Математический институт им. В.А. Стеклова Российской академии наук

СОВРЕМЕННЫЕ ПРОБЛЕМЫ МАТЕМАТИКИ

Выпуск 14

Издание выходит с 2003 года

С. П. Суетин

Численный анализ некоторых характеристик предельного цикла свободного уравнения Ван дер Поля

Москва

Редакционная коллегия:

А.Г. Сергеев (главный редактор), А.М. Зубков, А.Д. Изаак, С.П. Коновалов, Д.О. Орлов, Ю.А. Пупырев (ответственный секретарь), Д.В. Трещёв,

Редакционный совет:

С. И. Адян, Д. В. Аносов, О. В. Бесов, И. В. Волович, В. В. Козлов, С. П. Новиков, А. Н. Паршин, Ю. В. Прохоров, А. А. Славнов, Е. М. Чирка

С56 **Современные проблемы математики** / Математический институт им. В. А. Стеклова РАН (МИАН). – М.: МИАН, 2010. Вып. 14: Численный анализ некоторых характеристик предельного цикла свободного уравнения Ван дер Поля/ С. П. Суетин – 57 с.

ISBN 5-98419-039-7

Серия "Современные проблемы математики" – рецензируемое продолжающееся издание Математического института им. В. А. Стеклова РАН. В серии публикуются работы, отражающие научные достижения сотрудников и аспирантов МИАН. Особое внимание уделяется исследованиям, выполненным в рамках научных программ Российской академии наук. Публикация работ осуществляется по решению Редакционного совета, в который входят представители администрации и заведующие отделами МИАН.

ISBN 5-98419-039-7

Содержание

§1. Введение	5
1.1	5
1.2	5
1.3	6
1.4	7
§2. Некоторые теоретические результаты	9
2.1	9
2.2	12
2.3	16
§ 3. Основные численные результаты	18
3.1	18
3.2.	19
3.3	20
3.4	23
3.5.	24
3.6	25
3.7	27
3.8	30
§ 4. Заключительные замечания	31
4.1.	31
§ 5. Таблицы	32
§6. Рисунки	48

§1. Введение

1.1. Основная цель настоящей работы – проиллюстрировать возможности некоторых методов "эффективного аналитического продолжения" степенного ряда на примере хорошо известного свободного уравнения Ван дер Поля – нелинейного дифференциального уравнения с "малым" параметром.

Как известно (см. [1], [2]), свободное уравнение Ван дер Поля является идеализированной математической моделью основанного на туннельном диоде физического прибора – "генератора", который служит источником незатухающих периодических колебаний электрического тока. При определенной нормировке это уравнение принимает следующий вид:

$$\frac{d^2U}{dt^2} + \varepsilon (U^2 - 1)\frac{dU}{dt} + U = 0, \qquad (1)$$

где $U = U(t; \varepsilon)$ – величина, связанная с силой тока в электрической цепи, t – время, а физические характеристики самого генератора описываются одним "малым" параметром ε .

Хорошо известно [1], [2], что уравнение Ван дер Поля (1) при любом $\varepsilon > 0$ имеет в фазовой плоскости (U, dU/dt) единственный предельный цикл, которой является устойчивым. Этот математический факт соответствует экспериментально наблюдаемому физическому явлению: если характеристики генератора подобраны так, что соответствующее значение параметра ε положительно, то в генераторе возбуждаются незатухающие автоколебания вполне определенной частоты и амплитуды. При малых значениях параметра $\varepsilon > 0$ уравнение (1) близко к уравнению линейного осциллятора, а автоколебания в генераторе близки к простым гармоническим колебаниям. По мере роста ε автоколебания все больше отличаются от гармонических колебаний и при достаточно больших значениях ε их характер уже существенно иной – они становятся релаксационными. Это означает, что с течением времени при "движении" по замкнутой фазовой кривой в плоскости (U, dU/dt) плавное изменение физического состояния системы чередуется с весьма быстрыми изменениями скачкообразного характера. Подробное изложение вопросов, касающихся уравнения Ван дер Поля, имеется в монографиях [1], [2].

1.2. В работах [3] и [4] предельный цикл уравнения Ван дер Поля (1) исследовался численно с помощью Паде-анализа – метода, основанного на использовании аппроксимаций Паде степенного ряда. Сначала в [3] было построено формальное решение уравнения (1) в виде ряда Тейлора по малому параметру ε с коэффициентами при степенях ε , зависящими от некоторого нового переменного (точнее, являющимися тригонометрическими полиномами от переменного $x = \nu(\varepsilon)t$, где $\nu(\varepsilon)$ – частота колебаний предельного цикла). А затем на основе анализа расположения в комплексной ε -плоскости нулей и полюсов диагональных аппроксимаций Паде достаточно высокого порядка¹ (вплоть до аппроксимаций типа [24/24]) в [3], [4] были сделаны выводы о расположении и характере особых точек этого формального решения в комплексной ε -плоскости как аналитической функции от ε . В первую очередь это позволило сделать вполне правдоподобный вывод о сходимости построенного ряда в некоторой окрестности начала координат, величине его радиуса сходимости и расположении особых точек на границе соответствующего круга сходимости. Затем на основе полученной информации в [3], [4]

Работа автора выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 11-01-00330-а и № 09-01-12160-офи-м) и программы "Ведущие научные школы" (грант № НШ-8033.2010.1).

¹Следует иметь в виду, что при вычислениях основная трудность состояла в определении совокупности функций $u_k(x)$ – функциональных коэффициентов при степени малого параметра ε^k (см. (20) и (21)). Функции частоты и амплитуды предельного цикла зависят от ε^2 , поэтому для вычисления для них аппроксимаций Паде типа [n/n] необходимо знать 4n + 1 коэффициентов-функций $u_k(x)$.

была сделана замена переменной, позволившая фактически осуществить эффективное аналитическое продолжение степенного ряда по переменной ε за пределы его круга сходимости (подробнее см. п. 1.3). Такой подход позволил в итоге получить эффективную процедуру для численного построения предельного цикла уравнения (1) при достаточно больших значениях $\varepsilon > 0$.

На рис. 1–4 с необходимыми пояснениями изображены² в фазовой плоскости (U, dU/dt) предельные циклы уравнения (1), построенные непосредственно с помощью диагональных аппроксимаций Паде для формального решения $U = U(t; \varepsilon)$ уравнения (1), соответствующие величинам $\varepsilon = 0$, $\varepsilon = 1.64$, $\varepsilon = 1.66$, $\varepsilon = 2.5$ и $\varepsilon = 3.4$.

Кроме того, в [3], [4] были исследованы численно как функции от параметра ε такие важные характеристики³ предельного цикла уравнения (1), как частота колебаний ν и их амплитуда A (пользуясь случаем, отметим, что на самом деле обе эти функции зависят от ε^2 ; см. [3], [4] и п. 3.1 ниже). На основе анализа расположения вычисленных нулей и полюсов диагональных аппроксимаций Паде достаточно высокого порядка в [3], [4] был сделан вывод, что степенные ряды по переменной $z = \varepsilon^2$ для обеих этих функций имеют ненулевые (притом весьма близкие друг к другу) радиусы сходимости и на границе соответствующих кругов сходимости этих степенных рядов располагается по паре комплексно-сопряженных особых точек $z_{1,2}(\nu) = R_{\nu}e^{\pm i\beta_{\nu}}$ и $z_{1,2}(A) = R_A e^{\pm i\beta_A}$. Проведенные численные расчеты позволили также дать достаточно хорошие с позиций авторов работ [3], [4] аппроксимации⁴ для величин особых точек как частоты, так и амплитуды: $R_{\nu} = R_A \approx 3.42$, $\beta_{\nu} = \beta_A \approx 1.7925$ [3, п. 3, с. 683]. В [3, п. 3, с. 685] было также отмечено, что величина $\beta_{\nu} = \beta_A$ близка к $4\pi/7 \approx 1.7952$.

Подчеркнем, что принципиальное отличие работ [3], [4] от подавляющего большинства других работ, содержащих применение аппроксимаций Паде для построения так называемого полуаналитического (т.е. полученного в замкнутой аналитической форме, но приближенного) решения некоторого класса задач, состоит в использовании диагональных аппроксимаций Паде достаточно высокого порядка (вплоть до порядка [24/24]).

1.3. Обсудим коротко узловые моменты в рассуждениях работ [3], [4].

В [3] были численно найдены по 82 (ненулевых) тейлоровских коэффициента функций частоты ν и амплитуды A как функций от $z = \varepsilon^2$, а затем по этим коэффициентам были построены диагональные аппроксимации Паде $[n/n]_f$, $n = 11, 12, \ldots, 24$, для $f = \nu, A$, найдены их нули и полюсы и проведен анализ поведения этих нулей и полюсов (в дальнейшем – Паде-анализ) в зависимости от n. Проделанные в [3], [4] вычисления убедительно показали, что нули и полюсы диагональных аппроксимаций Паде как для частоты, так и для амплитуды накапливаются к некоторым вполне определенным точкам комплексной плоскости, для которых, тем самым, возникают эмпирические значения [3, с. 683]. На основе этого численно установленного результата в [3], [4] фактически сделаны следующие выводы о свойствах аналитического продолжения функций частоты и амплитуды: как частота, так и амплитуда – аналитические функции комплексного переменного $z = \varepsilon^2$, голоморфные в круге с центром в точке z = 0 и радиусом $R \approx 3.42$; на границе этого круга сходимости лежит (единственная) пара комплексно-сопряженных особых точек $Re^{\pm i\beta}$, где $\beta \approx 1.7925$; величина 1.7925 близка к величине⁵ $4\pi/7$.

Эти оценки для значений радиуса и аргумента, полученные в [3], [4] с помощью Паде-анализа, хорошо согласуются с приближенными значениями, полученными в [3], [4] с помощью

²Все необходимые для подготовки настоящей работы вычисления и графические построения проделаны независимо от [3], [4]; это касается и подготовки изображенных на рис. 1–4 предельных циклов уравнения (1), соответствующих перечисленным значениям ε .

³В настоящей работе мы по возможности придерживаемся обозначений работ [3], [4].

⁴Точнее, в [3], [4] предложены следующие эмпирические границы для величин R и β : $R \in (3.40, 3.44)$, $\beta \in (1.790, 1.795)$; более точные аппроксимации для этих величин в [3], [4] фактически не потребовались.

⁵Фактически авторы [3], [4] пришли к следующему выводу: на границах кругов сходимости степенных рядов, соответствующих частоте и амплитуде, расположено в точности по паре комплексно-сопряженных особых точек, величины радиусов которых лежат в интервале (3.40, 3.44), а аргументы – в интервале (1.790, 1.795).

классической формулы Коши–Адамара для радиуса сходимости степенного ряда и с помощью так называемого метода отношений [5, часть 2, гл. 1, § 1.3, с. 316] (иногда называемого тестом Домба–Сайкса [6, с. 4] и основанного фактически на классической теореме Фабри "об отношении"; подробнее см. ниже § 2). Хорошо известно [7], [8], [9], что метод отношений естественным образом интерпретируется и обобщается в рамках теории сходимости классических аппроксимаций Паде – локально наилучших рациональных аппроксимаций степенных рядов (подробнее см. § 2).

Обнаруженный численно в [3], [4] эффект, состоящий в том, что нули и полюсы диагональных аппроксимаций Паде как для функции частоты, так и амплитуды накапливаются к некоторым вполне определенным точкам комплексной плоскости, послужил основой для дальнейшего построения в [3], [4] аппроксимационных формул, пригодных для приближенного вычисления значений функций ν и A при физически интересных значениях параметра $\varepsilon > 0$. А именно, опираясь на сделанные ранее выводы авторы [3], [4] провели преобразования вида

$$w = w(\varepsilon^2), \qquad w(\varepsilon^2) = \frac{\varepsilon^2}{\sqrt{\varepsilon^4 - 2\varepsilon^2 R \cos \beta + R^2}},$$

исходных степенных рядов и получили приближенные, но достаточно точные явные формулы для вычисления функций ν и A при практически интересных значениях $\varepsilon \in (0, +\infty)$. Отметим, что для построения этих формул авторам [3], [4] достаточно было знать расположение особых точек "не очень точно": последующие преобразования указанного вида "уводили" эти особые точки в окрестность бесконечно удаленной точки $w = \infty$. Тем самым, найденные приближенные значения $z_{1,2} \approx 3.42e^{1.7925i}$ оказались вполне достаточными для достижения целей, поставленных в [3], [4]. Полученные в [3], [4] численные результаты оказались хорошо согласованы с известными результатами, полученными ранее другими авторами традиционными методами: методом Рунге–Кутты и др. (подробнее см. [3], [4]).

1.4. Цель настоящей работы – изучить доступными численными методами некоторые свойства аналитического продолжения функций частоты и амплитуды, в том числе – уточнить расположение их ближайших особых точек (на границе круга сходимости) и характер⁶ соответствующих им особенностей (см. ниже (1)–(3) и п. 3.3). Основные данные для проводимого в настоящей работе численного анализа – это найденные⁷ численно 221 тейлоровский коэффициент функций частоты ν (см. табл. 1) и амплитуды A. Основные эмпирические выводы настоящей работы, сделанные на основе такого анализа, сформулированы в конце этого пункта.

Как известно, сходящийся степенной ряд однозначно определяет полную в смысле Вейерштрасса аналитическую функцию, в том числе область ее существования и особые точки. Значит, вся нужная информация о свойствах аналитического продолжения неизбежно присутствует в (бесконечной) совокупности коэффициентов заданного степенного ряда. В основе численного исследования интересующих нас вопросов лежит извлечение теми или иными доступными методами необходимой информации об интересующих нас характеристиках предельного цикла уравнения (1) – частоте ν и амплитуде A, содержащейся в их тейлоровских коэффициентах.

Наша дальнейшая задача – используя те или иные методы, извлечь из этих коэффициентов информацию об аналитических свойствах функций ν и A.

Так же, как в [3], [4] результаты настоящей работы основаны в первую очередь на Паде-анализе (т.е. численном анализе поведения нулей и полюсов аппроксимаций Паде достаточно высокого порядка): нами рассматриваются диагональные аппроксимации Паде⁸ [n/n] для

 $^{^{6}}$ Напомним, что в [4, с. 895] в качестве наиболее вероятного характера особенностей было указано квадратичное ветвление типа 1/2.

⁷Все необходимые для подготовки настоящей работы вычисления были проделаны с точностью в 40 значащих цифр.

⁸В дальнейшем мы иногда будем использовать сокращение ДАП.

 $n = 32, \ldots, 36$ и строчные последовательности вида [n/2] для $n = 31, \ldots, 217$. Однако в отличие от [3], [4] мы не ставим своей целью получить хорошие приближенные представления для функций ν и A, справедливые при $\varepsilon > 0$. Основная задача настоящей работы – уточнить местоположение и характер пары комплексно-сопряженных особенностей этих функций, ближайших к началу координат. Использование асимптотических свойств диагональных и строчных последовательностей аппроксимаций Паде лежит в основе методов исследования настоящей работы. При этом так же, как и в [3], [4], отличительная особенность проводимых нами численных исследований – достаточно высокий порядок используемых аппроксимаций Паде (до 36-го порядка у диагональных аппроксимаций и до 217-го у строчных аппроксимаций вида [n/2]). Однако численный анализ, проведенный нами на основе найденных тейлоровских коэффициентов, не исчерпывается аппроксимациями Паде. Полученные с помощью ДАП результаты служат основой для дальнейших исследований. Для уточнения полученных нами с помощью ДАП результатов о расположении особых точек частоты и амплитуды на границе круга сходимости, которые уже сами по себе усиливают результаты [3], [4], мы используем классическую теорему Адамара о перемножении особенностей композиции двух степенных рядов, теорему Принсгейма об особой точке степенного ряда и непосредственный анализ "асимптотического" (в пределах найденных 221) поведения коэффициентов степенных рядов, а также асимптотического поведения полюсов аппроксимаций Паде вида [n/2](2-ой строки соответствующей таблицы Паде) для функций частоты и амплитуды. Основные эмпирические выводы настоящей работы, сделанные на основе такого анализа, состоят в следующем.

I. Для радиуса и аргумента ближайшей к началу координат (единственной) пары комплексно-сопряженных особых точек $Re^{\pm i\beta} = R_f e^{\pm i\beta_f}$, где $f = \nu, A$, справедливы следующие оценки: $R \approx 3.420$, $\beta \approx \varphi_1 + \varphi_2$, где $\varphi_1 = 4\pi/7$, $\varphi_2 = -\pi/1092$, $\varphi_1 + \varphi_2 \approx 1.79232$.

II. Характер особенностей функций частоты и амплитуды (т.е. главная часть каждой из этих функций в некотором бо́льшем, чем |z| < R, круге) в точках $Re^{\pm i\beta}$ аналогичен функции

$$g(z)(e^{i\alpha}(z - Re^{i\beta})^{\gamma} + e^{-i\alpha}(z - Re^{-i\beta})^{\gamma}),$$

где g(z) – голоморфная в круге радиуса $\rho > R$ функция, величина $\gamma \approx 1/2, \alpha = \alpha_{\nu} \approx \pi/4$ для частоты, $\alpha = \alpha_A \approx 3\pi/10$ для амплитуды.

При этом вполне возможно, что:

III. Число R в точности равно 3.42, β в точности равно $\varphi_1 + \varphi_2 = 89\pi/156$, $\alpha_{\nu} = \pi/4$ для частоты, $\alpha_A = 3\pi/10$ для амплитуды.

Уточняющие замечания по поводу функции g см. в §4.

§2. Некоторые теоретические результаты

2.1. Прежде чем переходить непосредственно к вычислительной части нашей работы, приведем определения и теоретические результаты, необходимые для дальнейшего анализа проделанных численных расчетов.

