедливо равенство (6). По той же причине $f' \circ u \in W^1_{2,\text{loc}}(Q)$ и

$$\nabla(f' \circ u) = (f'' \circ u)\nabla u. \tag{6'}$$

Нужно доказать, что v – субрешение уравнения (1). Пусть u – субрешение уравнения (1), а $f'(t)\geqslant 0$ для всех $t\in\mathbb{R}$. Возьмем произвольную неотрицательную пробную функцию η из $C_0^\infty(Q)$. В силу (6) и (6')

$$\begin{split} \int_{Q} \left(\nabla \eta(x), A(x) \nabla v(x) \right) dx &= \int_{Q} f' \left(u(x) \right) \left(\nabla \eta(x), A(x) \nabla u(x) \right) dx \\ &= \int_{Q} \left(\nabla \left(f' \left(u(x) \right) \eta(x) \right), A(x) \nabla u(x) \right) dx \\ &- \int_{Q} f'' \left(u(x) \right) \eta \left(\nabla u(x), A(x) \nabla u(x) \right) dx \leqslant 0; \end{split}$$

первое слагаемое в правой части последнего неравенства неположительно, поскольку функция $(f'\circ u)\eta\in W_2^1(Q)$, финитна и неотрицательна в Q, а u – субрешение. Неположительность второго слагаемого вытекает из эллиптичности уравнения и выпуклости функции f. Аналогично доказывается и первое утверждение: если u – решение уравнения (1), то первое слагаемое равно нулю (условие неотрицательности функций f' и η в этом случае не нужно).

2. Освободимся от условия гладкости функции f. Пусть функция f удовлетворяет условиям теоремы 2 и, дополнительно, линейна при t>M и при t<-M.

Прежде всего заметим, что и в этом случае выполнены условия, гарантирующие принадлежность сложной функции v пространству $W^1_{2,\text{loc}}(Q)$ и справедливость равенства (6). Нужно доказать, что v – субрешение уравнения (1) в области Q.

Возьмем произвольное положительное число h и рассмотрим усреднение

$$f_h = \int_{-\infty}^{+\infty} \omega_h(|t - \tau|) f(\tau) d\tau = \int_{-\infty}^{+\infty} \omega_h(|\tau|) f(t - \tau) d\tau$$

функции f с неотрицательным ядром $\omega_h(t)=\omega(t/h)$ (см. § 1 главы 1). При любом h>0 функция f_h бесконечно дифференцируема, неотрицательна и монотонно не убывает, если монотонно не убывает функция f (второе утверждение теоремы). А так как $(f')_h=(f_h)'$, то и функция f'_h монотонно не убывает. И наконец, $f''_h(t)=0$ при |t|>M+h, поскольку усреднением линейной функции является сама усредняемая функция. По доказанному

130 Глава <u>5</u>

в п. **1** функции $v_h = f_h \circ u$ являются субрешениями (и для них справедливы равенства (6)).

Так как f_h равномерно на всей оси сходится к f при $h \to +0$ $(f_h(t)=f(t)$ для |t|>M+h), то $f_h\circ u\to f\circ u$ в $L_2(Q')$ для любой подобласти Q', компактно принадлежащей Q. Пусть точка x такова, что функция f' непрерывна в u(x). Тогда $f'_h(u(x))\to f'(u(x))$ при $h\to +0$. На множестве $\{x:u(x)$ точка разрыва функции $f'\}$ $|\nabla u(x)|=0$ п.в. (замечание 2 § 3 главы 3). Поэтому

$$f'_h(u(x))\nabla u(x) \to f'(u(x))\nabla u(x)$$

п.в. в Q при $h \to +0$. А так как $|f_h'(u(x))|^2 |\nabla u(x)|^2$ мажорируется суммируемой функцией const $|\nabla u(x)|^2$, то по теореме Лебега

$$\int_{O'} \left| \nabla f_h ig(u(x) ig) -
abla f ig(u(x) ig)
ight|^2 dx o 0$$
 при $h o +0$

для любой $Q' \subseteq Q$. Таким образом, функция v является субрешением уравнения (1), как предел субрешений.

- **3.** Докажем теперь утверждения теоремы 2 в общем случае. Возьмем положительное число M_0 столь большим, чтобы были выполнены следующие три условия:
 - 1) все точки излома функции f (точки разрыва f') лежат в интервале $(-M_0, M_0)$,
 - 2) если $\lim_{t\to +\infty} f'(t) > 0$ (в частности, если $f(t) \to +\infty$ при $t\to +\infty$), то $f'(M_0) > 0$ (а следовательно, f'(t) > 0 для всех $t\geqslant M_0$),
 - 3) если $\lim_{t\to -\infty} f'(t) < 0$ (в частности, если $f(t) \to -\infty$ при $t\to -\infty$), то $f'(-M_0) < 0$ (а следовательно, f'(t) < 0 для всех $t\leqslant -M_0$).