Пусть

$$f = \sum_{k=0}^{\infty} c_k z^k \tag{2}$$

– (формальный или сходящийся) степенной ряд, $R_0 = R_0(f) \ge 0$ – радиус его сходимости. Для произвольных фиксированных $n, m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ аппроксимацией Паде $[n/m]_f$ типа (n,m) ряда f называется рациональная функция, равная отношению полиномов $P_{n,m}/Q_{n,m}$, где deg $P_{n,m} \le n$, deg $Q_{n,m} \le m$, $Q_{n,m} \ne 0$ и выполняется соотношение

$$(Q_{n,m}f - P_{n,m})(z) = A_{n,m}z^{n+m+1} + \cdots, \qquad z \to 0$$
 (3)

(справа стоит ряд по возрастающим степеням z). Указанными условиями полиномы $P_{n,m}$ и $Q_{n,m}$ определяются не однозначно, но рациональная дробь $[n/m]_f = P_{n,m}/Q_{n,m}$ единственна. Аппроксимация Паде $[n/m]_f$ обладает следующим характеристическим свойством: в классе $\mathscr{R}_{n,m}$ всех рациональных дробей вида r = p/q степени не выше¹ (n,m) рациональная функция $[n/m]_f$ доставляет максимально возможный порядок касания к степенному ряду (2) в точке z = 0, тем самым, аппроксимации Паде – это (локально) наилучшие рациональные аппроксимации степенного ряда. В общем положении, точнее, если все определители Адамара

$$H_{n,m} = \begin{vmatrix} c_{n-m+1} & c_{n-m+2} & \dots & c_n \\ \dots & \dots & \dots & \dots \\ c_n & c_{n+1} & \dots & c_{n+m-1} \end{vmatrix}$$
(полагаем $c_k = 0$ при $k < 0$), (4)

составленные из коэффициентов c_k , отличны от нуля, соотношение (3) эквивалентно соотношению

$$f(z) - [n/m]_f(z) = A_{n,m}^* z^{n+m+1} + \cdots,$$
 где $A_{n,m}^* \neq 0,$

а для полиномов $Q_{n,m}$ имеет место явная формула

$$Q_{n,m}(z) = \begin{vmatrix} c_{n-m+1} & c_{n-m+2} & \dots & c_n & c_{n+1} \\ \dots & \dots & \dots & \dots \\ c_n & c_{n+1} & \dots & c_{n+m-1} & c_{n+m} \\ z^m & z^{m-1} & \dots & z & 1 \end{vmatrix}.$$
 (5)

Полином $P_{n,m}$ уже однозначно определяется по $Q_{n,m}$; тем самым, рациональная аппроксимация $[n/m]_f$ вычисляется непосредственно по коэффициентам $c_0, c_1, \ldots, c_{n+m}$ ряда f.

Совокупность $\{[n/m]_f, n, m = 0, 1, 2, ...\}$ всех аппроксимаций Паде ряда f называется таблицей Паде этого ряда. Последовательность $\{[n/m]_f, n = 0, 1, ...\}$, где $m \in \mathbb{N}_0$ фиксированно, называется m-й строкой таблицы Паде ряда f; тем самым, нулевая строка таблицы состоит из частичных сумм ряда (2). Последовательность $\{[n/n]_f, n = 0, 1, ...\}$ называется главной диагональной последовательностью или главной диагональю таблицы Паде (подробнее см. монографию [5]).

¹То есть $\deg p \leq n$, $\deg q \leq m$.

Подчеркнем, что в наших исследованиях понадобятся как диагональные аппроксимации Паде $\{[n/n]_f, n = 0, 1, ...\}$, так и строчные последовательности вида $\{[n/2]_f, n = 0, 1, ...\}$, т.е. 2-ая строка таблицы Паде, для $f = \nu, A$.

Приведем теперь некоторые результаты из теории сходимости аппроксимаций Паде, на которые мы будем опираться при численном анализе найденных 221 тейлоровских коэффициентов для $f = \nu$, A и извлечения из них тех или иных свойств аналитического продолжения ряда f.

Для произвольного $m \in \mathbb{N}$ через $R_m = R_m(f)$ обозначим радиус максимального круга с центром в точке z = 0, в который ряд f продолжается² как мероморфная функция, имеющая $\leq m$ полюсов³; очевидно, $R_m \geq R_0$. Пусть $D_m = D_m(f)$: $|z| < R_m - m$ -й круг мероморфности f.

Вопрос об эффективном восстановлении функции f в круге D_m по степенному ряду (2) при условии, что число полюсов f в D_m в точности равно m решается классической теоремой Монтессу де Болора [10] (см. также [5], [11]).

ТЕОРЕМА МОНТЕССУ ДЕ БОЛОРА. Пусть функция f имеет ровно m полюсов в круге D_m : $|z| < R_m$. Тогда:

- (i) для всех достаточно больших п аппроксимации Паде $[n/m]_f$ ряда f имеют равно т конечных полюсов, которые при $n \to \infty$ стремятся к полюсам функции f в D_m ; при этом каждый полюс f "притягивает" столько полюсов $[n/m]_f$, какова его кратность;
- (ii) последовательность $\{[n/m]_f, n = 0, 1, ...\}$ сходится к функции f равномерно внутри (m.e. на компактных подмножествах) области D'_m , которая получается из D_m удалением полюсов функции f.

При этом в условиях теоремы скорость сходимости последовательности $[n/m]_f$ к функции f характеризуется неравенством

$$\overline{\lim_{n \to \infty}} |f(z) - [n/m]_f(z)|^{1/n} \leq \frac{|z|}{R_m} < 1, \qquad z \in D'_m.$$

При доказательстве своего результата Монтессу де Болор в существенной степени опирался на полученные ранее Адамаром [12] непосредственно в терминах коэффициентов ряда (2) формулы для радиусов R_m кругов D_m . Точнее, пусть $H_{n,m}$ – определитель Адамара (4). Тогда справедлива

Теорема Адамара. Для произвольного $m \in \mathbb{N}_0$

$$R_m = \frac{\ell_m}{\ell_{m+1}}, \qquad i \partial e \quad \ell_j = \overline{\lim_{n \to \infty}} |H_{n,j}|^{1/n}$$

 $(\ell_0 = 1; ecnu \ \ell_1, \dots, \ell_m \neq 0, \ \ell_{m+1} = 0, \ mo \ R_m = \infty).$

Хорошо известная формула Коши–Адамара для радиуса сходимости степенного ряда – частный случай этого результата Адамара.

Из теоремы Монтессу де Болора уже легко следует, что конечные полюсы рациональных функций $[n/m]_f$ стремятся к полюсам f со скоростью геометрической прогрессии. На самом деле это свойство полюсов функций $[n/m]_f$ является характеристическим. Это вытекает непосредственно из полного описания *m*-мероморфного продолжения степенного ряда f с помощью *m*-й строки таблицы Паде при произвольном $m \in \mathbb{N}$, полученного Гончаром в [7].

В терминах, связанных с асимптотическим поведением конечных полюсов m-й строки таблицы Паде, в [7] для произвольного $m \in \mathbb{N}$ получены формулы для вычисления радиуса m-го круга мероморфности и дивизора полюсов продолженной функции f внутри этого круга,

 $^{^2 \}Pi$ родолженную функцию мы также будем обозначать через f.

³Как обычно, полюсы и нули функции считаются с учетом их кратностей.

а также доказана общая теорема о сходимости m-й строки таблицы Паде по (логарифмической) емкости (об этом понятии см. [13]) внутри $D_m(f)$; результат Монтессу вытекает из нее как частный случай.

Зафиксируем произвольное натуральное число m и рассмотрим m-ю строку таблицы Паде ряда (2): { $[n/m]_f, n = 0, 1, 2, ...$ }.

Пусть $\mathscr{P}_n = \{p_1(n), \ldots, p_{m_n}(n)\}, 0 \leq m_n \leq m, -$ множество конечных полюсов рациональной функции $[n/m]_f$. Введем следующие характеристики асимптотического поведения последовательности множеств $\mathscr{P}_n, n = 0, 1, \ldots$, в окрестности произвольной точки $a \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$:

- 1) $\mu(a)$ число точек множества \mathscr{P}_n , стремящихся к точке a со скоростью геометрической прогрессии при $n \to \infty$;
- 2) $\Delta(a) = \overline{\lim}_{n \to \infty} \prod_{j=1}^{m_n} |a; p_j(n)|^{1/n}$, где $|\cdot; \cdot|$ расстояние между двумя точками в сферической метрике.

Очевидно, $\mu(a) \ge 1$ равносильно $\Delta(a) < 1$. Положим $\mathscr{P} = \{a \in \mathbb{C}^* : \mu(a) \ge 1\}.$

В [7] в терминах характеристик μ и Δ полностью описано *m*-мероморфное продолжение ряда (2).

ТЕОРЕМА 1 (ГОНЧАР). Пусть $f - p_{\mathcal{R}}d$ (2), $m \in \mathbb{N}$ и $a \neq 0$ – фиксированная точка комплексной плоскости. Следующие утверждения эквивалентны:

(i) $|a| < R_m$ u f имеет полюс в точке a;

(ii) $\Delta(a) < 1$ (*unu*, *что то же самое*, $\mu(a) \ge 1$).

При этом (если выполнено какое-либо из условий (i) и (ii)) кратность полюса f в точке а равна $\mu(a)$ и справедлива формула

$$R_m = \frac{|a|}{\Delta(a)} \,. \tag{6}$$

Тем самым, если $d_m = \{(a_1, \nu_1), \ldots, (a_s, \nu_s)\}$ – дивизор полюсов функции f в круге D_m $(a_1, \ldots, a_s$ – полюсы f в D_m , ν_1, \ldots, ν_s – их кратности, $|d_m| = \nu_1 + \cdots + \nu_s$ – число полюсов f в D_m , $|d_m| \leq m$), то из теоремы 1 вытекает формула для вычисления дивизора полюсов функции f в круге D_m при любом $m \in \mathbb{N}$: дивизор $d_m = \{(a, \mu(a)) : a \in \mathscr{P}\}$. Утверждение классической теоремы Монтессу по существу состоит в том, что эта формула для вычисления дивизора функции f справедлива, в частности, при условии, что $|d_m| = m$.

Наконец, в условиях теоремы 1 справедливо следующее представление:

$$f(z) = [n_0/m]_f(z) + \sum_{n=n_0}^{\infty} \frac{A_{n,m} z^{n+m+1-\lambda_{n,m}}}{Q_{n,m}(z)Q_{n+1,m}(z)}, \qquad z \in D_m,$$
(7)

где равенство понимается в смысле сходимости ряда по емкости на компактах в D_m , величина $0 \leq \lambda_{n,m} \leq m$; при условии, что знаменатели $Q_{n,m}$ сферически нормированы (см. [7]), имеет место формула

$$\frac{1}{R_m} = \lim_{n \to \infty} |A_{n,m}|^{1/n}.$$

Равенство (7) раскрывает сущность метода аппроксимаций Паде – это нелинейный метод суммирования степенного ряда за пределами его круга сходимости (см. также (14)).

Как было замечено в [14], в предположении, что к точке *a* стремится по крайней мере один полюс $[n/m]_f$, формула (6) остается справедливой и в случае, когда $\Delta(a) = 1$, а именно, в этом случае $R_m = |a|$. Естественным образом возникает следующий вопрос: какие еще выводы можно сделать о функции *f* в целом, если известно, что конечные полюсы *m*-й строки таблицы Паде стремятся к некоторым точкам в комплексной плоскости без какого-либо априорного предположения о скорости этой сходимости? Рассмотрим первую строку, т.е. случай m = 1. Если $c_n \cdot c_{n+1} \neq 0$, то единственный конечный полюс p(n) рациональной функции $[n/1]_f$ вычисляется по формуле $p(n) = c_n/c_{n+1}$. Таким образом, соотношение $p(n) \to a \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ эквивалентно тому, что $c_n/c_{n+1} \to a$ при $n \to \infty$, и мы оказываемся в условиях классической теоремы Фабри об отношении [15] (см. также монографию [16]). ТЕОРЕМА ФАБРИ (ОБ ОТНОШЕНИИ). Если для коэффициентов степенного ряда (2) имеет место соотношение

$$\lim_{n \to \infty} \frac{c_n}{c_{n+1}} = a$$

то z = a – особая точка суммы f(z) этого ряда на границе его круга сходимости $|z| < R_0$, $R_0 = |a|$.

Тем самым, для m = 1 теорема Фабри фактически устанавливает связь между асимптотическим поведением конечного полюса первой строки таблицы Паде и особыми точками функции f на границе круга голоморфности $D_0(f)$.

Следующее утверждение обобщает теорему Фабри на случай произвольной строки таблицы Паде.

ТЕОРЕМА 2 (см. [8]). Пусть $m \in \mathbb{N}$ и для всех достаточно больших n рациональные функции $[n/m]_f$ имеют ровно m конечных полюсов $p_1(n), p_2(n), \ldots, p_m(n)$, причем

$$p_j(n) \to a_j \in \mathbb{C}^*, \qquad n \to \infty, \quad j = 1, 2, \dots, m,$$

где

$$0 < |a_1| \le \dots \le |a_{\mu-1}| < |a_{\mu}| = \dots = |a_m| = R.$$

Тогда

- (i) $R_{\mu-1}(f) = \cdots = R_{m-1}(f) = R$ *u* все точки $a_1, \ldots, a_{\mu-1}$ *и* только они полюсы функции *f* в круге |z| < R;
- (ii) все точки a_{μ}, \ldots, a_{m} особые точки функции f на границе круга |z| < R.

Теорема 2 представляет собой результат обратного характера и обобщает теорему Фабри об отношении на случай *m*-й строки таблицы Паде.

В настоящей работе как теорема 1, так и теорема 2 понадобятся нам для случая m = 2.

2.2. Из сказанного выше вытекает, что строчные последовательности аппроксимаций Паде приспособлены прежде всего для описания мероморфных продолжений ряда (2) в соответствующие круги мероморфности. Присутствие на границе круга сходимости этого ряда хотя бы одной особенности иного характера чем полюс (например, любой точки ветвления), приводит к тому, что любая строчная последовательность оказывается неэффективной при решении задачи аналитического продолжения за пределы такого круга. Иначе обстоит дело с диагональными последовательностями аппроксимаций Паде.

Для формулировки результатов о сходимости диагональных аппроксимаций Паде нам удобно временно (в пределах этого пункта) перейти к новой переменной $\zeta = 1/z$ и соответственно этому вместо ряда Тейлора f рассматривать ряд Лорана

$$F = \sum_{k=0}^{\infty} \frac{C_k}{\zeta^{k+1}},\tag{8}$$

сходящийся в окрестности бесконечно удаленной точки $\zeta = \infty$, $F(\infty) = 0$. Диагональные аппроксимации инвариантны относительно такой замены переменной, а их связь с чебышёвскими непрерывными дробями [17] (см. также [18]) хорошо видна именно для рядов Лорана (8).

Если все ганкелевы определители, составленные из коэффициентов $\{c_k\}$, отличны от нуля, то с помощью классического алгоритма Евклида ряду F можно сопоставить чебышёвскую непрерывную дробъ

$$\frac{a_0}{\zeta - b_1 - \frac{a_1}{\zeta - b_2 - \dots}},$$
(9)

подходящие дроби P_n/Q_n которой обладают следующим характеристическим свойством:

$$\frac{P_n}{Q_n}(\zeta) = \sum_{k=0}^{2n-1} \frac{C_k}{\zeta^{k+1}} + \frac{A_n}{\zeta^{2n+1}} + \dots;$$

тем самым,

$$\left(F - \frac{P_n}{Q_n}\right)(\zeta) = O\left(\frac{1}{\zeta^{2n+1}}\right), \qquad \zeta \to \infty.$$

Последнее соотношение единственным образом определяет рациональную функцию P_n/Q_n в классе всех рациональных дробей порядка не выше n. Эта дробь доставляет наилучшее локальное приближение ряда (8) в указанном классе рациональных функций. Такое свойство служит определением диагональных аппроксимаций Паде $[n/n]_f = P_n/Q_n$ для произвольного (формального или сходящегося) ряда (8).

Чебышёв [17] впервые рассмотрел формальные разложения в непрерывные дроби (9) для функций вида

$$\widehat{\sigma}(\zeta) := \int_{S} \frac{d\sigma(x)}{\zeta - x},\tag{10}$$

где σ – положительная борелевская мера с носителем $S = \text{Supp}(\sigma) \in \mathbb{R}$. Именно на этом пути Чебышёв открыл (см., например, [19, гл. III, п. 3.5]) и исследовал общие ортогональные многочлены, соответствующие произвольной мере на \mathbb{R} ,

$$\int_{S} Q_n(x) x^k \, d\sigma(x) = 0, \qquad k = 0, \dots, n-1;$$

такие многочлены естественным образом возникают как знаменатели $Q_n(x) = Q_n(x; \hat{\sigma})$ подходящих дробей функции $\hat{\sigma}$ вида (10). При этом лорановские коэффициенты

$$C_k = \int x^k \, d\sigma(x), \qquad k = 0, 1, \dots$$

– моменты меры σ .

Одним из первых результатов общего характера о сходимости диагональных аппроксимаций Паде аналитических функций является классическая теорема Маркова [18], полученная им в терминах чебышёвских непрерывных дробей.

ТЕОРЕМА МАРКОВА. Для функции $\hat{\sigma}$ вида (10), где носитель $\text{Supp}(\sigma) \in \mathbb{R}$ состоит из бесконечного множества точек, диагональные аппроксимации Паде $[n/n]_{\hat{\sigma}}^{ph}$, построенные по коэффициентам разложения $\hat{\sigma}$ в ряд Лорана в точке $\zeta = \infty$, сходятся к $\hat{\sigma}$ равномерно внутри области $\overline{\mathbb{C}} \setminus [a, b]$, где [a, b] – минимальный отрезок вещественной прямой, содержащий $\text{Supp}(\sigma)$.

Тем самым, любая марковская функция (т.е. функция вида (10) с $\text{Supp}(\sigma) \in \mathbb{R}$) может быть эффективно восстановлена вне выпуклой оболочки [a, b] носителя меры σ по коэффициентам своего лорановского разложения в точке $\zeta = \infty$ (моментам меры σ).

Отметим, что установленное в теореме Маркова свойство сходимости диагональных аппроксимаций Паде относится и к следующим элементарным функциям:

$$\widehat{\sigma}(\zeta) = \frac{1}{\sqrt{\zeta^2 - 1}}, \qquad \widehat{\sigma}(\zeta) = \log \frac{\zeta + 1}{\zeta - 1},$$

где в первом случае $d\sigma(x) = dx/(\pi\sqrt{1-x^2})$, а во втором $d\sigma(x) = dx$ – положительные меры с Supp $(\sigma) = [-1, 1]$; знаменатели соответствующих рациональных функций $[n/n]^{ph}_{\widehat{\sigma}}$ – это полиномы Чебышёва (первого рода) и полиномы Лежандра. В обоих случаях $\widehat{\sigma}(\zeta)$ – голоморфная

функция в области $\overline{\mathbb{C}} \setminus [-1, 1]$, ряд Лорана которой сходится лишь во внешности единичного круга $\{\zeta \in \overline{\mathbb{C}} : |\zeta| > 1\}$.

К теореме Маркова непосредственно примыкают результаты Гончара [20] и Рахманова [21] о сходимости диагональных аппроксимаций Паде для мероморфных функций *F* марковского типа:

$$F = \hat{\sigma} + r,\tag{11}$$

где $\hat{\sigma}$ – марковская функция, r – произвольная комплексная рациональная функция ($r \in \mathbb{C}(\zeta)$), голоморфная на [a, b] ($r \in \mathscr{H}[a, b]$), F – рациональное возмущение $\hat{\sigma}$. Конструкция аппроксимаций Паде существенно нелинейна, поэтому исследование сходимости таких рациональных приближений для функций вида (11) – нетривиальная задача. В [20] получен следующий результат.

ТЕОРЕМА 3 (ГОНЧАР). Пусть σ – положительная борелевская мера с бесконечным носителем $\operatorname{Supp}(\sigma) = [a,b], \sigma' > 0$ п.в. на [a,b] и $F = \hat{\sigma} + r$, где $r \in \mathbb{C}(\zeta)$ – произвольная рациональная функция, все полюсы которой принадлежат области $\mathbb{C} \setminus [a,b], u r(\infty) = 0$. Тогда последовательность диагональных аппроксимаций Паде { $[n/n]_F, n = 0, 1, \ldots$ } сходится к F равномерно в сферической метрике внутри (на компактных подмножествах) области $D = \overline{\mathbb{C}} \setminus [a,b]$.

Утверждение теоремы 3 справедливо (см. [20]) и в классе функций, голоморфная составляющая F^* которых имеет вид

$$F^*(\zeta) = \int_a^b \frac{s(x) \, d\sigma(x)}{\zeta - x} \,, \tag{12}$$

где $s \in \mathbb{C}(x)$ и не имеет на [a, b] ни нулей, ни полюсов. Рассмотрим класс функций $F \in \mathscr{H}(\infty)$ вида

$$F(\zeta) = r_1(\zeta) + \frac{r_2(\zeta)}{w},$$
 (13)

где $w^2 = (\zeta - a)(\zeta - b), a \neq b, a, b \in \mathbb{C}$ произвольны, $r_1, r_2 \in \mathbb{C}(\zeta)$; тем самым, F – алгебраическая функция. Если $r_2(\zeta) \neq 0, \infty$ на [a, b], то голоморфная составляющая F^* функции Fкласса (13) имеет вид (12), где σ – чебышёвская мера отрезка [a, b], а $s = -r_2/\pi$. При условии, что $r_1(\infty) = 0$ и все полюсы r_1 лежат в D, для функций такого вида справедлива теорема 3.

Тем самым, диагональные аппроксимации Паде в классе алгебраических функций вида (13) при определенных условиях эффективно решают задачу мероморфного продолжения в область $\overline{\mathbb{C}} \setminus [a, b]$ функции, заданной своим разложением в ряд Лорана (8) в бесконечно удаленной точке: полюсы этих аппроксимаций локализуют отрезок [a, b] (носитель меры σ) и особые точки (полюсы и их кратности) функции F в $\overline{\mathbb{C}} \setminus [a, b]$, а сами аппроксимации осуществляют мероморфное продолжение ряда F в $\overline{\mathbb{C}} \setminus [a, b]$.

Тот факт, что в теореме Маркова речь идет о равномерной сходимости не в $\overline{\mathbb{C}} \setminus \text{Supp}(\sigma)$ – области голоморфности функции $\hat{\sigma}$, а лишь вне выпуклой оболочки [a, b] носителя меры, связан с существом дела: непосредственно из открытого Чебышёвым свойства ортогональности знаменателей диагональных аппроксимаций Паде функции вида (10) вытекает, что если носитель меры σ состоит из нескольких непересекающихся отрезков, то в лакунах между этими отрезками могут располагаться полюсы рациональной функции $[n/n]_{\hat{\sigma}}$ – нули соответствующих ортогональных полиномов. Более того, в общем положении множество предельных точек полюсов рациональных функций $[n/n]_{\hat{\sigma}}$ совпадает с [a, b], что делает принципиально невозможной равномерную сходимость $[n/n]_{\hat{\sigma}}$ внутри $\overline{\mathbb{C}} \setminus \text{Supp}(\sigma)$ в классе всех марковских функций (10) (см. [9]).

Если же $F = \hat{\sigma} + r$, где $r \in \mathbb{C}(\zeta)$, а Supp (σ) состоит в точности из двух отрезков: Supp $(\sigma) = \Delta_1 \sqcup \Delta_2$, то, как показано в [21], справедливо следующее. Существует открытая аналитическая дуга γ , соединяющая эти отрезки Δ_1 и Δ_2 и лежащая в $\overline{\mathbb{C}} \setminus [a, b]$, такая, что равномерная сходимость аппроксимаций Паде $[n/n]_F$ к функции F (в сферической метрике) имеет место в $\overline{\mathbb{C}} \setminus (\operatorname{Supp}(\sigma) \sqcup \gamma)$. При этом, если число $\omega_1(\infty)$ – гармоническая мера первого отрезка относительно области $\overline{\mathbb{C}} \setminus \operatorname{Supp}(\sigma)$ в бесконечно удаленной точке – иррационально, то сходимость не имеет места ни в какой области, пересекающейся с γ ; в противном случае существует конечное множество точек $\mathscr{P} \subset \gamma$ такое, что равномерная сходимость имеет место в $\overline{\mathbb{C}} \setminus (\operatorname{Supp}(\sigma) \cup \mathscr{P})$. Дуга γ полностью определяется геометрией задачи: она зависит только от $\operatorname{Supp}(\sigma) = \Delta_1 \sqcup \Delta_2$ и расположения полюсов функции r и не зависит от меры σ и вычетов функции r в полюсах.

Особо отметим случай эллиптической функции $F \in \mathscr{H}(\infty)$ вида

$$F(\zeta) = \sqrt{(\zeta - e_1) \cdots (\zeta - e_4)} - \zeta^2 + \frac{\zeta(e_1 + \cdots + e_4)}{2},$$

где точки $e_1, \ldots, e_4 \in \mathbb{C}$ попарно различны и выбрана та ветвь корня, старший член которой в окрестности бесконечно удаленной точки равен ζ^2 . Этот случай был исследован Дюма [22] в терминах (чебышёвских) непрерывных дробей. Он показал, что если некоторые числовые параметры, связанные только с взаимным расположением точек e_1, \ldots, e_4 , рационально независимы, то множество полюсов диагональных аппроксимаций Паде всюду плотно в $\overline{\mathbb{C}}$, т.е. последовательность $[n/n]_F$ не может равномерно сходиться ни в какой подобласти \mathbb{C} .

Таким образом, если носитель S меры σ в (10) не является отрезком, то предельные точки полюсов диагональных аппроксимаций Паде могут составлять аналитические дуги в области $D = \overline{\mathbb{C}} \setminus \text{Supp}(\sigma)$ и даже быть всюду плотными в $\overline{\mathbb{C}}$. Более точно, по некоторым подпоследовательностям полюсы аппроксимаций Паде могут сходиться к любой наперед заданной точке аналитической дуги или, соответственно, к произвольной точке $\overline{\mathbb{C}}$. Полюсы такого типа, не соответствующие особым точкам аппроксимируемой функции, принято называть ложными полюсами аппроксимаций Паде [5, гл. 2, § 2.2]. Принято считать, что именно их наличие и делает невозможной равномерную сходимость ДАП, а сами эти полюсы возникают по случайным причинам и никак не связаны с природой аппроксимируемой функции. Известно, что таким полюсам сопутствуют близкие нули ДАП. Поэтому говорят о парах полюс-нуль, называемых *дефектами* [5, гл. 2, § 2.3]. Асимптотически полюсы и нули в таких парах взаимно сокращаются, что вроде бы подтверждает случайный характер этого явления. Особенно мешает вызванное этим явлением отсутствие равномерной сходимости ДАП при использовании их в приложениях. Отметим, что в последнее время в асимптотическом поведении таких полюсов обнаружены определенные закономерности [21], [23]–[25].

Вопрос о сходимости ДАП для функций вида $F = \hat{\sigma} + r$ в случае, когда $r \in \mathbb{C}(\zeta)$ – рациональная функция с комплексными коэффициентами, а носитель S меры σ состоит из нескольких отрезков, расположенных на одной прямой, решен в работе Рахманова [21]: $[n/n]_F$ сходится к F по емкости внутри области $D = \overline{\mathbb{C}} \setminus S$. При этом оказалось, что динамика ложных полюсов ДАП подчиняется некоторым уравнениям [21], [24]. Рассмотренная Рахмановым ситуация охватывает и случай гиперэллиптических функций, все точки ветвления которых расположены на одной прямой. В случае произвольной гиперэллиптической функции сходимость последовательности $\{[n/n]_F\}_{n\in\mathbb{N}} \in F$ по емкости доказана Наттоллом (см. [26]).

В настоящее время наиболее общий результат о сходимости (по емкости) диагональных аппроксимаций Паде – теорема Шталя [27], из которой в частности следует, что если ряд (8) определяет алгебраическую функцию, то последовательность $\{[n/n]_F, n = 0, 1, ...\}$ сходится по емкости внутри области $D = \overline{\mathbb{C}} \setminus S$, где $S = S(F) \in \mathbb{C}$ – так называемый компакт минимальной емкости, соответствующий выбранной рядом (8) ветви алгебраической функции: *F* продолжается из окрестности точки $\zeta = \infty$ в дополнение к *S* как мероморфная (т.е. однозначная аналитическая) функция, а из всех компактов, обладающих таким свойством, *S* имеет наименьшую емкость. Компакт минимальной емкости *S* состоит из конечного числа кусочно аналитических дуг; тем самым, в комплексной плоскости \mathbb{C} существует соответствующая ряду F система разрезов, вне которой последовательность $\{[n/n]_F\}$ сходится к функции F (по емкости) со скоростью геометрической прогрессии. Последовательность полюсов рациональных дробей $[n/n]_F$ восстанавливает заранее неизвестный компакт минимальной емкости S: ассоциированная с этими полюсами дискретная мера сходится⁴ к равновесной (робеновской) мере компакта S; отсюда следует, что все полюсы $[n/n]_F$ за возможным исключением o(n)из них притягиваются к компакту S. Именно эти полюсы рациональных дробей $[n/n]_F$ и восстанавливают компакт S (см. рис. 5–8). Кроме того, каждый полюс F в D притягивает по-крайней мере столько полюсов $[n/n]_F$, какова его кратность.

Подведем итог. Наиболее естественной (в том числе с учетом наличия ложных полюсов) сходимостью для аппроксимаций Паде – как для строчных, так и для диагональных последовательностей – в достаточно широких классах аналитических функций является сходимость по емкости. Первые общие результаты в этих терминах, справедливые в классах функций и естественным образом обобщающие как теорему Монтессу, так и теорему Маркова, были получены в работах [11], [7], [20], [21].

В случае, соответствующем простейшей алгебраической функции $F(\zeta) = 1/\sqrt{\zeta^2 - 1}$ с двумя точками ветвления $\zeta = \pm 1$ получаем классическую ситуацию: знаменатели Q_n диагональных аппроксимаций Паде $[n/n]_F$ – полиномы Чебышёва (первого рода), ортогональные на отрезке [-1,1] с весом $1/\sqrt{1-x^2}$. Тем самым, в этом частном случае все полюсы рациональных дробей $[n/n]_F$ – нули полиномов Q_n – лежат на отрезке S = [-1,1], а соответствующая им единичная мера сходится к равновесной мере этого отрезка $1/\pi\sqrt{1-x^2}$. Сами диагональные аппроксимации Паде $\{[n/n]_F, n = 0, 1, ...\}$ равномерно сходятся к функции F внутри области $D = \overline{\mathbb{C}} \setminus [-1, 1]$. Но уже в случае эллиптической функции – алгебраической функции с четырьмя точками ветвления – ситуация принципиальной меняется: по теореме Шталя последовательность $\{[n/n]_F, n = 0, 1, ...\}$ сходится к F по емкости внутри D, а равномерной сходимости внутри D нет.

Итак, в классе алгебраических функций, заданных своими разложениями вида (8), диагональные аппроксимации Паде решают задачу эффективного аналитического продолжения в следующем смысле: их полюсы "локализуют" компакт минимальной емкости S, а сами аппроксимации "восстанавливают" алгебраическую функцию в области $D = \overline{\mathbb{C}} \setminus S$. Более точно, справедливо представление

$$F(\zeta) = [n_0/n_0]_F(\zeta) + \sum_{n=n_0}^{\infty} \frac{A_n}{Q_n(\zeta)Q_{n+1}(\zeta)}, \qquad \zeta \in D = \overline{\mathbb{C}} \setminus S,$$
(14)

где равенство понимается в смысле сходимости ряда по емкости на компактах в D (см. [27], а также [28], [29]).

Таким образом, обнаруживаемое при численном анализе характерное накопление нулей и полюсов диагональных аппроксимаций Паде около некоторых точкек комплексной плоскости (см. рис. 5–8) с учетом приведенных теоретических результатов вполне естественно трактовать как прямое указание на эти точки как на особые точки аппроксимируемой функции.

Некоторые примеры вычисления нулей и полюсов диагональных аппроксимаций Паде для заданных рядом Лорана (8) алгебраических функций, иллюстрирующие приведенные теоретические результаты, представлены с необходимыми пояснениями на рис. 5–8 как в плоскости переменного z (для разложений в точке z = 0), так и в плоскости переменного $\zeta = 1/z$ (для разложений в точке $z = \infty$; именно в этом случае возникающие в комплексной плоскости разрезы образуют компакт минимальной емкости).

2.3. Представленные на рис. 5–8 результаты вычислений с одной стороны являются иллюстрацией к результатам прямого характера – теоремам Дюма и Шталя об асимптотическом

⁴Здесь сходимость понимается в смысле слабой сходимости в пространстве мер.

поведении диагональных аппроксимаций Паде для эллиптических и, более общо, алгебраических функций. Однако на самом деле как теорема Дюма, так и теорема Шталя оказываются справедливыми и для более широких "естественных" классов функций (см. соответственно [30] и [27]). Тем самым, предполагая заранее, что функция $f = \nu$, A принадлежит такому "естественному" классу, и анализируя асимптотическое (в пределах найденных численно 221-го тейлоровского коэффициента) поведение нулей и полюсов ДАП для соответствующих степенных рядов, мы сможем сделать определенные выводы о расположении и характере особых точек функции $f = \nu$, A. Прояснив таким способом качественную картину расположения особых точек функции f и, в частности, обнаружив, что на границе круга голоморфности fлежит в точности пара комплексно-сопряженных особых точек, мы затем будем уточнять эту картину (т.е. расположение и характер этих особых точек) с помощью обобщенного варианта теоремы Фабри об отношении, классической теоремы Адамара о перемножении особенностей (адамаровской) композиции степенных рядов, теоремы Принсгейма об особой точке степенного ряда, а также непосредственного анализа поведения тейлоровских коэффициентов ряда f.

Приведем два нужных нам классических результата, относящихся к теории аналитического продолжения степенных рядов – теорему Адамара о перемножении особенностей композиции двух степенных рядов и теорему Принсгейма об особой точке степенного ряда.

Пусть⁵ $f = \sum_{n=0}^{\infty} f_n z^n$ и $g = \sum_{n=0}^{\infty} g_n z^n$ – два сходящихся степенных ряда с центром в точке z = 0. Композицией Адамара $h = f \circ g$ этих двух рядов называется ряд

$$h = \sum_{n=0}^{\infty} f_n g_n z^n.$$
(15)

Очевидно, $R(h) \ge R(f)R(g)$. Справедлива следующая теорема Адамара⁶ [16, §1, п. 1.4, теорема 1.4.1, с. 37].

ТЕОРЕМА АДАМАРА (О ПЕРЕМНОЖЕНИИ ОСОБЕННОСТЕЙ). Пусть радиусы сходимости степенных рядов f u g положительны и конечны, каждая из функций f u g на границе своего круга сходимости имеет конечное число особых точек $\Sigma_f = \{\alpha_j, j = 1, ..., m\}$ и $\Sigma_g = \{\beta_k, k = 1, ..., \ell\}$ соответственно. Если R(h) = R(f)R(g), то множество особых точек Σ_h ряда (15) на границе его круга сходимости конечно и

$$\Sigma_h \subset \Sigma_f \circ \Sigma_g := \{ \alpha_j \beta_k, \, j = 1, \dots, m, \, k = 1, \dots, \ell \}.$$

$$(16)$$

Тем самым, особые точки функции $h = f \circ g$ на границе ее круга голоморфности лежат среди всевозможных произведений особых точек функций f и g, расположенных на границе их кругов голоморфности.