Для каждого $M>M_0$ определим кусочно гладкую функцию $f_{(M)}$ следующим образом.

Для $|t| \leqslant M$

$$f_{(M)}(t) = f(t).$$

Для t > M

$$f_{(M)}(t) = f(M)$$
, если $\lim_{t \to +\infty} f'(t) \leqslant 0$,

И

$$f'_{(M)}(t) = f'(M)$$
, если $\lim_{t \to +\infty} f'(t) > 0$.

Для t < -M

$$f_{(M)}(t) = f(-M)$$
, если $\lim_{t \to -\infty} f'(t) \geqslant 0$,

И

$$f'_{(M)}(t) = f'(-M), \quad \text{если } \lim_{t \to -\infty} f'(t) < 0.$$

Прежде всего отметим, что по теореме 1 § 3 главы 3 функции $v_{(M)} = f_{(M)} \circ u \in W^1_{2,\text{loc}}(Q)$, и для них справедливо неравенство (6), а по доказанному в п. 2 утверждению функции $v_{(M)}$ являются субрешениями уравнения (1).

Кроме того, при u(x) > M

$$|f(u(x)) - f_{(M)}(u(x))| \le f(u(x)), \quad \text{если } \lim_{t \to +\infty} f'(t) > 0,$$

И

$$\left|f(u(x)) - f_{(M)}(u(x))\right| \leqslant f(M) \leqslant f(M_0), \quad \text{если } \lim_{t \to +\infty} f'(t) \leqslant 0.$$

Аналогично, при u(x) < -M

$$\left|f(u(x)) - f_{(M)}(u(x))\right| \leqslant f(u(x)), \quad \text{если } \lim_{t \to -\infty} f'(t) < 0,$$

И

$$|f(u(x)) - f_{(M)}(u(x))| \le f(-M) \le f(M_0), \text{ если } \lim_{t \to -\infty} f'(t) \ge 0.$$

Поэтому для любой $Q' \subseteq Q$

$$\int_{Q'} |f(u(x)) - f_{(M)}(u(x))|^2 dx$$

$$= \int_{\{x \in Q': |u(x)| > M\}} [f^2(u(x)) + f^2(M_0) + f^2(-M_0)] dx \to 0$$

при $M \to +\infty$. Таким образом, $v_{(M)} \to v = f \circ u$ при $M \to +\infty$ в $L_2(Q')$ для любой $Q' \in Q$. И следовательно, ограничено семейство их норм: $\|v_{(M)}\|_{L_2(Q')} \leqslant C(Q')$ для всех $M > M_0$.

Докажем теперь сходимость производных функций из этого семейства. Возьмем произвольную подобласть $Q' \subseteq Q$; обозначим $\operatorname{dist}(Q', \partial Q) = d'$. Покроем подобласть Q' конечным набором

шаров радиуса d'/4 с центрами в Q' и в каждом из них применим к произвольной функции $v_{(M)}$ из рассматриваемого семейства оценку (4) теоремы 1 с $\sigma = \rho = d'/4$. Получим

$$\int_{Q'} |\nabla v_{(M)}(x)|^2 \, dx \leqslant C(Q') \int_{Q''} v_{(M)}^2(x) \, dx \leqslant \text{const},$$

где $Q'' = \{x \in Q : \operatorname{dist}(x,Q') < d'/2\} \in Q$, а постоянная C(Q') не зависит от $M > M_0$. Так как

$$\nabla v_{(M)}(x) = f'_{(M)}\big(u(x)\big)\nabla u(x) \to f'\big(u(x)\big)\nabla u(x)$$

при $M\to +\infty$ почти всюду (mes $\{x\in Q': |u(x)|>M\}\to 0$ при $M\to +\infty$), то по лемме Фату функция $(f'(u(x)))^2|\nabla u(x)|^2$ суммируема по Q'. А так как

$$\int_{Q'} \left| f' \big(u(x) \big) - f'_{(M)} \big(u(x) \big) \right|^2 |\nabla u(x)|^2 \, dx$$

$$\leqslant \int_{\{x \in Q': |u(x)| > M\}} \left| f' \big(u(x) \big) \right|^2 |\nabla u(x)|^2 \, dx \to 0 \quad \text{при } M \to +\infty,$$

то обобщенные производные функций $v_{(m)}$ сходятся в $L_2(Q')$ к функциям $f'(u(x))\partial u/\partial x_i(x)$. Следовательно, предельная функция $v=f\circ u$ принадлежит $W_2^1(Q')$, и для нее справедливо равенство (6). Более того, она является пределом в $W_2^1(Q')$ субрешений $v_{(M)}$, а следовательно, сама является субрешением.

Замечание 2. Из теоремы 2 немедленно следует, что |u| является субрешением уравнения (1), если u – решение (1). Более того, пусть p – произвольное число из интервала $(1,\frac{n}{n-2})$, а u – решение уравнения (1) в Q. Тогда в силу следствия 1 из теоремы 1 § 2 главы 3 $|u|^p \in L_{2,loc}(Q)$ и по только что доказанной теореме 2 $|u|^p$ – субрешение уравнения (1) в Q.

Замечание 3. Пусть I — одно из следующих множеств: либо это отрезок [a,b], либо одна из полуосей $[a,+\infty)$ или $(-\infty,b]$. Предположим, что субрешение u принимает значения из этого множества: $u(x) \in I$ для п.в. x из Q. Тогда, как легко видеть, выполнение условий на функцию f в теореме 2 следует требовать на этом множестве I. В частности, если $p \in (1, \frac{n}{n-2})$, а v — неотрицательное субрешение (например, $v = |u|^p$, где u — решение уравнения (1)), то функция v^p также является субрешением (1). Поэтому для любого решения u и всех натуральных k функции $|u|^{p^k}$ являются субрешениями.

§ 2. Локальная ограниченность обобщенных решений эллиптического уравнения

ТЕОРЕМА 1. Любое неотрицательное субрешение v в области Q уравнения (1) принадлежит пространству $L_{\infty, \text{loc}}(Q)$. Более того, существует такая зависящая только от размерности пространства n и постоянной эллиптичности γ постоянная C, что для любых подобластей Q', Q'', $Q' \in Q$ справедлива оценка

vrai
$$\sup_{Q'} v^2(x) \le C(d)^{-n} \int_{Q''} v^2(y) \, dy,$$
 (8)

в которой $d=\mathrm{dist}(Q',\partial Q''))$ – расстояние от подобласти Q' до границы Q'' .

В частности, оценка (8) справедлива для v(x) = |u(x)|, где u – произвольное решение уравнения (1).

Доказательство. Прежде всего заметим, что достаточно доказать справедливость для любой точки $x^0 \in Q$ и всех $r \in (0, \frac{1}{2} \operatorname{dist}(x^0, \partial Q))$ оценки

vrai
$$\sup_{x \in \mathcal{B}_r(x^0)} v^2(x) \le C(2r)^{-n} \int_{\mathcal{B}_{2r}(x^0)} v^2(y) \, dy.$$
 (8')

Справедливость оценки (8), а тем самым и принадлежность субрешения v пространству $L_{\infty,loc}(Q)$, немедленно следует из (8').

Пусть v – произвольное неотрицательное субрешение уравнения (1). Возьмем и зафиксируем число $p=2\kappa\in(2,\frac{2n}{n-2})$ (например, $\kappa=\frac{n}{n-1}$) и любую точку x^0 из Q. Для произвольных $\rho>0$ и $\sigma>0$, для которых $\mathscr{B}_{\rho+\sigma}=\mathscr{B}_{\rho+\sigma}(x^0)\in Q$, подставляя оценку (4) теоремы 1 предыдущего параграфа в неравенство (9) следствия 2 § 2 главы 3 (с $\mathscr{E}=\mathscr{B}_{\rho}$), имеем

$$\left[\rho^{-n} \int_{\mathcal{B}_{\rho}} v^{2\kappa}(x) \, dx\right]^{1/\kappa} \leqslant C(n,\gamma) \left[\left(\frac{\rho}{\sigma}\right)^{2} + 1\right] \left[\frac{\rho + \sigma}{\rho}\right]^{n} \times \left[(\rho + \sigma)^{-n} \int_{\mathcal{B}_{n+\sigma}} v^{2}(x) \, dx\right]. \tag{9}$$

Тлава <u>5</u>

Возьмем произвольное положительное число r такое, что $r < \frac{1}{2} \operatorname{dist}(x^0, \partial Q)$). Положим $\rho_0 = 2r$, $\sigma_k = r2^{-k}$, $\rho_k = \rho_{k-1} - \sigma_k$, $k = 1, 2, \ldots$. Последовательность $\{\rho_k\}$ монотонно убывает и сходится к числу r. Как отмечалось в замечании 3 предыдущего параграфа, функции $v_1(x) = v^\kappa(x), v_2(x) = v_1^\kappa(x) = v^{\kappa^2}(x), \ldots, v_k(x) = v_{k-1}^\kappa(x) = v^{\kappa^k}(x), \ldots$ являются субрешениями (в Q) уравнения (1). Поэтому для каждой из них справедлива оценка (9). Положим в (9) $v = v_{k-1}$, $\rho = \rho_k$ и $\sigma = \sigma_k$, при этом $\rho + \sigma = \rho_{k-1}$. Тогда

$$\left[\left(\frac{\rho}{\sigma} \right)^2 + 1 \right] \left[\frac{\rho + \sigma}{\rho} \right]^n = \left[\left(\frac{\rho_k}{\sigma_k} \right)^2 + 1 \right] \left[\frac{\rho_k + \sigma_k}{\rho_k} \right]^n \leqslant C(n) 4^k.$$