Нам понадобится также следующий результат (см. [16, §1, теорема 1.8.1]).

ТЕОРЕМА ПРИНСГЕЙМА. Если для степенного ряда

$$f = \sum_{n=0}^{\infty} f_n z^n, \qquad \overline{\lim}_{n \to \infty} |f_n|^{1/n} = 1,$$

все коэффициенты $f_n \ge 0$ при $n \ge n_0$, то z = 1 – особая точка суммы этого ряда f(z), |z| < 1.

⁵В теории аналитического продолжения принято [16] для обозначения тейлоровских коэффициентов степенного ряда использовать ту же букву: $\{f_n\}$ для ряда f.

⁶Здесь приводится нужный нам частный вариант теоремы Адамара.

§3. Основные численные результаты

3.1. Как уже отмечалось в п. 1.4, принципиальная возможность численного анализа свойств аналитических функций ν и A на основе их тейлоровских коэффициентов связана с тем, что в силу теоремы единственности для аналитической функции вся информация об ее глобальных свойствах содержится в (бесконечной) совокупности ее тейлоровских коэффициентов: локально заданный росток аналитической функции однозначно определяет так называемую полную по Вейерштрассу аналитическую функцию (см. [31], [32]). Дело заключается лишь в том, чтобы найти подходящие методы для эффективного извлечения нужной информации из ограниченного числа фактически доступных коэффициентов. Подчеркнем, что в реальности эта информация может содержаться в далеких десятичных знаках численно найденных тейлоровских коэффициентов или вообще быть утрачена в процессе приближенных вычислений.

Опишем теперь коротко (см., например, [3], [4]) стандартную схему построения формального решения уравнения Ван дер Поля (1) в виде ряда по степеням малого параметра ε с коэффициентами – тригонометрическими полиномами, зависящими от новой переменной $x = \nu(\varepsilon)t$.

Сделаем в (1) замену переменных: положим $x = \nu t$, где $\nu = \nu(\varepsilon) = 2\pi/T$ – частота предельного цикла, $T = T(\varepsilon)$ – его период. Положим $u(x;\varepsilon) = U(t;\varepsilon)$. Функция u периодична по x с периодом 2π , а уравнение (1) принимает вид

$$\nu^2 \frac{d^2 u}{dx^2} + \varepsilon \nu (u^2 - 1) \frac{du}{dx} + u = 0.$$
(17)

Представим теперь функции $u(x;\varepsilon)$ и $\nu(\varepsilon)$ в виде формальных рядов по ε :

$$u(x;\varepsilon) = \sum_{j=0}^{\infty} u_j(x)\varepsilon^j = \sum_{k=0}^{\infty} u_{2k}(x)\varepsilon^{2k} + \sum_{k=0}^{\infty} u_{2k+1}(x)\varepsilon^{2k+1},$$
(18)

$$\nu(\varepsilon) = 1 + \sum_{k=1}^{\infty} \nu_k \varepsilon^k, \tag{19}$$

затем подставим эти ряды в (17) и приравняем нулю получившиеся после произведенных действий коэффициенты при степенях ε . В результате получим рекуррентные соотношения для последовательного вычисления функций $u_k(x)$ и величин ν_k , часть из которых приводится ниже (k = 0, 1, ...):

$$u_{2k}(x) = \sum_{j=0}^{2k} u_{2k,j} \cos((2j+1)x),$$
(20)

$$u_{2k+1}(x) = \sum_{j=0}^{2k+1} u_{2k+1,j} \sin((2j+1)x),$$
(21)

$$\sum_{j=0}^{2k+1} (2j+1)u_{2k+1,j} = 0.$$
(22)

Отметим общее в структуре этих рекуррентных соотношений [4]: каждый k-й коэффициент, $u_{k,j}$, ν_k , в них нелинейным образом зависит от всех предыдущих коэффициентов. Таким образом, с каждым шагом сложность вычислений существенно возрастает.

При $\varepsilon = 0$ уравнение (1) соответствует гармоническим колебаниям, поэтому имеем начальные условия $\nu_0 = \nu(0) = 1$, $u(x; 0) = 2 \cos x$. Так как в силу (21) $u_{2k+1}(0) = 0$, то функции частоты ν и амплитуды $A(\varepsilon) = u(0; \varepsilon)$ оказываются четными функциями параметра ε :

$$\nu(\varepsilon) = 1 + \sum_{k=1}^{\infty} \nu_{2k} \varepsilon^{2k}, \qquad A(\varepsilon) = \sum_{k=0}^{\infty} a_{2k} \varepsilon^{2k}, \quad a_{2k} = u_{2k}(0).$$
(23)

Таким образом, для того, чтобы найти 221 (ненулевой) тейлоровский коэффициент функций частоты ν и амплитуды A и затем построить аппроксимации Паде $[n/n]_f$, $n = 32, \ldots, 36$, и $[n/2]_f$, $n = 31, \ldots, 217$, для $f = \nu, A$ от переменной $z = \varepsilon^2$, необходимо было сначала вычислить 441 функцию $\{u_k(x)\}$, $k = 0, 1, \ldots, 440$, – тейлоровский коэффициент функции $u(x;\varepsilon)$ как функции от ε . Подчеркнем, что эти 441 коэффициентов-функций $\{u_k(x)\}$ были построены в результате вычислений, проведенных в арифметике с плавающей точкой с точностью в 40 значащих цифр.

В [3], [4] начальная часть вычислений была проделана с помощью программы символьных вычислений MACSYMA в рациональной арифметике. Несколько первых слагаемых рядов (21) и (23) имеют следующий вид:

$$\begin{split} u(x;\varepsilon) &= 2\cos x + \left(\frac{3}{4}\sin x - \frac{1}{4}\sin 3x\right)\varepsilon + \left(-\frac{1}{8}\cos x + \frac{3}{16}\cos 3x - \frac{5}{96}\cos 5x\right)\varepsilon^2 \\ &+ \left(-\frac{7}{256}\sin x + \frac{21}{256}\sin 3x - \frac{35}{576}\sin 5x + \frac{7}{576}\sin 7x\right)\varepsilon^3 + O(\varepsilon^4), \\ A(\varepsilon) &= 2 + \frac{1}{96}\varepsilon^2 - \frac{1033}{552960}\varepsilon^4 + \frac{1019689}{55738368000}\varepsilon^6 + \frac{9835512276689}{157315969843200000}\varepsilon^8 + O(\varepsilon^{10}), \\ \nu(\varepsilon) &= 1 - \frac{1}{16}\varepsilon^2 + \frac{17}{3072}\varepsilon^4 + \frac{35}{884736}\varepsilon^6 - \frac{678899}{5096079360}\varepsilon^8 + \frac{28160413}{2293235712000}\varepsilon^{10} + O(\varepsilon^{12}). \end{split}$$

Основные же вычисления были проделаны в [3], [4] также в арифметике с плавающей точкой. В частности, таким путем там были найдены 163 функции $u_k(x)$ и, как следствие, по 82 ненулевых коэффициента функций частоты ν и амплитуды A. Все дальнейшие выводы были сделаны в [3], [4] на основе Паде-анализа этих коэффициентов (использовались диагональные аппроксимации Паде вплоть до $[24/24]_f$ для $f = \nu, A$).

Автором настоящей работы были независимо от [3], [4] вычислены в арифметике с плавающей точкой с 40 значащими цифрами функции-коэффициенты $u_0(x), \ldots, u_{440}(x)$ из представления (18) и коэффициенты $\nu_0, \nu_2 \ldots, \nu_{220}$ из представления (23). Найденные в результате этих вычислений коэффициенты частоты ν представлены в табл. 1. Отметим еще раз, что эти численно найденные коэффициенты используются нами не только для построения ДАП,¹ но также и для построения 2-ой строки таблицы Паде (т.е. последовательности вида $[n/2]_f$ для $f = \nu, A$) и привлечения для анализа некоторых других результатов из теории сходимости аппроксимаций Паде, а также результатов теории аналитического продолжения степенного ряда, включая классическую теорему Адамара о перемножении особенностей композиции степенных рядов, теорему Принсгейма об особой точке степенного ряда и непосредственного анализа "асимптотического" (в рамках вычисленных коэффициентов) поведения некоторых величин, зависящих от тейлоровских коэффициентов функций ν и A.

3.2. К настоящему времени накоплен богатый опыт успешного использования метода аппроксимаций Паде в самых различных задачах прикладной математики и механики. Обзор наиболее типичных примеров такого рода содержится в монографии [5]; см. также [6],

¹В [3], [4] Паде-анализ, проделанный на основе вычисленных там 82 (ненулевых) тейлоровских коэффициентов функций частоты ν и амплитуды A был использован для построения "полуаналитического" (т.е. приближенного формульного) представления функций частоты ν и амплитуды A на вещественной положительной полуоси, имеющего прикладной характер. В настоящей работе вопрос о таком представлении не затрагивается.

[33]–[35]. Отметим, что как правило применение метода аппроксимаций Паде ограничивается использованием диагональных аппроксимаций, причем – невысокого порядка и с целью построения так называемого "полуаналитического" решения конкретной задачи, не допускающей точного "аналитического"² решения. Работы [3], [4] – одни из немногих, где ДАП используются для локализации особых точек аналитической функции, изначально заданной разложением в степенной ряд, и построения с помощью нулей и полюсов ДАП "оптимальной" системы разрезов, соответствующей компакту минимальной емкости и превращающей эту функцию в мероморфную (т.е. однозначную аналитическую) функцию в дополнении к разрезам.

Перед тем как приступить непосредственно к анализу результатов проведенных нами вычислений обсудим коротко, следуя [5, ч. I, гл. 2, § 2.3, с. 67] узловые моменты, связанные с использованием аппроксимаций Паде в численном анализе. Для правильной трактовки результатов вычислений необходимо заранее оценить погрешность этих вычислений. При использовании аппроксимаций Паде имеются три основных источника ошибок:

- (I) коэффициенты *c*_k степенного ряда известны лишь приближенно;
- (II) точность теряется при вычислении коэффициентов аппроксимаций Паде, их значений, а также полюсов и нулей;
- (III) сами аппроксимации представляют функцию лишь приближенно.

В связи с (I) отметим, что точность вычисления коэффициентов c_k очень существенна, поскольку информация об аналитической структуре исследуемой функции содержится, как правило, в далеких десятичных знаках коэффициентов. Поэтому, как хорошо известно, аппроксимации Паде очень сильно реагируют на их малые вариации. Во многих прикладных задачах, возникающих естественным образом как идеализированное математическое описание некоторого реального физического процесса, коэффициенты c_k вычисляются с помощью рекуррентных соотношений, устроенных по следующему принципу: каждый коэффициент c_k зависит нелинейным образом от всех предыдущих коэффициентов $c_0, c_1, \ldots, c_{k-1}$. Естественно, что в таком случае "стоимость" вычисления каждого следующего коэффициента существенно возрастает по сравнению со "стоимостью" предыдущего и сравнима с затратами по вычислению всех предыдущих коэффициентов вместе взятых.

Потеря точности типа (II) в практических вычислениях считается непростительной.

Как уже отмечалось выше, мы не ставим здесь своей целью получить приближенные представления для функций ν и A. Поэтому вопроса (III) о точности такого представления мы касаться не будем.

Общие рекомендации, связанные с точностью численных расчетов, основаны в первую очередь на практическом опыте и заключаются в следующем эмпирическом правиле (см. [5, ч. I, гл. 2, § 2.3, с. 67]): вычисление аппроксимаций Паде [n/m] следует вести с m дополнительными десятичными знаками. Тем самым, при использовании ДАП $[n/n]_f$, $f = \nu, A$, мы заведомо должны выбирать n < 40.

Наконец, в заключение этого пункта договоримся о следующем. В качестве основной функции для подробного анализа мы выбираем функцию частоты ν . Для функции амплитуды Aвсе основные сделанные в работе выводы и найденные значения неизвестных параметров оказываются теми же самыми за исключением величины α (см. п. 1.4). Поэтому, таблицы, иллюстрирующие ход рассуждений и вычислений неизвестных параметров для функции амплитуды, здесь не приводятся.

3.3. Так как частота и амплитуда – четные функции параметра ε , то естественно ввести новую переменную $z = \varepsilon^2$. Функции ν и A будем рассматривать теперь в плоскости этого комплексного переменного z, а коэффициенты при степенях z вновь обозначим через ν_k и a_k

²Под "аналитическим" решением задачи здесь имеется в виду точное решение, найденное в явном формульном виде.

соответственно:

$$\nu = \sum_{k=0}^{\infty} \nu_k z^k, \qquad \nu_0 = 1,$$
(24)

И

$$A = \sum_{k=0}^{\infty} a_k z^k, \qquad a_0 = 2;$$

этих соглашений мы будем придерживаться всюду в дальнейшем.

В качестве первого шага в использовании коэффициентов частоты ν_k вычислим³ достаточно далекие ДАП для функции ν , а именно $[32/32]_{\nu}, \ldots, [36/36]_{\nu}$. Как следует из эмпирического правила (I) использование ДАП более высокого порядка заведомо нецелесообразно. Итоги вычисления нулей и полюсов⁴ этих ДАП представлены на рис. 9 с необходимыми пояснениями. После сравнения этого рисунка с модельными рис. 5–8 напрашивается следующий качественный вывод:⁵

- (i) пара комплексно-сопряженных точек $Re^{\pm i\beta}$, $\pi/2 < \beta < \pi$, в плоскости комплексного переменного z, к которым накапливаются нули и полюсы ДАП, ограничивает круг сходимости степенного ряда (24) для функции частоты⁶ ν (тем самым, степенной ряд (24) для функции частоты имеет положительный радиус сходимости R > 0);
- (ii) сами эти точки особые точки функции ν на границе круга сходимости ряда (24);
- (iii) других особых точек на окружности |z| = R функция ν не имеет;
- (iv) по своему характеру $Re^{\pm i\beta}$ точки ветвления функции ν .

Прежде чем продолжить разговор договоримся о следующем. Как правило, результаты вычислений мы будем оформлять в виде рисунков или таблиц. Все рис. 1–10 и табл. 1–11 размещены в конце работы. Однако иногда нам будет удобно привести фрагмент какой-либо таблицы непосредственно в тексте работы. В таком случае этот фрагмент нумеруется следующим образом: к номеру основной таблицы добавляется "штрих".

Найдем при каждом n = 1, ..., 40 нули $z_n = \rho_n e^{i\alpha_n}$ и полюсы $p_n = R_n e^{i\beta_n}$ ДАП $[n/n]_{\nu}$, расположенные в верхней полуплоскости и ближайшие к началу координат⁷ (см. табл. 2')

n	$ ho_n$	α_n	$ ho_n$	β_n
31	3.4283194	1.7924123	3.4283546	1.7924263
32	3.4280471	1.7924132	3.4280804	1.7924265
33	3.4280436	1.7924084	3.4280771	1.7924216
34	3.4280437	1.7924104	3.4280771	1.7924237
35	3.4287592	1.7925295	3.4287941	1.7925454
36	3.4274488	1.7923442	3.4274800	1.7923556
37	3.4275936	1.7923759	3.4276250	1.7923879
38	3.4275936	1.7923759	3.4276250	1.7923879
39	3.4272316	1.7923304	3.4272618	1.7923413
40	3.4274442	1.7924210	3.4274733	1.7924329

Таблица 2'

³Для построения диагональных аппроксимаций Паде по коэффициентам степенного ряда (2) использовался стандартный QD-алгоритм (см. [5], где имеются дальнейшие ссылки).

⁴Для приближенного нахождения нулей числителя и знаменателя ДАП использовался эвристический итерационный метод, аналогичный методу Мюллера (см. [36]) и основанный на использовании трехточечной обобщенной аппроксимации Паде типа [1/1].

⁵Этот вывод фактически уже был сделан в [3], [4].

 $^6{\rm B}$ соответствии с ранее сделанной договоренностью с этого момента мы анализируем только аналитические свойства функции частоты $\nu.$

⁷В соответствии с нашим соглашением полностью результаты вычислений представлены в табл. 2, помещенной в конце статьи. Отсюда получаем приближенные значения для радиуса $R = R_{\nu}$ и аргумента $\beta = \beta_{\nu}$ соответствующей особой точки $Re^{i\beta}$:

$$R \approx 3.43, \qquad \beta \approx 1.7924.$$
 (25)

Отметим, что уже непосредственно из результатов этих весьма предварительных вычислений (пока мы не использовали ничего принципиально нового по сравнению с [3], [4]) вытекает, что величина β достаточно сильно отличается от величины $4\pi/7 \approx 1.7952$. Этот вывод получит впоследствии дополнительное подтверждение.

Как уже отмечалось, из анализа расположения нулей и полюсов ДАП $[32/32]_{\nu}, \ldots, [36/36]_{\nu}$ вытекает, что кроме точек $Re^{\pm i\beta}$ других особых точек на границе круга сходимости нет. Более того, сравнивая рис. 9 с рис. 5–8, можно сделать вывод: другие особые точки функции частоты расположены достаточно далеко от начала координат и от уже найденной пары особых точек. Тем самым, естественно предположить, что "главная" (доминирующая) часть функции ν , определяющая расположение и характер двух ближайших к началу координат особых точек этой функции, имеет вид

$$\nu(z) \approx g(z)(z - Re^{i\beta})^{\gamma}(z - Re^{-i\beta})^{\gamma}$$

или

$$\nu(z) \approx g_1(z)(z - Re^{i\beta})^{\gamma} + g_2(z)(z - Re^{-i\beta})^{\gamma}.$$

Первый вариант легко отвергается следующими простыми рассуждениями. Зная тейлоровские коэффициенты функции ν , вычислим коэффициенты функции ν'/ν – логарифмической производной функции частоты. В первом, "мультипликативном" случае особенности $Re^{\pm i\beta}$ должны были бы превратиться в полюсы функции $f = \nu'/\nu$ первого порядка. Однако расчеты показывают, что поведение нулей и полюсов ДАП $[n/n]_f$, $n = 32, \ldots, 36$ остается качественно тем же самым, что и для функции ν (см. рис. 10). Тем самым, естественно остановиться на втором варианте.

Мы рассмотрим здесь этот вариант в следующем существенно упрощенном⁸ виде: главная часть функции частоты ν при $|z| < \rho$, где $\rho > R$, имеет вид

const
$$\cdot (e^{i\alpha}(z - Re^{i\beta})^{\gamma} + e^{-i\alpha}(z - Re^{-i\beta})^{\gamma}) + p(z),$$

где $\alpha, \beta, \gamma \in \mathbb{R}, \gamma \notin \mathbb{Z}$, const $\neq 0, p \in \mathbb{R}[z]$ – вещественный полином "малой" степени и с "малыми" коэффициентами; величина const и полином p не участвуют в дальнейшем численном определении величин α, β, γ и R (см. п. 4.1 в конце работы).

Теперь мы можем наконец точно сформулировать *основную задачу*, *решаемую численно* в настоящей работе: в предположении, что

$$\nu(z) \approx \text{const} \cdot (e^{i\alpha}(z - Re^{i\beta})^{\gamma} + e^{-i\alpha}(z - Re^{-i\beta})^{\gamma}) + p(z) \qquad \text{при} \quad |z| < \rho,$$
(26)

где $\rho > R$, и используя найденные численно тейлоровские коэффициенты ν_k , $k = 0, 1, \ldots, 220$, функции частоты ν (см. табл. 1), мы хотим найти приближенные значения величин α , β , γ и R, а тем самым фактически подтвердить справедливость приближенного представления (26). Само приближенное представление (26) мы будем понимать в смысле приближенного равенства коэффициентов. Точнее, мы будем исходить из того, что тейлоровские коэффициенты левой части (26) найдены нами численно (это коэффициенты ν_k), а коэффициенты правой – находятся по явным формулам в терминах неизвестных параметров α , β , γ и R, а также постоянной const и коэффициентов полинома p. Дальнейшие рассуждения во многом основаны на анализе величин, в которые входят отношения тейлоровских коэффициентов, и именно

⁸Для численного анализа более сложного варианта найденных нами 221 коэффициента оказывается недостаточно (см. п. 4.1).

поэтому величина, которую мы обозначили const, не играет роли в наших дальнейших рассуждениях. Вместе с тем даже такое весьма приближенное представление (26) оказывается довольно естественным: в п. 3.7 нашей работы будет показано, что если постоянную const в (26) заменить на функцию, то ее вклад в отношение тейлоровских коэффициентов правой части (26) будет "не очень существенным". Однако при уже найденных величинах α , β , γ и Rпоследующим выбором постоянной const и полинома p коэффициенты правой части (26) не удается "состыковать" с заданными коэффициентами левой части (см. § 4).

3.4. Займемся сначала уточнением величины $\beta > 0$ – аргумента особой точки функции ν , расположенной в верхней полуплоскости (см. рис. 9). Как отмечалось в [3, с. 685] на основе численного анализа было замечено, что величина β близка к $4\pi/7$. Первое наше наблюдение состоит в том, что имеется определенная закономерность в чередовании знаков + и – в последовательности (ненулевых) тейлоровских коэффициентов функции частоты (см. табл. 1). А именно, с 5-го по 32-й они чередуются по правилу + + – – + – – с периодом, равным 7. С 33-го по 193-й – по правилу + + – – + + – и с таким же периодом 7. Начиная со 194-го коэффициента правило вновь меняется и теперь выглядит так: – + – – + + – , но период 7 по-прежнему сохраняется. Если бы начиная с некоторого номера правило чередования знаков у коэффициентов оставалось неизменным и сохранился бы тот же самый период 7, то для доказательства того, что величина β в точности равна $4\pi/7$, нам было бы достаточно применить теоремы Адамара и Принсгейма. Действительно, в предположении о сохранении периодичности в поведении знаков тейлоровских коэффициентов функции ν нужно было бы рассмотреть адамаровскую композицию функции ν и функции

$$g(z) = \frac{1 + z - z^2 - z^3 + z^4 + z^5 - z^6}{1 - z^7},$$

все тейлоровские коэффициенты q_k которой равны ± 1 , а знаки чередуется по правилу + + - - + - -с периодом, равным 7. В таком случае при сделанном предположении о периодичности в изменении знаков у коэффициентов ν_k все достаточно далекие коэффициенты композиции Адамара $h = g \circ \nu$ были бы положительными. А тогда по теореме Принсгейма точка z = R была бы особой точкой функции $h = q \circ \nu$. Но по теореме Адамара о перемножении особенностей для адамаровской композиции двух рядов все особые точки функции $g \circ \nu$ на границе круга голоморфности могут возникнуть только как результат перемножения особых точек функции ν на окружности |z| = R и особых точек функции q на единичной окружности. Нетрудно видеть, что все особые точки рациональной функции q – это в точности нули знаменателя, т.е. точки $z_k = e^{i2\pi k/7}, \ k = 0, 1, \dots, 6$ (или $z_k = \varepsilon_7^k$, где $\varepsilon_7 = e^{i2\pi/7}, \ k = 1, \dots, 7$) или, эквивалентно, точки 1, $e^{\pm i2\pi/7}$, $e^{\pm i4\pi/7}$, $e^{\pm i6\pi/7}$. Таким образом, по-крайней мере одна из точек $R, Re^{\pm i2\pi/7}, Re^{\pm i4\pi/7}$ должна была быть особой точкой функции частоты на границе ее круга голоморфности |z| < R. Учитывая теперь отмеченную ранее близость аргументов нулей и полюсов ДАП $[n/n]_{\nu}$ при $n = 32, \ldots, 36$ к величине $4\pi/7 \approx 1.7952$ (см. табл. 2) можно было бы определенно утверждать, что особые точки ν на границе круга голоморфности это именно точки $Re^{\pm 4\pi i/7}$. Тем самым, величина β была бы в точности равна $4\pi/7$. Однако как видно из табл. 1 (см. строки 5, 33 и 194) закон чередования знаков +, – меняется дважды на протяжении 220 коэффициентов. Тем самым, кажется неестественным предполагать, что начиная с некоторого номера фиксируется определенная закономерность в чередовании знаков +, в последовательности коэффициентов ν_k . Поэтому мы в дальнейшем будем исходить из того, что величина β все-таки отличается от $4\pi/7$. Однако проделанный выше анализ асимптотического⁹ поведения нулей и полюсов ДАП для функции частоты и анализ чередования знаков ее тейлоровских коэффициентов наводит на мысль, что аргументы особых точек надо искать, исходя из предположения, что $\beta = 4\pi/7 + \varphi_2$, где поправка φ_2 не равна 0, но достаточно мала

⁹Как обычно, в пределах найденных 221 тейлоровского коэффициента.

по абсолютной величине по сравнению с $\varphi_1 = 4\pi/7$. Наша ближайшая цель – в предположении малости φ_2 проанализировать поведение вычисленных коэффициентов $\nu_k, k = 0, \ldots, 220$, что позволит нам заключить, что искомая поправка φ_2 очень близка к (а возможно, и равна) величине $-\pi/1092$.

3.5. Вернемся к представлению (26), которое запишем в виде

$$u(z) \approx \operatorname{const} \cdot c(z) + p(z),$$

где

$$c(z) = e^{i\alpha}(z - Re^{i\beta})^{\gamma} + e^{-i\alpha}(z - Re^{-i\beta})^{\gamma}, \qquad \alpha, \beta, \gamma \in \mathbb{R}, \quad \gamma \notin \mathbb{Z}.$$
(27)

Как уже отмечалось, величина постоянной const $\neq 0$ и полином p (малой степени и с малыми коэффициентами) в наших дальнейших рассуждениях роли не играют, так как при анализе используются лишь отношения ν_{k+1}/ν_k вычисленных коэффициентов функции частоты, которые сравниваются с отношениями c_{k+1}/c_k достаточно далеких тейлоровских коэффициентов c_k функции (27). Для неизвестных коэффициентов c_k функции c(z) из (27) получаем следующее представление:

$$c_k = (-1)^k \frac{\gamma(\gamma - 1) \cdots (\gamma - k + 1)}{k!} \frac{r}{R^k} \cos(k\beta + \alpha), \qquad \text{где} \quad r = \text{const} \neq 0, \tag{28}$$

а для известных коэффициентов ν_k полагаем $\nu_k \approx \text{const} \cdot c_k$ при $k \ge k_0$. Используя представление (28) в предположении,¹⁰ что величина $\cos(k\beta + \alpha)$ отграничена от нуля при всех k, легко находим:

$$\frac{c_{k+1}}{c_k} - \frac{c_{k+2}}{c_{k+1}} = \frac{1}{R} \left(1 - \frac{\gamma+1}{k+1} \right) \frac{1 - \cos 2\beta}{2\cos(k\beta+\alpha)\cos((k+1)\beta+\alpha)} + O\left(\frac{1}{k^2}\right).$$
(29)

Это соотношение будет в дальнейшем использоваться нами для уточнения величины радиуса R. Отметим, что из представления (28) вытекает также, что

$$\frac{c_{k+2}}{c_k} = \left(1 - 2\frac{\gamma + 1}{k+1}\right) R^{-2} \frac{\cos((k+2)\beta + \alpha)}{\cos(k\beta + \alpha)} + O\left(\frac{1}{k^2}\right)$$
(30)

или

$$\frac{c_k}{c_{k+2}} = \left(1 + 2\frac{\gamma+1}{k+1}\right) R^2 \frac{\cos(k\beta+\alpha)}{\cos((k+2)\beta+\alpha)} + O\left(\frac{1}{k^2}\right). \tag{31}$$

Наконец из представления (27) получаем (при том же предположении, что величина $\cos(k\beta + \alpha)$ отграничена от нуля при всех k) следующее соотношение:

$$b_k := \frac{c_{k+1}/c_k}{c_{k+2}/c_{k+1}} = \frac{c_{k+1}^2}{c_k c_{k+2}} = \frac{1 - (\gamma + 1)/(k+1)}{1 - (\gamma + 1)/(k+2)} \frac{\cos^2((k+1)\beta + \alpha)}{\cos(k\beta + \alpha)\cos((k+2)\beta + \alpha)}$$
$$= \frac{1 - (\gamma + 1)/(k+1)}{1 - (\gamma + 1)/(k+2)} \left(1 + \frac{1 - \cos 2\beta}{\cos 2\beta + \cos(2(k+1)\beta + 2\alpha)}\right)$$
$$= \frac{1 + \cos(2(k+1)\beta + 2\alpha)}{\cos 2\beta + \cos(2(k+1)\beta + 2\alpha)} + O\left(\frac{1}{k^2}\right) = \frac{1 + x_{k+1}}{\cos 2\beta + x_{k+1}} + O\left(\frac{1}{k^2}\right),$$

где

$$x_k := \cos(2k\beta + 2\alpha).$$

Отсюда уже вытекает нужное нам соотношение

$$x_k = \frac{1 - b_k \cos 2\beta}{b_k - 1} + O\left(\frac{1}{k^2}\right), \qquad \text{где} \quad b_k := \frac{c_{k+1}^2}{c_k c_{k+2}}.$$
(32)

 $^{^{10} {\}rm O} боснованность такого предположения мы обсудим в п. 4.1$

Проделаем теперь следующее: подставим в формулу (32) для величин b_k вместо коэффициентов c_k найденные численно коэффициенты ν_k функции частоты (напомним, что $\nu_k \approx \text{const} \cdot c_k$, а $\beta \approx 4\pi/7$), найдем соответствующую величину x_k , а затем вычислим величину

$$\psi_k := \frac{1}{\pi} \arccos x_k \qquad \text{при} \quad k = 11, \dots, 217, \quad 0 \leqslant \psi_k \leqslant 1.$$
(33)

Расположим значения величины ψ_k в табл. 3, состоящей из 7 столбцов, в каждом из которых индексы двух соседних элементов отличаются на 7. Нетрудно видеть, что в 1-ом, 2-ом, 3-ем и 7-ом столбцах элементы при изменении индекса меняются монотонно. В 4-ом и 6-ом столбцах имеется по одному максимальному элементу, очень близкому к 1, а в 5-ом столбце имеется один минимальный элемент, очень близкий к 0. Соответствующие элементы таблицы – это ψ_{39}, ψ_{117} и ψ_{195} , а разность между их индексами равна $78 = 195 - 117 = 117 - 39.^{11}$ Предположим, что такая закономерность носит не случайный характер, а вызвана как раз той поправкой $\varphi_2 \neq 0$ к $\varphi_1 = 4\pi/7$ в представлении $\beta \approx \varphi_1 + \varphi_2$, величину которой мы хотели бы найти. Значит, подобные максимумы и минимумы будут появляться с определенной периодичностью и в других столбцах таблицы (возможно, мы могли бы заметить это и непосредственно, если бы нам удалось вычислить достаточное количество коэффициентов ν_k). Отсюда уже легко вытекает следующее соотношение на поправку $\varphi_2: 2|\varphi_2| \cdot 7 \cdot 78 = \pi$, т.е.

$$|\varphi_2| = \frac{\pi}{1092} \,. \tag{34}$$

Отметим, что $2|\varphi_2| \cdot 7/\pi = 1/78 \approx 0.0128$, а этой величине с точностью до знака должно быть (если наша гипотеза справедлива) равно приращение элементов табл. 3 по столбцам. Это хорошо согласуется с реальной ситуацией, представленной в табл. 4.

3.6. Следующий наш шаг – выяснить положительна или отрицательна величина φ_2 , т.е. $\varphi_2 = \pi/1092$ или $\varphi_2 = -\pi/1092$. Ответ на этот вопрос будет дан одновременно с нахождением величины α в "главной" части (26) функции частоты. Подчеркнем еще раз, что мы в своем численном анализе свойств функции ν исходим из того, что справедливо приближенное представление (26) с некоторыми $\alpha, \beta, \gamma \in \mathbb{R}, \gamma \notin \mathbb{Z}$, const $\neq 0$. Тем самым, из двух вариантов выбора знака у поправки φ_2 мы предпочтем тот, который приведет и к вполне определенной величине α , соответствующей приближенному представлению (26). Иной вариант, не позволяющий остановиться на каком-то определенном значении α , нами будет отвергнут.

Для реализации этого подхода обратимся опять к табл. 3. Так как мы считает теперь, что $\beta \approx \varphi_1 + \varphi_2$, где $\varphi_1 = 4\pi/7$, а $|\varphi_2| = \pi/1092$, то тем самым подразумеваем, что поправка φ_2 относительно мала. Напомним, что в табл. 3 величины $\psi_k := \arccos x_k/\pi$, где $x_k = \cos(2k\beta + 2\alpha)$, расположены в виде таблицы, состоящей из 7 столбцов, в которых индексы двух соседних по строкам элементов отличаются на 7. Пусть теперь индекс $k = 0 \pmod{7}$. Для таких k величина $x_k = \cos(2k\varphi_2 + 2\alpha)$ и соответствующая величина ψ_k = $\arccos x_k/\pi$ расположена в 7-м столбце. Как видим, при возрастании k эта величина ψ_k монотонно убывает. Отсюда с учетом того, что поправка φ_2 мала, легко делаем следующий вывод: $\varphi_2 < 0$, если $2\alpha \in (0, \pi)$, и $\varphi_2 > 0$, если $2\alpha \in (-\pi, 0)$. Следовательно,

$$\psi_k = rac{1}{\pi} \begin{cases} 2k\varphi_2 + 2lpha & \text{при } lpha > 0, \\ -2k\varphi_2 - 2lpha & \text{при } lpha < 0. \end{cases}$$

Отсюда уже получаем, что при $k = 0 \pmod{7}$

$$\alpha = \begin{cases} \frac{\pi}{2}\psi_k - k\varphi_2 > 0 & \text{при } \varphi_2 < 0, \\ -\frac{\pi}{2}\psi_k - k\varphi_2 < 0 & \text{при } \varphi_2 > 0. \end{cases}$$
(35)

 $^{^{11} {\}rm Отметим},$ что то же самое число 78 как разница индексов возникает и для функции амплитуды A.

Вычислим для таких k = 7, 14, 21, ... величину $\alpha = \alpha_k$ по формуле (35) в обоих возможных случаях, $\varphi_2 < 0$ и $\varphi_2 > 0$, и поступим дальше следующим образом. Если в каком-то из этих случаев при всех таких k величины α_k примерно одинаковы, то мы будем исследовать этот случай и дальше при остальных $k \neq 0 \pmod{7}$. Если же окажется, что величины α_k сильно отличаются друг от друга, то дальше рассматривать этот случай нет смысла. Результаты такого анализа приводят к выводу, что возможен лишь случай с $\varphi_2 < 0$ и $2\alpha \in (0, \pi)$, при этом $\alpha/\pi = \psi_k/2 - k\varphi_2/\pi$ и, следовательно, $\alpha/\pi \approx 0.25$ при всех $k = 0 \pmod{7}$.