Таким образом, для любого натурального k имеем оценку

$$\begin{split} \left[\rho_k^{-n} \int_{\mathscr{B}_{\rho_k}} v_k^2(x) \, dx \right]^{1/\kappa} &= \left[\rho_k^{-n} \int_{\mathscr{B}_{\rho_k}} v_{k-1}^{2\kappa}(x) \, dx \right]^{1/\kappa} \\ &\leqslant C \, 4^k \bigg[\rho_{k-1}^{-n} \int_{\mathscr{B}_{0k-1}} v_{k-1}^2(x) \, dx \bigg], \end{split}$$

здесь и далее постоянная $C=C(n,\gamma)$ зависит только от n и $\gamma.$ Из нее получаем

$$\begin{split} \rho_k^{-n} \int_{\mathscr{B}_{\rho_k}} v_k^2(x) \, dx &\leqslant C^\kappa 4^{k\kappa} \left[\rho_{k-1}^{-n} \int_{\mathscr{B}_{\rho_{k-1}}} v_{k-1}^2(x) \, dx \right]^\kappa \\ &\leqslant C^{\kappa+\kappa^2} \, 4^{k\kappa+(k-1)\kappa^2} \left[\rho_{k-2}^{-n} \int_{\mathscr{B}_{\rho_{k-2}}} v_{k-2}^2(x) \, dx \right]^{\kappa^2} \\ &\leqslant C^{\kappa+\kappa^2+\dots+\kappa^k} \, 4^{k\kappa+(k-1)\kappa^2+\dots+\kappa^k} \left[\rho_0^{-n} \int_{\mathscr{B}_{\rho_0}} v_0^2(x) \, dx \right]^{\kappa^k}. \end{split}$$

Следовательно,

$$\begin{split} \|v^2\|'_{L_{\kappa^k}(\mathscr{B}_r)} &\leqslant \|v^2\|'_{L_{\kappa^k}(\mathscr{B}_{\rho_k})} = \left[\rho_k^{-n} \int_{\mathscr{B}_{\rho_k}} v^{2\kappa^k}(x) \, dx\right]^{\frac{1}{\kappa^k}} \\ &= \left[\rho_k^{-n} \int_{\mathscr{B}_{\rho_k}} v_k^2(x) \, dx\right]^{\frac{1}{\kappa^k}} \\ &\leqslant C^{\frac{\kappa + \kappa^2 + \dots + \kappa^k}{\kappa^k}} \, 4^{\frac{k\kappa + (k-1)\kappa^2 + \dots + \kappa^k}{\kappa^k}} \left[\rho_0^{-n} \int_{\mathscr{B}_{\rho_0}} v_0^2(x) \, dx\right] \\ &\leqslant C^{\sum_{m=0}^{\infty} \kappa^{-m}} \, 4^{\sum_{m=0}^{\infty} (m+1)\kappa^{-m}} \left[(2r)^{-n} \int_{\mathscr{B}_{2r}} v^2(x) \, dx\right]. \end{split}$$

Устремляя теперь k к бесконечности, в силу теоремы 1 §1 главы 3 получаем доказываемое неравенство (8).

§ 3. Слабое неравенство Гарнака

В этом параграфе мы докажем, что нетривиальное неотрицательное в некотором шаре решение уравнения (1) в шаре меньшего радиуса (с тем же центром) отделено от нуля. Для доказательства этого утверждения нам понадобится неочевидная оценка интеграла Дирихле для специального класса субрешений, с которой мы и начнем изложение.

Возьмем произвольный шар

$$\mathcal{B}_{2r} = \mathcal{B}_{2r}(x^0) = \{x \in \mathbb{R}^n : |x - x^0| < 2r\},$$
$$x^0 \in Q, \qquad r < \frac{1}{2} \operatorname{dist}(x^0, \partial Q).$$