Для этого случая, $\varphi_2 = -\pi/1092 < 0$ и $2\alpha \in (0, \pi)$, рассмотрим теперь величину ψ_n при остальных значениях $n \neq k$, $k = 0 \pmod{7}$. С учетом того, что поправка φ_2 меньше 0 и мала, приведем представление для $x_n = \cos(2n\beta + 2\alpha)$ при остальных значениях индекса $n \neq 0 \pmod{7}$ к виду

$$x_{k+1} = \cos\left(\frac{8\pi}{7} + 2(k+1)\varphi_2 + 2\alpha\right) = \cos\left(\frac{6\pi}{7} - 2(k+1)\varphi_2 - 2\alpha\right),$$

$$x_{k+2} = \cos\left(\frac{16\pi}{7} + 2(k+1)\varphi_2 + 2\alpha\right) = \cos\left(\frac{2\pi}{7} + 2(k+2)\varphi_2 + 2\alpha\right),$$

$$x_{k+3} = \cos\left(\frac{24\pi}{7} + 2(k+3)\varphi_2 + 2\alpha\right) = \cos\left(\frac{4\pi}{7} - 2(k+3)\varphi_2 - 2\alpha\right),$$

$$x_{k+4} = \cos\left(\frac{32\pi}{7} + 2(k+4)\varphi_2 + 2\alpha\right) = \cos\left(\frac{4\pi}{7} + 2(k+4)\varphi_2 + 2\alpha\right),$$

$$x_{k+5} = \cos\left(\frac{40\pi}{7} + 2(k+5)\varphi_2 + 2\alpha\right) = \cos\left(\frac{2\pi}{7} - 2(k+5)\varphi_2 - 2\alpha\right),$$

$$x_{k+6} = \cos\left(\frac{48\pi}{7} + 2(k+6)\varphi_2 + 2\alpha\right) = \cos\left(\frac{6\pi}{7} + 2(k+6)\varphi_2 + 2\alpha\right);$$
(36)

здесь $k = 0 \pmod{7}$.

Учитывая, что $2\alpha \in (0, \pi)$, и принимая во внимание динамику изменения величин элементов в каждом из шести других столбцов табл. 4 выводим для каждого из этих столбцов свою формулу для вычисления величины α (как и прежде $k = 0 \pmod{7}$:

$$\begin{aligned} \frac{\alpha}{\pi} &= -\frac{1}{2} \psi_{k+1} + \frac{3}{7} - (k+1) \frac{\varphi_2}{\pi} ,\\ \frac{\alpha}{\pi} &= \frac{1}{2} \psi_{k+2} - \frac{1}{7} - (k+2) \frac{\varphi_2}{\pi} ,\\ \frac{\alpha}{\pi} &= -\frac{1}{2} \psi_{k+3} + \frac{2}{7} - (k+3) \frac{\varphi_2}{\pi} ,\\ \frac{\alpha}{\pi} &= \begin{cases} -\frac{1}{2} \psi_{k+4} + \frac{5}{7} - (k+4) \frac{\varphi_2}{\pi} & \text{при } k + 4 < 39,\\ \frac{1}{2} \psi_{k+4} - \frac{2}{7} - (k+4) \frac{\varphi_2}{\pi} & \text{при } k + 4 \ge 39, \end{cases}$$
(37)
$$\frac{\alpha}{\pi} &= \begin{cases} \frac{1}{2} \psi_{k+5} + \frac{1}{7} - (k+5) \frac{\varphi_2}{\pi} & \text{при } k + 5 < 117,\\ -\frac{1}{2} \psi_{k+5} + \frac{1}{7} - (k+5) \frac{\varphi_2}{\pi} & \text{при } k + 5 \ge 117, \end{cases} \\ \frac{\alpha}{\pi} &= \begin{cases} -\frac{1}{2} \psi_{k+6} + \frac{4}{7} - (k+6) \frac{\varphi_2}{\pi} & \text{при } k + 6 < 195,\\ \frac{1}{2} \psi_{k+6} - \frac{3}{7} - (k+6) \frac{\varphi_2}{\pi} & \text{при } k + 6 \ge 195. \end{cases} \end{aligned}$$

Соответствующие этим приближенным¹² формулам значения величины α/π представлены в табл. 5. На основании анализа данных этой таблицы естественно заключить, что $\alpha = 0.25\pi = \pi/4$ (см. табл. 5').

n	α_n	α_{n+1}	α_{n+2}	α_{n+3}	α_{n+4}	α_{n+5}	α_{n+6}	n+6
106	.2502	.2502	.2502	.2502	.2502	.2502	.2502	112
113	.2502	.2502	.2502	.2502	.2500	.2502	.2502	119
120	.2501	.2502	.2501	.2501	.2501	.2501	.2501	126
127	.2501	.2501	.2501	.2501	.2501	.2501	.2501	133
134	.2501	.2501	.2501	.2501	.2501	.2501	.2501	140
141	.2501	.2501	.2500	.2500	.2500	.2500	.2500	147
148	.2500	.2500	.2500	.2500	.2500	.2500	.2500	154
155	.2500	.2500	.2500	.2500	.2499	.2500	.2500	161

Таблица	5 '
---------	------------

Еще раз отметим, что соответствующие предположению: $\varphi_2 > 0, 2\alpha \in (-\pi, 0)$, вычисления не приводят к какому-либо конкретному значению α и поэтому нами отвергаются.

Итак, анализ поведения величин ψ_k , определенных формулой (33) через тейлоровские коэффициенты ν_k функции частоты, привел нас к выводу, что в представлении (26) поправка $\varphi_2 = -\pi/1092$, а $\alpha = \pi/4$. В табл. 6 представлены значения $\cos(2k\beta + 2\alpha)$, вычисленные для $k = 1, \ldots, 217$ при $\beta = \varphi_1 + \varphi_2 = 89\pi/156$ и $\alpha = \pi/4$, а в табл. 7 – разность между соответствующими значениями в табл. 3 и 6.

3.7. Дальнейший анализ основан на теореме 1 и теореме 2, обобщающей теорему Фабри об отношении¹³ на случай произвольной *m*-й строки таблицы Паде. Наша цель – использовать эти результаты при m = 2 (т.е. для случая 2-й строки таблицы Паде функции ν) для уточнения расположения пары особых точек функции ν на границе ее круга голоморфности.

Для построения знаменателя $Q_{n,2}(z)$ рациональной функции $[n/2]_{\nu}$ воспользуемся явной формулой (5) (справедливой в предположении, что соответствующий определитель (4) отличен от нуля). При m = 2 непосредственно из (5) получаем

$$Q_{n,2}(z) = \begin{vmatrix} \nu_{n-1} & \nu_n & \nu_{n+1} \\ \nu_n & \nu_{n+1} & \nu_{n+2} \\ z^2 & z & 1 \end{vmatrix}.$$

Тогда полюсы $p_{1,2} = p_{1,2}(n) = R_n^{\pm i\beta_n}$ функции $[n/2]_{\nu}$ вычисляются по формулам

$$p_{1,2} = \frac{B_n \pm \sqrt{B_n^2 - 4H_{n,2}H_{n+1,2}}}{2H_{n+1,2}} = \frac{B_n \pm i\sqrt{D_n}}{2H_{n+1,2}},$$
(38)

где

$$H_{n,2} = \begin{vmatrix} \nu_{n-1} & \nu_n \\ \nu_n & \nu_{n+1} \end{vmatrix} = \nu_{n-1}\nu_{n+1} - \nu_n^2,$$

$$H_{n+1,2} = \begin{vmatrix} \nu_n & \nu_{n+1} \\ \nu_{n+1} & \nu_{n+2} \end{vmatrix} = \nu_n\nu_{n+2} - \nu_n^2,$$

$$B_n = \begin{vmatrix} \nu_{n-1} & \nu_{n+1} \\ \nu_n & \nu_{n+2} \end{vmatrix} = \nu_{n-1}\nu_{n+2} - \nu_n\nu_{n+1}, \qquad D_n = 4H_{n,2}H_{n+1,2} - B_n^2$$
(39)

¹²Напомним, что использованные для вычислений приближенные соотношения (29), (30) и (37) справедливы с точностью до $O(1/k^2)$.

¹³Напомним, что соответствующая классической теореме Фабри процедура в вычислительной математике называется методом отношений [5, ч. 2, гл. 1, § 1.3, с. 316] или тестом Домба–Сайкса [6, с. 4].

и должно выполняться условие $D_n > 0$. Нетрудно увидеть из (26), что если наше предположение верно (и, тем самым, $\nu_k \approx \text{const} \cdot c_k$), то сходимость полюсов $p_{1,2}(n) = R_n e^{\pm i\beta_n} = u_n \pm v_n$ к точкам $Re^{\pm i\beta}$ должна быть довольно медленной – со скоростью порядка 1/n. Этот вывод хорошо согласуется с эмпирическими данными, полученными с использованием формулы (38) и приведенными в табл. 8 (см. столбцы 1 и 2). В таком случае применение формулы (6) из теоремы 1 прямо указывает на то, что для функции частоты ν величина $R_2(\nu)$ радиуса 2-мероморфности этой функции равна $R_1(\nu) = R_0(\nu) = R$, а применение (обратной) теоремы 2 показывает, что точки $Re^{\pm i\beta}$ – особые точки функции частоты ν на границе круга $|z| < R_2(\nu) = R$ (см. табл. 8').

n	u_n	v_n	R_n	β_n	Δv_n	$R_n - R$	$\beta_n - \beta$
201	75707	3.36165	3.44585	1.79231	0000013	.0258479	.0000119
202	75696	3.36143	3.44560	1.79229	.0002274	.0256036	.0000263
203	75704	3.36137	3.44556	1.79232	.0000612	.0255618	0000007
204	75689	3.36124	3.44540	1.79228	.0001297	.0254019	.0000341
205	75698	3.36107	3.44526	1.79232	.0001656	.0252595	0000011
206	75687	3.36104	3.44521	1.79229	.0000298	.0252061	.0000283
207	75688	3.36081	3.44498	1.79231	.0002332	.0249807	.0000107
208	75687	3.36081	3.44498	1.79231	0000019	.0249803	.0000139
209	75678	3.36059	3.44475	1.79229	.0002151	.0247504	.0000260
210	75685	3.36054	3.44471	1.79232	.0000531	.0247148	.0000017
211	75671	3.36042	3.44456	1.79229	.0001259	.0245609	.0000338
212	75679	3.36026	3.44443	1.79232	.0001504	.0244324	.0000007
213	75669	3.36023	3.44438	1.79229	.0000311	.0243786	.0000289
214	75670	3.36002	3.44417	1.79231	.0002166	.0241702	.0000113
215	75668	3.36002	3.44417	1.79230	0000023	.0241693	.0000156
216	75660	3.35982	3.44395	1.79229	.0002037	.0239527	.0000257
217	75667	3.35977	3.44392	1.79232	.0000460	.0239225	.0000038

Таблица 8'

Из (38) для величины R_n имеем

$$R_n^2 = p_1(n) \cdot_2(n) = \frac{H_{n,2}}{H_{n+1,2}} = \frac{\nu_{n-1}\nu_{n+1} - \nu_n^2}{\nu_n \nu_{n+2} - \nu_{n+1}^2} = \frac{\nu_{n+1}/\nu_n - \nu_n/\nu_{n-1}}{\nu_{n+2}/\nu_{n+1} - \nu_{n+1}/\nu_n} \frac{\nu_{n-1}}{\nu_{n+1}}.$$
 (40)

С другой стороны, пользуясь (29) и (30) получаем следующее представление для R_n^2 :

$$R_n^2 = \left(1 + \frac{\gamma + 1}{n}\right)^2 R^2 + O\left(\frac{1}{n^2}\right) = \left(1 + 2\frac{\gamma + 1}{n}\right) R^2 + O\left(\frac{1}{n^2}\right).$$

Тем самым,

$$R_n = \left(1 + \frac{\gamma + 1}{n}\right)R + O\left(\frac{1}{n^2}\right). \tag{41}$$

Вычисленная с помощью формулы (40) величина R_n для $n = 31, \ldots, 217$ представлена в табл. 8 (см. столбец 3), откуда видно, что $R_n \downarrow$ при $n \uparrow$. С учетом (41) получаем $\gamma > -1$ (напомним, что $\gamma \notin \mathbb{Z}$). Аналогичным образом, используя (29), (30) получаем асимптотические представления для последовательностей $u_n = \operatorname{Re} p_1(n), v_n = \operatorname{Im} p_1(n) > 0$ и $\beta_n = \arg p_1(n) \in (\pi/2, \pi):$

$$u_n = \left(1 + \frac{\gamma + 1}{n}\right) R \cos\beta + O\left(\frac{1}{n^2}\right), \qquad v_n = \left(1 + \frac{\gamma + 1}{n}\right) R \sin\beta + O\left(\frac{1}{n^2}\right), \qquad (42)$$
$$\beta_n = \beta + O\left(\frac{1}{n^2}\right).$$

Откуда вытекает, что эти последовательности должны вести себя следующим образом: $u_n \uparrow R \cos \beta$ при $n \uparrow \infty$, $v_n \downarrow R \sin \beta$ при $n \uparrow \infty$, а β_n стремится к $\beta = 89\pi/156 \approx 1.7923188857$ со скоростью $O(1/n^2)$. Поведение найденных численно значений β_n достаточно хорошо согласуется с последним условием (см. табл. 8, столбец 8).

Эмпирические величины u_n и v_n ведут себя следующим более сложным образом. Требуемая монотонность в поведении v_n лишь "слегка" нарушается для четырех значений n = 194, 201, 208, 215 (см. табл. 8, столбец 6); величины u_n ведут себя монотонно, если рассматривать отдельно четные и нечетные номера (см. табл. 9); то же самое справедливо и для v_n .

Заметим теперь, что если мы проведем все предыдущие (см. пп. 3.3–3.6) преобразования с точностью $O(1/n^3)$, а не $O(1/n^2)$, то вместо (41) для величины R_n получим

$$R_n^2 = R^2 \left(1 + \frac{2(\gamma+1)}{n+1} + \frac{\gamma+1}{(n+1)^2} \left(3(\gamma+1) - \frac{\sin((2n+1)\beta + 2\alpha)}{\sin\beta} \right) \right) + O\left(\frac{1}{n^3}\right).$$
(43)

Непосредственно из (43) вытекает, что для величины

$$\Delta_n := \frac{1}{7}((n+8)R_{n+7}^2 - (n+1)R_n^2)$$

имеем

$$\Delta_n = R^2 \left(1 - \frac{2(\gamma+1)}{n+1} \frac{\sin 7\beta \cdot \cos((2n+8)\beta + 2\alpha)}{7\sin\beta} \right) + O\left(\frac{1}{n^2}\right). \tag{44}$$

Так как $\beta \approx \varphi_1 + \varphi_2$, где $\varphi_1 = 4\pi/7$, $\varphi_2 = -\pi/1092$, то $7\beta \approx 4\pi - \pi/156$. Следовательно, $|(\sin 7\beta)/7| \approx \pi/1092 \approx 3 \cdot 10^{-3}$, в то время как $\sin \beta \approx 3 \cdot 10^{-2}$. Значит, величина $\sqrt{\Delta_n}$ из формулы (44) должна давать достаточно хорошее приближение для величины R при не очень больших значения n. Вычисленные таким путем приближенные значения для радиуса $R \approx \sqrt{\Delta_n}$ представлены в табл. 10 (см. также табл. 10').

Таблица 10'

n	$\sqrt{\Delta_n}$	$\sqrt{\Delta_{n+1}}$	$\sqrt{\Delta_{n+2}}$	$\sqrt{\Delta_{n+3}}$	$\sqrt{\Delta_{n+4}}$	$\sqrt{\Delta_{n+5}}$	$\sqrt{\Delta_{n+6}}$	n+6
183	3.4198	3.4200	3.4197	3.4199	3.4198	3.4199	3.4199	189
190	3.4198	3.4200	3.4198	3.4200	3.4198	3.4199	3.4199	196
197	3.4198	3.4200	3.4198	3.4200	3.4198	3.4199	3.4199	203
204	3.4198	3.4200	3.4198	3.4200	3.4199	3.4199	3.4200	210

Наконец, из (41) и (31) вытекает следующая (довольно грубая) формула для приближенного вычисления величины γ :

$$\gamma = \left(\frac{R_n}{R} - 1\right)n - 1 + O\left(\frac{1}{n}\right),$$

при условии, что известна величина R. Найденная из этой формулы при R = 3.42 величина γ оказывается близка к 1/2. Соответствующие приближенной формуле (43) значения R при $\gamma = 1/2$ представлены в таблице

n								n+6
183	3.42043	3.42024	3.42047	3.42024	3.42042	3.42032	3.42032	189
190	3.42041	3.42024	3.42045	3.42024	3.42040	3.42031	3.42031	196
197	3.42039	3.42024	3.42043	3.42023	3.42039	3.42030	3.42031	203
204	3.42038	3.42024	3.42041	3.42023	3.42038	3.42028	3.42030	210
211	3.42036	3.42024	3.42040	3.42022	3.42037	3.42028	3.42030	217

3.8. Проведем теперь основанное на (43) некоторое тестовое вычисление для проверки согласованности найденных численно величин β и α . Положим $d_n = R_n^2$ и используя (29), (30) найдем следующее приближенное представление для отношения d_n/d_{n+1} :

$$r_n := \frac{d_n}{d_{n+1}} = 1 + \frac{4\cos^2((n+1)\beta + \alpha)}{(n+1)^2} + O\left(\frac{1}{n^3}\right)$$
$$= 1 + \frac{2}{(n+1)^2} + \frac{2}{(n+1)^2}\cos(2(n+1)\beta + 2\alpha) + O\left(\frac{1}{n^3}\right) = 1 + O\left(\frac{1}{n^2}\right) \approx 1.$$
(45)

Найденные по этой приближенной формуле при $\beta \approx \varphi_1 + \varphi_2 = 89\pi/156$ и $\alpha = \pi/4$ значения величины r_n приведены в табл. 11. Там же для сравнения приведены значения величины s_n :

$$s_n := \frac{d_n}{d_{n+1}} - \frac{2}{(n+1)^2} - \frac{2}{(n+1)^2} \cos(2(n+1)\beta + 2\alpha) = 1 + O\left(\frac{1}{n^3}\right) \approx 1,$$
(46)

и величины w_n

$$w_n := \frac{d_n}{d_{n+1}} - \frac{2}{(n+1)^2} = 1 + O\left(\frac{1}{n^2}\right) \approx 1,$$
(47)

найденные при тех же значениях β и α .

§4. Заключительные замечания

4.1. Ясно, что сделанное нами предположение (26), в соответствии с которым

$$\nu(z) \approx \text{const} \cdot (e^{i\alpha}(z - Re^{i\beta})^{\gamma} + e^{-i\alpha}(z - Re^{-i\beta})^{\gamma}) + p(z) \qquad \text{при} \quad |z| < \rho,$$
(48)

где $\rho > R$, является всего лишь весьма приближенным представлением для функции частоты ν . Как уже отмечалось, для численного анализа более сложного варианта вида

$$\nu(z) \approx g(z)(e^{i\alpha}(z - Re^{i\beta})^{\gamma} + e^{-i\alpha}(z - e^{-i\beta})^{\gamma}) + h(z)$$
(49)

найденных тейлоровских коэффициентов функции ν оказывается недостаточно. Тот факт, что представление вида (49) с найденными выше значениями R = 3.42, $\beta = \varphi_1 + \varphi_2 = 89\pi/156$ и $\alpha = \pi/4$ вполне может иметь место подкрепляется следующими рассуждениями. Вместо приближенного равенства $g(z) \approx \text{const}$, соответствующего (48), будем считать, что $g(z) \approx C_0 + C_1 z$. Подставим это представление в (49) и (положив $h(z) \equiv 0$) приравняем коэффициенты при степенях z^n в обеих частях равенства. Вытекающая отсюда формула для C_0 зависит от n. Однако с ростом n значения $C_0(n)$ быстро стабилизируется; таким же образом ведут себя и величины $C_1(n)$.

Кроме того, численный анализ, проведенный с помощью аппроксимаций Эрмита–Паде I-го рода (см. [26]) для пары функций $f_1 = f$ и $f_2 = f^2$

$$(Q_{n,0} + Q_{n,1}f + Q_{n,2}f^2)(z) = O(z^{3n+2}), \qquad z \to 0,$$

при $f = \nu, A$ показывает, что ближайшие к началу координат особенности функций частоты ν и амплитуды A не могут быть точками квадратичного ветвления, а носят более сложный характер, т.е. $\gamma \neq \pm 1/2$.

Таким образом, скорее всего в представлении (49) g и h – функции со "слабыми" по сравнению со степенными особенностями в точках $Re^{\pm i\beta}$; например, особенностями логарифмического типа. Такой результат соответствовал бы известным асимптотическим формулам Дородницына [37] для функций ν и A:

$$\frac{2\pi}{\nu(\varepsilon^2)\varepsilon} = (3 - \log 4) - \frac{3\alpha}{\varepsilon^{4/3}} - \frac{2\log\varepsilon}{3\varepsilon^2} - \frac{1.3246}{\varepsilon^2} + o(\varepsilon^{-2}), \qquad \varepsilon \to \infty,$$

где $\alpha = -2.33810741$ – некоторый нуль функции Эйри (аналогичное представление справедливо для $A(\varepsilon)$).

Вернемся теперь к тем предположениям, при которых мы проводили свои рассуждения, – к условиям отграниченности от нуля величин $\cos(k\beta + \alpha)$ в представлении (27) для функции c(z). Нетрудно убедиться в том, что при $\beta = \varphi_1 + \varphi_2 = 89\pi/156$ и $\alpha = \pi/4$ эти условия нарушаются: $\cos(k\beta + \alpha) = 0$ для k = 39m, где $m = 4\ell + 1$. Однако проведенный нами в настоящей работе анализ был основан на численно найденных коэффициентах функции частоты $\nu(z)$ в предположении о том, что имеет место приближенное (точнее – см. п. 1.3) представление (48). Тем самым, нарушение условия отграниченности от нуля коэффициентов для функции c(z) (27) не влияет на сделанные в настоящей работе выводы относительно свойств функции $\nu(z)$.

§ 5. Таблицы

Таблица 1. 221 коэффициент ν_{2k} для функции частоты $\nu(\varepsilon^2)$ (чередование знаков ++--+-и - +- - - + - - - + - начиная соответственно с номеров 33 и 194)

k	$ u_{2k}$	
0	+.1000000000000000000000000000000000000	1
1	625000000000000000000000000000000000000	-1
2	+.55338541666666666666666666666666666666666666	-2
3	$+.3955982349537037037037037037037037037039400\mathrm{D}$	-4
4	$1332198641427750450102880658436213991734\mathrm{D}$	-3
5	$+.1227977257315623035265203475080018290271\mathrm{D}$	-4
6	$+.4523311902764360827222836237285075592110\mathrm{D}$	-5
7	$1096454050689115885336425415511457131345\mathrm{D}$	-5
8	$1253657101867161918741946767697551001418\mathrm{D}$	-6
9	$+.7702560155803022383088441178714259650363 \mathrm{D}$	-7
10	$1042843009829760597751828049305630486958 \mathrm{D}$	-8
11	4705135849939668233171768463680108890898 D	-8
12	$+.6035789811399171355628714115340864254978 \mathrm{D}$	-9
13	$+.2415382598428856856014722055741951483580 \mathrm{D}$	-9
14	$6866560984183491348545339662661336144903 \mathrm{D}$	-10
15	$8575893982232264670169826872919612374900 \mathrm{D}$	-11
16	$+.5788451100093708286220589594057827015815 \mathrm{D}$	-11
17	$7646492809736646765467713099715326006450 \mathrm{D}$	-13
18	$4042492127060958048289455905705388890678 \mathrm{D}$	-12
19	$+.5355014804120153909767806429174273774518 \mathrm{D}$	-13
20	+.2303943639027383218547219849318748780788 D	-13
21	6687627751070514631892173817143818554645 D	-14
22	9004985389876527913944745678709829625700 D	-15
23	$+.6062112279479040540147253037686103366268 \mathrm{D}$	-15
24	5749592742350004798514980475672068769325 D	-17
25	4495793976434177106574008717584867624598 D	-16
26	$+.5888601268761341446783409016093063980650 \mathrm{D}$	-17
27	+.2703626822693805555287123159078939135715 D	-17
28	7791223397304759253899757430261613589813 D	-18
29	1123144808282230557927252675886304592355 D	-18
30	+.7371520762563583972871190595328648564093 D	-19
31	3457711163225958547991124011406361311600 D	-21
32	5672137397766022578884833136588605470585 D	-20
33	+.7232640922450261723394127942798755063250 D	-21
	+.3534416136749238740616265156263734747890 D	-21
	1000638830762176888094577943156425297209 D	-21
36	1537924926989105723781640746174185524048 D	-22
37	+.9761585892360126743046063776697976677450D	-23
	+.5893333632281500947313441484091582375000 D	-26
39	7713461875981925150734100730736863346570 D	-24

<u> </u>		
k	ν_{2k}	
40	$+.9498314373578032668878160304789955968188 \mathrm{D}$	-25
41	$+.4937378758427851456063556281180796462040 \mathrm{D}$	-25
42	$1366307559196957168812849732469999740355 \mathrm{D}$	-25
43	$2232545102555970783813707089364282505763 \mathrm{D}$	-26
44	$+.1365930739253993685043213219835130425699 \mathrm{D}$	-26
45	$+.8457404553604970582094507315238991974750 \mathrm{D}$	-29
46	$1102376494886313716102521265382412014021 \mathrm{D}$	-27
47	$+.1304019368804210542515099962367502017449 \mathrm{D}$	-28
48	$+.7213557871284572414516734250977103352583 \mathrm{D}$	-29
49	$1945557406489332750569190838013363617358 \mathrm{D}$	-29
50	$3372541728110024653174040485333300302343 \mathrm{D}$	-30
51	$+.1986438231001200371977662647056086377913 \mathrm{D}$	-30
52	$+.2380112640118878470988806453119645560700 \mathrm{D}$	-32
53	1632098280931952016422514238699329020841 D	-31
54	$+.1847057865322384172675764387270715456310 \mathrm{D}$	-32
55	+.1088493911898937878944772893065734894788 D	-32
56	$2856086680095023352563225653844908980423 \mathrm{D}$	-33
57	$5243304810523538873038072473630953507948 \mathrm{D}$	-34
58	$+.2972103216290751822643558256647671871080 \mathrm{D}$	-34
59	$+.5328791288891815701719748028424081135375 \mathrm{D}$	-36
60	2480897831170224122215692088215344710790 D	-35
61	$+.2676478088705932763343292953177896551233 \mathrm{D}$	-36
62	$+.1682925332119150049070096737456057540688 \mathrm{D}$	-36
63	$4290529909805025255961691938962183346828 \mathrm{D}$	-37
64	8330301420308404100058055675833930390013 D	-38
65	$+.4544802440916130649105016124078158665130 \mathrm{D}$	-38
66	$+.1091274735368986118385456969840603757605 \mathrm{D}$	-39
67	3848836141242738420993518705055740055858 D	-39
68	$+.3944681098552407888022122693097752607013 \mathrm{D}$	-40
69	$+.2651741804245994349619221019592046267045\mathrm{D}$	-40
70	6562402131477847486339040831772752754785 D	-41
71	1345954326363085353682553281633106020958 D	-41
72	$+.7070302283185938753149235112705705974720 \mathrm{D}$	-42
73	+.2136423043561791694415256491863461670668 D	-43
74	6068737330033392968020930307238191472535 D	-43
	+.5888317450257321802813753264259353778423 D	-44
76	+.4242051498171681187484014774296535758095 D	-44
	1018251924790547900687980638342730213084D	-44
78	2204089699438375732779083671230494479258 D	-45
	+.1115319247557993390797684863557381355291 D	-45
80	+.4075457480108277709966869661671022274325 D	-47
81	9696179207295693273832603432575727180120 D	-47
82	+.8873544494258371262903178655480942301858 D	-48
83	+.0870542871528065916162437527622237380283 D	-48
84	1598542018075816836436656939226858560614 D	-48
85	3648953476480708946509270037675199536673 D	-49
86	+.1779637011716989017278906431299763239001 D	-49
87	+.7649316337507909875883731436564539411175 D	-51
88	1566212180169867598903702302786025021329 D	-50

89 +.1346476015689433577952292475498847834875 D -51 90 +.1124257176055979024480999481106617125766 D -51 91 2533852639105786299496042566427160015760 D -52 92 609573335573578922529735935705723675725 D -53 93 +.2866938628370873328478225696991453787363 D -53 94 +.1420399255622066095777366369944971542263 D -54 95 2553231967862104249248136851135036935490 D -55 97 +.185564988592820209033536476231882239980 D -55 98 404885905853557857541666040258708463550 D -56 99 102604902355542691179948253251940269817 D -56 100 +.465600906675893793532148732199386502282 D -55 101 +.2618106783580055579674096888279100333693 D -58 102 4194925447985196467931988398900893211763 D -58 103 +.3137993081450993278585322947272485979995 D -59 104 +.30045175651028014153877912930868343228 D -63 105 6513626640955671581128277337241410347505 D -60 106 1738184337213513444682804945182874445053 D	k	ν_{2k}	
90 +.1124257176055979024480999481106617125766 D -51 91 2533852639105786299496042566427160015760 D -52 92 6095733355735789225297359357056723675725 D -53 93 +.2866938628370873328478225696991453787363 D -53 94 +.142039925562206609577736636991453787363 D -54 95 2553231967862104249248136851135036935490 D -54 96 +.2052752728719811254379917108191224680695 D -55 97 +.185564988592820290933536476235188223980 D -55 98 404885905853557857541666040258708463550 D -56 99 1026049023555542691179948253251940269817 D -56 100 +.465809090675893733521487321593386502228 D -57 101 +.26181067835800555796740968827910033693 D -58 102 4194925447985196467931988398900893211763 D -59 103 +.3137993081450993278585326941129274845973995 D -59 104 +.308551278069957125385436196799818972938 D -63 105 6513626640955671581128277373721410347505 D -62 106 17381843721553464828809451828744450532 D	89	$+.1346476015689433577953292475498847834875\mathrm{D}$	-51
91 2533852639105786299496042566427160015760 D -52 92 6095733355735789225297359357056723675725 D -53 93 +.2866938628370873328478225696991453787363 D -53 94 +.142039925622066095777366369944971542263 D -54 95 2553231967862104249248136851135036035490 D -55 97 +.185564988592820209335334762351882239980 D -55 98 40488590585555785754166604025780463550 D -56 99 1026049023555542691179948253251940269817 D -56 100 +.4656099006758937935321487321593386502228 D -57 101 +.261810678358005557967409688827910033693 D -58 102 419492544798519646793188398900893211763 D -58 103 +.31379930814509937212538543616799818972938 D -59 104 +.308551278069957212538543616799818972938 D -59 105 6513626640955671581128277337241410347505 D -60 106 173818433721351348468280945182874445053 D -61 108 +.4800431756501028014153877912930863343228 D -62 109 69386696593639957948055526791111175240295 D <th>90</th> <td>$+.1124257176055979024480999481106617125766\mathrm{D}$</td> <td>-51</td>	90	$+.1124257176055979024480999481106617125766\mathrm{D}$	-51
92 6095733355735789225297359357056723675725 D -53 93 +.2866938628370873328478225696991453787363 D -53 94 +.1420399255622060095777366369944971542263 D -54 95 2553231967862104249248136851135036935490 D -55 96 +.2052752728719811254379917108191224680695 D -55 97 +.1855649885928202909335364762351882239980 D -55 98 40488590585355785741666040258708463550 D -56 100 +.4656090906758937935321487321593386502228 D -57 101 +.2618106783580055579674096888279100333693 D -58 102 4194925447985196467931988398900893211763 D -58 103 +.3137993081450993278585322947272485979995 D -59 104 +.3085512780699572125385436196799818972938 D -69 105 651362664095567158112827737241410347505 D -60 106 1738184337213513484682880945182874445053 D -62 107 +.61432134776801927148440079744574816385 D -61 108 +.4800431756501028014153877912930868343228 D -63 111 +.5163147928537674801616797147969784934383 D </td <th>91</th> <td>$2533852639105786299496042566427160015760\mathrm{D}$</td> <td>-52</td>	91	$2533852639105786299496042566427160015760\mathrm{D}$	-52
93 +.2866938628370873328478225696991453787363 D -53 94 +.1420399255622060095777366369944971542263 D -54 95 2553231967862104249248136851135036935490 D -54 96 +.2052752728719811254379917108191224680695 D -55 97 +.185564988592820209335364762351882239980 D -55 98 4048859058535557857541666040258708463550 D -56 99 1026049023555542691179948253251940269817 D -56 100 +.4656090906758937935321487321593386502228 D -57 101 +.261810678358005557967409688827910033693 D -58 102 4194925447985196467931988398900893211763 D -58 103 +.3137993081450993278585322947272485979995 D -59 104 +.3085512780699572125385436196799818972938 D -59 105 6513626640955671581128277337241410347505 D -60 106 1738184337213513484682880945182874445653 D -60 107 +.7614321347768019271484400797445747816385 D -62 109 6938669659363905794805852679111175240295 D -62 109 693866965363905794805852679111175240295 D	92	$6095733355735789225297359357056723675725\mathrm{D}$	-53
94 +.1420399255622066095777366369944971542263 D -54 95 2553231967862104249248136851135036935490 D -54 96 +.2052752728719811254379917108191224680695 D -55 97 +.1855649885928202909335364762351882239980 D -55 98 404885905853557557541666040258708463550 D -56 99 102604902355542691179948253251940269817 D -56 100 +.4656090906758937935321487321593386502228 D -57 101 +.2618106783580055579674096888279100333693 D -58 102 4194925447985196467931988239400893211763 D -58 103 +.313799308145099327125385436196799818972938 D -59 104 +.3085512780699572125385436196799818972938 D -60 107 +.7614321347768019271484400797445747816385 D -61 108 +.48004317565102081415387791293086343228 D -62 109 693866965936390579480552679111175240295 D -62 101 +.4800959637198923440372787818933936225088 D -63 111 +.5163147928537674801616797147967849314383 D -63 112 053900407263927127486594238744966788788 D	93	$+.2866938628370873328478225696991453787363 \mathrm{D}$	-53
95 2553231967862104249248136851135036935490 D -54 96 +.2052752728719811254379917108191224680695 D -55 97 +.1855649885928202909335364762351882239980 D -55 98 404885905853557857541666040258708463550 D -56 99 1026040023555542691179948253251940269817 D -56 100 +.4656090906758937935321487321593386502228 D -57 101 +.2618106783580055579674096888279100333693 D -58 102 4194925447985196467931988398900893211763 D -58 103 +.3137993081450993278585322947272485979995 D -59 104 +.3085512780699572125385436196799818972938 D -59 105 651362664095567158112827737241410347505 D -60 106 1738184337213513484682880945182874445053 D -60 107 +.7614321347768019271484400797445747816385 D -61 108 +.4800431756501028014153877912930868343228 D -62 100 480095637198923440372787818933936225088 D -63 111 +.5163147928537674801616797147969784934383 D -63 112 1053900407263927127486594984248869751 D<	94	$+.1420399255622066095777366369944971542263 \mathrm{D}$	-54
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95	$2553231967862104249248136851135036935490\mathrm{D}$	-54
97 +.1855649885928202909335364762351882239980 D -55 98 4048859058535557857541666040258708463550 D -56 99 1026049023555542691179948253251940269817 D -56 100 +.4656090906758937935321487321593386502282 D -57 101 +.2618106783580055579674096888279100333693 D -58 102 4194925447985196467931988398900893211763 D -59 103 +.3137993081450993278585322947272485979995 D -59 104 +.3085512780699572125385436196799818972938 D -59 105 6513626640955671581128277337241410347505 D -60 106 1738184337213513484682880945182874445053 D -60 107 +.7614321347768019271484400797445747816385 D -61 108 +.4800431756501028014153877912930868343228 D -62 109 693866965936390579480552679111175240295 D -62 110 +.4800959637198923440372787818933936225088 D -63 111 +.5163147928537674801616797147969784934333 D -63 112 1053900407263927127486594238744966788788 D -66 113 2960805849733216367141727868433147771610 D -67 114 +.125266379	96	$+.2052752728719811254379917108191224680695\mathrm{D}$	-55
98 4048859058535557857541666040258708463550 D -56 99 1026049023555542691179948253251940269817 D -56 100 +.4656090906758937935321487321593386502228 D -57 101 +.2618106783580055579674096888279100333693 D -58 102 4194925447985196467931988398900893211763 D -59 103 +.3137993081450993278585322947272485579995 D -59 104 +.3085512780699572125385436196799818972938 D -59 105 6513626640955671581128277337241410347505 D -60 106 1738184337213513484682880945182874445053 D -60 107 +.7614321347768019271484400797445747816385 D -61 108 +.4800431756501028014153877912930868343228 D -62 109 6938669659363905794805852679111175240295 D -62 110 +.48009596371989234403727878189333936225088 D -63 111 +.5163147928537674801616797147969784934383 D -63 112 1053900407263927127486594238744966788788 D -63 113 296080584973216367141727868433147771610 D -64 114 +.1252663797101140299525240884260 59	97	$+.1855649885928202909335364762351882239980\mathrm{D}$	-55
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	98	$4048859058535557857541666040258708463550\mathrm{D}$	-56
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	99	$1026049023555542691179948253251940269817\mathrm{D}$	-56
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	100	$+.4656090906758937935321487321593386502228\mathrm{D}$	-57
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	101	$+.2618106783580055579674096888279100333693\mathrm{D}$	-58
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	102	$4194925447985196467931988398900893211763\mathrm{D}$	-58
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	103	$+.3137993081450993278585322947272485979995\mathrm{D}$	-59
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	104	$+.3085512780699572125385436196799818972938\mathrm{D}$	-59
$\begin{array}{llllllllllllllllllllllllllllllllllll$	105	$6513626640955671581128277337241410347505\mathrm{D}$	-60
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	106	$1738184337213513484682880945182874445053\mathrm{D}$	-60
$\begin{array}{llllllllllllllllllllllllllllllllllll$	107	$+.7614321347768019271484400797445747816385\mathrm{D}$	-61
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	108	$+.4800431756501028014153877912930868343228\mathrm{D}$	-62
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	109	6938669659363905794805852679111175240295 D	-62
$\begin{array}{llllllllllllllllllllllllllllllllllll$	110	$+.4800959637198923440372787818933936225088 \mathrm{D}$	-63
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	111	$+.5163147928537674801616797147969784934383 \mathrm{D}$	-63
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	112	1053900407263927127486594238744966788788 D	-63
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	113	2960805849733216367141727868433147771610 D	-64
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	114	$+.1252663797101114029956225240884269395871 \mathrm{D}$	-64
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	115	$+.8768145270053874796853969889954224886975 \mathrm{D}$	-66
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	116	1154407476930827026635804515314579413462 D	-65
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	117	+.7337339028539545189538427583626452894260 D	-67
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	118	+.8687510904885905875427369052570774178010 D	-67
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	119	1713513594471782185945187627368501844292D	-67
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	120	5067414054766499681239583537117931129360 D	-68
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	121	+.2071531091068297502674524178306839077188 D	-68
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	122	+.1590907380480033815024289300581978052885 D	-69 C0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	123	1930430552873941194014898488789484859581 D	-69
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	124	+.1117871031539148072572030209907083072238 D	-70
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	120	+.1400027703004428009849414412140919308937D	-10_{71}
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	120	27970011920207297260000021910002500443 D	-11
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	121	0100011004011040010000202029020100080820D	-12
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	120	\pm .04412000200970000040902000107002701209978 D \pm .000232005108207413366007056346475040000 D	-12 -72
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	129	+.2502552051065274155002570005404750420928D - 3949616983856365763907460614060175607608D	-13 -72
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	121	5242010205050505050705257405014009175007008 D $+ 1603709369145130166610155846496561391009 D$	-73
$ \begin{array}{rrrr} 132 &4583286997743555388464482802089313352543 \mathrm{D} & -74 \\ 133 &4583286997743555388464482802089313352543 \mathrm{D} & -75 \\ 134 &1502124978456079976636320710748918496423 \mathrm{D} & -75 \\ 135 & +.5739536899260228087234244843688326420555 \mathrm{D} & -76 \\ 136 & +.5265981901479430133384989752040987550530 \mathrm{D} & -77 \\ 137 &5468387366821317264334502896411735375493 \mathrm{D} & -77 \\ \end{array} $	131	$\pm 24939792904149139100010133040420301321903 D$ $\pm 2493979094786781618749645337164163438835 D$	-74
134 1502124978456079976636320710748918496423 D 75 135 +.5739536899260228087234244843688326420555 D 76 136 +.5265981901479430133384989752040987550530 D 77 137 5468387366821317264334502896411735375493 D 77	132	- 4583286997743555388464482809080313359543 D	-75
135 +.5739536899260228087234244843688326420555 D -76 136 +.5265981901479430133384989752040987550530 D -77 137 5468387366821317264334502896411735375493 D -77	134	- 1502124078456079976636390710748018406493 D	-75
136 +.5265981901479430133384989752040987550530 D -77 1375468387366821317264334502896411735375493 D -77	135	+ 573953689926022808723424843688326420555 D	_76
1375468387366821317264334502896411735375493 D - 77	136	+ 5265981901479430133384989752040987550530 D	_77
	137	5468387366821317264334502896411735375493 D	_77