Пусть u – решение уравнения (1) (в области Q). По теореме 1 предыдущего параграфа решение ограничено в любой компактно вложенной в Q подобласти, в частности, в шаре \mathscr{B}_{2r} . Прибавляя к решению постоянную (она, очевидно, является решением уравнения (1)), можно добиться, чтобы решение стало неотрицательным в \mathscr{B}_{2r} . Далее мы будем считать решение u неотрицательным и ограниченным: существует такое число M, что $0 \leqslant u(x) \leqslant M$ п.в. в \mathscr{B}_{2r} . Будем рассматривать кусочно гладкие функции f на отрезке [0,M]: f непрерывна на этом отрезке, имеет производную f' всюду, кроме конечного числа "точек излома" (точками излома считаем и крайние точки отрезка), и эта производная непрерывна на каждом из отрезков, на которые точки излома разбивают [0, M] (в частности, в крайних точках 0 и M существуют односторонние производные, равные соответствующим односторонним пределам f'). Будем предполагать, что функция f неотрицательна и удовлетворяет следующему условию

функция
$$g(t) = -e^{-f(t)}$$
 выпукла, (10)

т.е. ее производная g' монотонно не убывает.

Остановимся подробнее на этом классе функций. Для дважды непрерывно дифференцируемых функций f $g''(t) = [f''(t) - f'^2(t)]e^{-f(t)}$ и условие (10) эквивалентно условию

$$f''(t) \geqslant f'^{2}(t), \qquad 0 \leqslant t \leqslant M.$$
 (10')

Из последнего неравенства, конечно, следует выпуклость и функции f. Выпуклость функции f следует из (10) и без дополнительного условия гладкости. В этом можно убедиться, например, следующим образом:

$$f(t) = -\ln(-g(t)), \qquad f'(t) = \frac{g'(t)}{-g(t)},$$

и из монотонного неубывания g' следует монотонное неубывание f'. Отметим, что в отличие от класса выпуклых функций, множество функций, удовлетворяющих условию (10), не инвариантно (см. (10')) относительно умножения на положительные (большие единицы) числа, а следовательно, и относительно сложения. Кроме того, отметим, что удовлетворяющая условию (10) кусочно гладкая функция $f \neq \text{const}$ не может быть продолжена с сохранением этого свойства на всю ось. Однако в некоторую окрестность отрезка [0,M] такое продолжение возможно (например, решением задачи Коши для уравнения $f''(t) = f'^2(t)$).

Продолжая f на всю ось с сохранением ее (а не функции g!) свойства выпуклости (например, линейно: f' постоянна на полуосях $(-\infty,0)$ и $(M,+\infty)$; условие (10) при этом, конечно, нарушится), из теоремы 2 §1 получим, что сложная функция $v=f\circ u$ является субрешением уравнения (1) в Q, а следовательно, и в \mathscr{B}_{2r} .

ЛЕММА 1. Существует такая постоянная $C = C(n, \gamma)$, что для любого шара $\mathcal{B}_{2r} \in Q$, любого неотрицательного решения и и любой неотрицательной кусочно гладкой функции f, удовлетворяющей условию (10), субрешение $v = f \circ u$ удовлетворяет оценке

$$\int_{\mathcal{R}_{-}} |\nabla v(x)|^2 dx \leqslant Cr^{n-2}.$$
 (11)

Подчеркнем, что постоянная C в оценке (11) не зависит ни от рассматриваемого шара, ни от неотрицательного решения (в частности, C не зависит от M), ни от функции f; она зависит только от размерности пространства n и постоянной эллиптичности γ .

Доказательство. 1. Рассмотрим сначала случай дважды непрерывно дифференцируемой функции f. В этом случае, как

отмечалось выше, условие (10) эквивалентно условию (10'). Функцию f продолжим линейно на всю числовую ось. В силу теоремы 1 §3 главы 3 функция $f' \circ u$ принадлежит пространству $W^1_{2,\text{loc}}(Q)$, а ее производные (конечно, обобщенные) вычисляются по обычному правилу (по формуле (6)).

Возьмем функцию $\zeta \in C_0^\infty(\mathbb{R}^n)$, $\operatorname{supp} \zeta \subset \mathscr{B}_{2r}$, $\zeta(x) = 1$ в \mathscr{B}_r и $|\nabla \zeta(x)| \leqslant \operatorname{const} r^{-1}$ для $\operatorname{всеx} x \in Q$. Подставим

$$\eta = \zeta^2(x) f'(u(x)) \in \mathring{W}_2^1(Q), \quad \text{supp } \eta \subset \mathscr{B}_{2r},$$

в определяющее обобщенное решение интегральное тождество. Используя (10'), получим

$$\begin{split} 0 &= \int_{\mathscr{B}_{2r}} \left[f' \big(u(x) \big) \big(\nabla \zeta^2(x), A(x) \nabla u(x) \big) \\ &+ \zeta^2(x) f'' \big(u(x) \big) \big(\nabla u(x), A(x) \nabla u(x) \big) \right] dx \\ &= \int_{\mathscr{B}_{2r}} \left[\big(\nabla \zeta^2(x), A(x) \nabla v(x) \big) \\ &+ \zeta^2(x) \frac{f''(u(x))}{f'^2(u(x))} \big(\nabla v(x), A(x) \nabla v(x) \big) \right] dx \\ &\geqslant \int_{\mathscr{B}_{2r}} \left[\big(\nabla \zeta^2(x), A(x) \nabla v(x) \big) + \zeta^2(x) \big(\nabla v(x), A(x) \nabla v(x) \big) \right] dx. \end{split}$$

Из этого неравенства следует оценка

$$\int_{\mathscr{B}_{2r}} \zeta^{2}(x) (\nabla v(x), A(x) \nabla v(x)) dx$$

$$\leqslant \int_{\mathscr{B}_{2r}} 2\zeta(x) (\nabla \zeta(x), A(x) \nabla v(x)) dx$$

$$\leqslant 2 \left[\int_{\mathscr{B}_{2r}} \zeta^{2}(x) (\nabla v(x), A(x) \nabla v(x)) dx \right]^{1/2}$$

$$\times \left[\int_{\mathscr{B}_{2r}} (\nabla \zeta(x), A(x) \nabla \zeta(x)) dx \right]^{1/2}$$

$$\leqslant C(n, \gamma) r^{\frac{n-2}{2}} \left[\int_{\mathscr{B}_{2r}} \zeta^{2}(x) (\nabla v(x), A(x) \nabla v(x)) dx \right]^{1/2},$$

из которой немедленно вытекает (11).

2. Рассмотрим теперь случай кусочно гладкой функции f. Значения функции g отрицательны на всем отрезке [0,M]. Продолжим ее линейно на некоторый отрезок $[-\delta,M+\delta],\,\delta>0$ с сохранением этого свойства (и свойства выпуклости). Тогда усреднения $g_h(t)$ с $h<\delta$ являются бесконечно дифференцируемыми выпуклыми функциями на отрезке [0,M], принимающими отрицательные значения. Поэтому функции $f^{(h)}(t)=-\ln(-g_h(t))$ удовлетворяют условию (10') и по доказанному в п. 1 субрешения $v_h=f^{(h)}\circ u$ удовлетворяют оценке (11):

$$\int_{\mathcal{B}_r} |\nabla v_h(x)|^2 dx \leqslant C(n, \gamma) r^{n-2}.$$
 (11')

Так как $g_h(t) \to g(t)$ при $h \to +0$, $g'_h(t) \to g'(t)$, $h \to +0$, а следовательно, и $(f^{(h)})'(t) \to f'(t)$, $h \to +0$ во всех точках отрезка [0,M], за исключением точек излома, то

$$\nabla v_h(x) = (f^{(h)})'(u(x))\nabla u(x) \to f'(u(x))\nabla u(x)$$

при $h \to +0$ п.в. в \mathscr{B}_{2r} .

Справедливость оценки (11) теперь следует из (11') в силу леммы Φ ату.

ТЕОРЕМА 1 (СЛАБОЕ НЕРАВЕНСТВО ГАРНАКА). Для любого числа $c_0 > 0$ найдется такая постоянная $c = c(n, \gamma, c_0) > 0$, что для произвольного шара $\mathcal{B}_{2r} \in Q$ и произвольного неотрицательного в этом шаре решения и уравнения (1), удовлетворяющего условию

$$\operatorname{mes}\{x \in \mathscr{B}_r : u(x) \geqslant 1\} \geqslant c_0 r^n \tag{12}$$

справедлива оценка

Доказательство. Возьмем произвольное положительное число ε и рассмотрим функцию $f_{\varepsilon}(t) = \max\{0, -\ln(t+\varepsilon)\}$. Она удовлетворяет условиям леммы 1: функция $g_{\varepsilon}(t) = -e^{-f(t)} =$

 $\max\{-1,-(t+\varepsilon)\}$ выпукла. Поэтому субрешение $v_{\varepsilon}=f_{\varepsilon}\circ u$ удовлетворяет оценке (11):

$$\int_{\mathscr{B}_{-}} |\nabla v_{\varepsilon}(x)|^{2} dx \leqslant Cr^{n-2}.$$

Кроме того, из (12) следует, что $\operatorname{mes}\{x \in \mathscr{B}_r : f_{\varepsilon}(u(x)) = 0\} \geqslant c_0 r^n$. Поэтому из оценки (9) следствия 2 из леммы 1 § 2 главы 3 (с p = 2 и $\mathscr{E} = \{x \in \mathscr{B}_r : f_{\varepsilon}(u(x)) = 0\}$) имеем

$$r^{-n} \int_{\mathscr{B}_r} v_{\varepsilon}^2(x) \, dx \leqslant C(n, c_0) r^{2-n} \int_{\mathscr{B}_r} |\nabla v_{\varepsilon}(x)|^2 \, dx \leqslant C(n, \gamma, c_0).$$

А по теореме 1 § 2 этой главы

$$v_{\varepsilon}(x) = \max\{0, -\ln(u(x) + \varepsilon)\} \leqslant C(n, \gamma, c_0)$$
 п.в. в $\mathscr{B}_{r/2}$.

Откуда

$$u(x) \geqslant e^{-C(n,\gamma,c_0)} = c(n,\gamma,c_0)$$
 II.B. B $\mathscr{B}_{r/2}$.

§ 4. Непрерывность по Гёльдеру решений эллиптического уравнения

Пусть u — любое решение (в Q) уравнения (1). Возьмем произвольный шар $\mathscr{B}_{\rho} \Subset Q$ и обозначим

$$\omega(\rho) = \omega_u(\rho) = \operatorname{vrai} \sup_{x \in \mathscr{B}_{\rho}} u(x) - \operatorname{vrai} \inf_{x \in \mathscr{B}_{\rho}} u(x).$$

ЛЕММА 1. Существует такое число $\lambda = \lambda(n,\gamma) < 1$, что для любого решения уравнения (1) и любого шара $\mathscr{B}_{\rho} \subseteq Q$ справедливо неравенство

$$\omega(\rho/4) \leqslant \lambda \omega(\rho). \tag{14}$$

Доказательство. Пусть $\omega(\rho)=2M$. Поскольку прибавление к решению постоянной не меняет значения ω , не ограничивая общность, можно считать, что

$$M = \operatorname{vrai} \sup_{x \in \mathscr{B}_{\rho}} u(x) = -\operatorname{vrai} \inf_{x \in \mathscr{B}_{\rho}} u(x).$$

Рассмотрим решения $w_{\pm}(x) = (M \pm u(x))/M$. Они неотрицательны в рассматриваемом шаре, причем

vrai
$$\sup_{x \in \mathscr{B}_{\rho}} w_{\pm}(x) = 2$$
, vrai $\inf_{x \in \mathscr{B}_{\rho}} w_{\pm}(x) = 0$,
$$\omega_{w_{+}}(\rho) = \omega_{w_{-}}(\rho) = \frac{1}{M} \omega_{u}(\rho).$$

Кроме того, если

$$\operatorname{mes}\{x\in \mathscr{B}_{\rho/2}: w_-(x)\geqslant 1\}<\frac{1}{2}\operatorname{mes}\mathscr{B}_{\rho/2},$$

то

$$\operatorname{mes}\{x \in \mathcal{B}_{\rho/2} : w_{+}(x) \geqslant 1\} \geqslant \frac{1}{2} \operatorname{mes} \mathcal{B}_{\rho/2}. \tag{15}$$

Если w_+ не удовлетворяет (15), то ему удовлетворяет w_- . Т.е. по крайней мере одна из функций w_\pm удовлетворяет (15). Пусть это будет w_+ . Применяя к ней теорему 1 § 3, получаем vrai $\inf_{\mathscr{B}_0/4} w_+(x) \geqslant c = c(n,\gamma) > 0$. Следовательно,

$$\omega_u(\rho/4) = M\omega_{w_{\perp}}(\rho/4) \leqslant (2-c)M = (1-c/2)\omega_u(\rho)$$

и мы получили (14) с $\lambda = \lambda(n, \gamma) = 1 - c/2$.

Отметим, что из леммы 1 легко следует справедливость теоремы Лиувилля и в случае уравнения (1) с измеримыми и ограниченными коэффициентами (задача 3, глава 5).

ТЕОРЕМА 1. Существуют такие зависящие только от размерности пространства n и постоянной эллиптичности γ постоянные α и C, что для любого решения в Q уравнения (1) и любых $Q' \subseteq Q'' \subseteq Q$ справедливо неравенство

$$|u(x) - u(y)| \leqslant Cd^{-\frac{n}{2} - \alpha} |x - y|^{\alpha} ||u||_{L_2(Q'')}$$
 das n.s. $x \ u \ y \ us \ Q,$ (16)

в котором $d=\operatorname{dist}\{Q',\partial Q''\}$ – расстояние между подобластью Q' и границей подобласти Q''.

Доказательство. Пусть $x \in Q', y \in Q'$ и |x-y| < d/2. Обозначим $r_0 = d/2, r_k = 4^{-k}r_0, k = 1, 2, \dots$. Пусть m — такое натуральное число, что $r_{m+1} \leq |x-y| < r_m$. Применим к шару $\mathscr{B}_{r_m}(y)$ лемму 1 этого параграфа. С помощью теоремы 1 § 2 этой главы имеем

$$|u(x) - u(y)| \leq \omega(r_m) \leq \lambda \omega(r_{m-1}) \leq \dots \leq \lambda^m \omega(r_0)$$

$$\leq 2\lambda^m \operatorname{vrai} \sup_{z \in \mathscr{B}_{r_0}(y)} |u(z)| \leq \lambda^m C(n, \gamma) d^{-n} ||u||_{L_2(Q'')}.$$

Положим $\alpha = \alpha(n, \gamma) = -\log_4 \lambda > 0$. Поскольку

$$\begin{split} \lambda^m &= 4^{m \log_4 \lambda} = (4^{-m})^{-\log_4 \lambda} \\ &= (4^{-m})^\alpha = \left(\frac{2r_m}{d}\right)^\alpha = \left(\frac{8}{d}\right)^\alpha r_{m+1}^\alpha \leqslant \frac{8^\alpha}{d^\alpha} \left|x - y\right|^\alpha, \end{split}$$

имеем (16) для |x - y| < d/2.

Пусть теперь $x \in Q', y \in Q'$ и $|x-y| \geqslant d/2$. В этом случае оценка (16) немедленно вытекает из теоремы 1 § 2. Действительно,

$$|u(x) - u(y)| \leq 2||u||_{L_{\infty}(Q')} \leq C(n, \gamma)d^{-n}||u||_{L_{2}(Q'')}$$
$$\leq C(n, \gamma)d^{-n}\left(\frac{2|x - y|}{d}\right)^{\alpha}||u||_{L_{2}(Q'')}.$$

Таким образом, теорема доказана.

Задачи к главе 5 143

Задачи к главе 5

Задача 1. Докажите утверждение теоремы 2 §1 в случае счетного множества точек излома функции f (точек разрыва производной функции f).

В силу теоремы 1 § 4 значения решения уравнения (1) можно так изменить на множестве меры нуль, что оно будет непрерывным внутри рассматриваемой области. Т.е. в этом классе отождествляемых функций имеется непрерывная функция. Ее естественно и понимать под решением уравнения.

Задача 2. Докажите **строгий принцип максимума**. Если решение уравнения (1) с измеримыми и ограниченными коэффициентами достигает наибольшего значения во внутренней точке области, то оно постоянно.

Задача 3. Докажите **теорему Лиувилля**. Ограниченное во всем пространстве \mathbb{R}^n решение уравнения (1) постоянно.

Список литературы

- [1] E. DeGiorgi, "Sulla differenziabilita e l'analiticita delle estremali degli integrali multipli regolari", Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3 (1957), 25–43.
- [2] J. Nash, "Continuity of solutions of parabolic and elliptic equations", Amer. J. Math., 80 (1958), 931–954.
- [3] О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, Наука, М., 1973.
- [4] Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989.
- [5] J. Moser, "A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations", Comm. Pure Appl. Math., 17 (1964), 101–134.
- [6] А.Н. Колмогоров, С.В. Фомин, Элементы теории функций и функционального анализа, Наука, М., 1972.
- [7] К. Иосида, Функциональный анализ, Мир, М., 1967.
- [8] В. Г. Мазья, *Пространства С. Л. Соболева*, Изд. Ленинградского университета, Л., 1985.
- [9] И. Г. Петровский, Лекции об уравнениях с частными производными, Государственное изд. технико-теоретической литературы, М., 1953.
- [10] В.С. Владимиров, Уравнения математической физики, Наука, М., 1981.
- [11] В.С. Владимиров, В.В. Жаринов, Уравнения математической физики, Физико-математическая литература, М., 2000.
- [12] В.П. Михайлов, Дифференциальные уравнения в частных производных, Наука, М., 1983.
- [13] В. П. Михайлов, Лекции по уравнениям математической физики, Физматлит, М., 2001.
- [14] В. С. Владимиров, Обобщенные функции в математической физике, Наука, М., 1979.
- [15] Ю.Н. Дрожжинов, Б.И. Завьялов, Введение в теорию обобщенных функций, Лекционные курсы НОЦ, **5**, Математический институт им. В.А. Стеклова РАН, М., 2006.

Научное издание

Лекционные курсы НОЦ Выпуск 7

Валентин Петрович Михайлов, Анатолий Константинович Гущин

Дополнительные главы курса "Уравнения математической физики"

Компьютерная верстка: С. А. Поликарпов

Сдано в набор 01.12.2006. Подписано в печать 01.03.2007. Формат $60 \times 90/16$. Усл. печ. л. 9,125. Тираж 200 экз.

Отпечатано в Математическом институте им. В.А. Стеклова РАН Москва, 119991, ул. Губкина, 8. http://www.mi.ras.ru/noc/ e-mail: pavlov@mi.ras.ru