k	ν_{2k}	٦
138	+.2544968427970654296803738801405146626640 D -78	
139	$+.4250576353786229821364600671477207150420 \mathrm{D}$ -78	;
140	7531331430477796594934880306389640299405 D $7931331430477796594934880306389640299405 D$ $7931331430477796594934880306389640299405 D$	1
141	2599214402599870920544901729792593801688 D -79	
142	+.9606441673215658440606209000143614741783 D -80	
143	+.9542317847661324555761135670516757941700 D -81	
144	9254538121197519367968498604526972787745 D -81	
145	+.3777516104594791619312567835470362188528 D -82	Ī
146	+.7268760172742881122460615954256201074468 D -82	
147	1240641375874042370692585969355157860785 D -82	
148	4510343549644247739540085304483911459958 D -83	
149	+.1612873557181128259201781063996600825166 D -83	
150	+.1727393214388182552458404396752563409513 D -84	.
151	1571152875940503406658990738032749171659 D84	
152	+.5509591297446967117298227819947921036300 D -86	٦
153	+.1246740319140999188739544053742937423567 D -85	
154	2047923470889466993638915069407232555861 D -86	
155	7846468869491184130522450257174521413065 D87	·
156	+.2715425474116960304337422307560818704113 D -87	
157	+.3124516385459497130880896321259701164888 D -88	
158	2674908261838595674727411012784873610018 D8893610018 D	
159	+.7833123912925385271903779190912371562525 D -90	٦
160	$+.2144185598627015212498432267950652656043 \mathrm{D}-89$	
161	3386131609048147794919280453533377844498 D -90	
162	1368108192308800662133947030506600144800 D -90	
163	+.4582915797890462037956144910022626803593 D -91	
164	+.5648053716701208479725174464897313565410 D -92	
165	4565652295438556565527605093534819187203 D -92	
166	+.1071270464811343605793353936586751568865 D -93	
167	+.3696615224511551365341323949690095410113 D -93	
168	5606072917282340513709428567813721203100 D -94	:
169	2390276456370700099189986991070056702473 D -94	:
170	+.7751656824006752706146278302991240900243 D -95	
171	+.1020454304876849802877431059370507806033 D -95	
172	7810739610258506346435232242562986710008 D -960700000000000000000000000000000000000	
173	+.1374922168802364044386427902154777198225 D -97	
174	+.6387056992106677999515580338235221509968 D -97	
175	9290297056253770567220034094672620887305 D -98	
176	4183792824163358730529306075959804912503 D -98	'
177	+.1313684550289863876495820585731174671652 D -98	
178	+.1842932505696252720720070172980536403433 D -99	
179	1339002701079016529585305163823644161043 D -99	
180	+.1505248908211254854420668831714023376600 D - 101	
181	+.1105700027800985159097402957386304493102 D - 100	
182	1240241820017701849209259075762798958511 D - 101722417020461524222500172401024621760470 D - 102	
183	(3551)(02940155455552001(3491024081)(00478)D - 102	
184	+.2230108100133283700133738074704312741230 D - 102	
185	+.3527200271272454805017359720809358823430 D - 103	
180		·

k	$ u_{2k}$
187	$+.1320414690612228805275108651175831851875\mathrm{D}{-}105$
188	$+.1917842989200436294391399210892379656498\mathrm{D}{-}104$
189	$2555351509718785038097791458267676787608\mathrm{D}{-}105$
190	$1287955874423740681525147462983665247703\mathrm{D}{-}105$
191	$+.3791833550061963691013881712882595207705\mathrm{D}-106$
192	$+.6005245264724698010325810923713341340483\mathrm{D}-107$
193	$3956673583048038358334297674414539222803\mathrm{D}{-}107$
194	$1063957460130126761144091928002177950000\mathrm{D}{-}110$
195	$+.3331810910685255369277026354112505185328\mathrm{D}-\!108$
196	$4238592255459373151590256630053267525180\mathrm{D}{-}109$
197	$2264555749022735559843099533433322055238\mathrm{D}-109$
198	$+.6455782182213236904012328510201153135933\mathrm{D}-110$
199	$+.1083635822780077751838395286124709883918\mathrm{D}{-}110$
200	$6817831342574262547959207692898352278333\mathrm{D}-111$
201	$4321984132542371117616245326491900853600\mathrm{D}{-}113$
202	$+.5796992112024852606595827509937792678918\mathrm{D}-112$
203	$7028209382201923710413528819933395606393\mathrm{D}{-}113$
204	$3986606771356045868240715406251114010580\mathrm{D}{-}113$
205	$+.1100438271305766507788258187178183373168\mathrm{D}{-}113$
206	$+.1955033110362630098363577769722809356603\mathrm{D}-114$
207	$1176448519447103720556636394336019091531\mathrm{D}{-}114$
208	$1467617838580701053915329370528590280575\mathrm{D}{-}116$
209	$+.1010006385825577888747174330254611276479\mathrm{D}{-}115$
210	$1164589050818348140928259000275694414639\mathrm{D}{-}116$
211	$7026109409157516960917601882266670332783\mathrm{D}{-}117$
212	$+.1877735422645415127982809476160771855052\mathrm{D}{-}117$
213	$+.3526600297562085895209548015193598619013\mathrm{D}-118$
214	$2032613562851525698688653944992434502917\mathrm{D}{-}118$
215	$3797309002265426328811502860894177651425\mathrm{D}-\!120$
216	$+.1761952096586554912986151200172965242090\mathrm{D}{-}119$
217	$1927746740238691814927960776272050317450\mathrm{D}-\!120$
218	$1239581850374531231901376966872704785227\mathrm{D}{-}120$
219	$+.3206965142575915687082176314345218686238\mathrm{D}{-}121$
220	$+.6360631437289028149120026350618360878308\mathrm{D}{-}122$

n	R_n	β_n	ρ_n	α_n
1	3.4550243	1.7938894	3.4552688	1.7940291
2	3.4521675	1.7936985	3.4523865	1.7938206
3	3.4500653	1.7936853	3.4502585	1.7937965
4	3.4468921	1.7935683	3.4470537	1.7936626
5	3.4453555	1.7934615	3.4455052	1.7935474
6	3.4433930	1.7934288	3.4435225	1.7935055
7	3.4417592	1.7933893	3.4418732	1.7934584
8	3.4399370	1.7932663	3.4400384	1.7933265
9	3.4388939	1.7931316	3.4389914	1.7931863
10	3.4387261	1.7931670	3.4388203	1.7932213
11	3.4364495	1.7928131	3.4365376	1.7928554
12	3.4360802	1.7928242	3.4361643	1.7928653
13	3.4323405	1.7923941	3.4324074	1.7924192
14	3.4339275	1.7927339	3.4339958	1.7927668
15	3.4337877	1.7927317	3.4338549	1.7927641
16	3.4321687	1.7926442	3.4322256	1.7926706
17	3.4321626	1.7926447	3.4322193	1.7926712
18	3.4313597	1.7924221	3.4314177	1.7924444
19	3.4302957	1.7925072	3.4303425	1.7925271
20	3.4306261	1.7925427	3.4306742	1.7925638
21	3.4305724	1.7925533	3.4306198	1.7925743
22	3.4303199	1.7925261	3.4303662	1.7925462
23	3.4296739	1.7925606	3.4297142	1.7925791
24	3.4289851	1.7925508	3.4290209	1.7925675
25	3.4292065	1.7924698	3.4292464	1.7924865
26	3.4291852	1.7924727	3.4292248	1.7924893
27	3.4290863	1.7923099	3.4291302	1.7923251
28	3.4286169	1.7924212	3.4286540	1.7924360
29	3.4286344	1.7924558	3.4286706	1.7924709
30	3.4285418	1.7924185	3.4285785	1.7924331
31	3.4283194	1.7924123	3.4283546	1.7924263
32	3.4280471	1.7924132	3.4280804	1.7924265
33	3.4280436	1.7924084	3.4280771	1.7924216
34	3.4280437	1.7924104	3.4280771	1.7924237
35	3.4287592	1.7925295	3.4287941	1.7925454
36	3.4274488	1.7923442	3.4274800	1.7923556
37	3.4275936	1.7923759	3.4276250	1.7923879
38	3.4275936	1.7923759	3.4276250	1.7923879
39	3.4272316	1.7923304	3.4272618	1.7923413
40	3.4274442	1.7924210	3.4274733	1.7924329

Таблица 2. Ближайшие к предполагаемым особым точкам функции ν полюсы $p_n = R_n e^{i\beta_n}$ и нули $z_n = \rho_n e^{i\alpha_n}$ диагональных аппроксимаций Паде $[n/n]_{\nu}$ для $n = 1, \ldots, 40$

20	a/ .	al	a/ 1	a/ .	a/ 1	a/ .	a/ .	n + 6
$\frac{n}{1}$	ψ_n	ψ_{n+1}	ψ_{n+2}	ψ_{n+3}	ψ_{n+4}	ψ_{n+5}	ψ_{n+6}	n + 0
1	.0000	.0000	.2257	.9714	.0964	.7127	.4532	1
8	.4058	.7476	.1072	.9660	.1776	.6810	.4645	14
15	.3961	.7482	.1118	.9690	.1739	.6863	.4569	21
22	.4035	.7394	.1214	.9784	.1643	.6962	.4463	28
29	.4139	.7285	.1325	.9895	.1533	.7075	.4347	35
36	.4254	.7167	.1442	.9987	.1415	.7194	.4227	42
43	.4375	.7046	.1562	.9865	.1295	.7316	.4104	49
50	.4497	.6922	.1685	.9741	.1173	.7440	.3979	56
57	.4622	.6797	.1810	.9615	.1050	.7566	.3853	63
64	.4748	.6671	.1935	.9489	.0927	.7692	.3727	70
71	.4874	.6544	.2061	.9362	.0805	.7819	.3600	77
78	.5001	.6416	.2188	.9235	.0684	.7947	.3472	84
85	.5129	.6289	.2315	.9107	.0565	.8074	.3345	91
92	.5257	.6161	.2442	.8979	.0451	.8202	.3217	98
99	.5385	.6033	.2570	.8851	.0347	.8331	.3089	105
106	.5513	.5905	.2698	.8723	.0265	.8459	.2961	112
113	.5641	.5776	.2826	.8594	.0000	.8588	.2833	119
120	.5770	.5648	.2954	.8466	.0262	.8716	.2704	126
127	.5898	.5519	.3083	.8337	.0343	.8845	.2576	133
134	.6027	.5390	.3211	.8208	.0447	.8974	.2448	140
141	.6156	.5261	.3340	.8079	.0561	.9103	.2319	147
148	.6284	.5133	.3468	.7950	.0681	.9231	.2191	154
155	.6413	.5004	.3597	.7821	.0804	.9360	.2063	161
162	.6542	.4875	.3726	.7692	.0928	.9489	.1934	168
169	.6671	.4746	.3855	.7563	.1054	.9618	.1806	175
176	.6800	.4617	.3984	.7434	.1180	.9748	.1678	182
183	.6929	.4488	.4112	.7305	.1307	.9877	.1551	189
190	.7058	.4359	.4241	.7176	.1434	.9994	.1423	196
197	.7188	.4230	.4370	.7047	.1562	.9865	.1296	203
204	.7317	.4101	.4500	.6918	.1690	.9736	.1169	210
211	.7446	.3972	.4629	.6789	.1818	.9607	.1042	217

Таблица 3. Эмпирические значения для величины $\psi_k, k = 1, \dots, 217$, вычисленные по формуле (32) (ср. табл. 6)

n	$\Delta \psi_n$	$\Delta \psi_{n+1}$	$\Delta \psi_{n+2}$	$\Delta \psi_{n+3}$	$\Delta \psi_{n+4}$	$\Delta \psi_{n+5}$	$\Delta \psi_{n+6}$	n+6
15	0097	.0006	.0047	.0030	0037	.0053	0076	21
22	.0074	0089	.0098	.0094	0096	.0099	0106	28
29	.0105	0109	.0112	.0111	0112	.0113	0116	35
36	.0115	0118	.0119	.0092	0119	.0119	0121	42
43	.0120	0122	.0122	0122	0122	.0122	0123	49
50	.0123	0124	.0124	0124	0124	.0124	0125	56
57	.0125	0125	.0125	0125	0126	.0126	0126	63
64	.0126	0126	.0126	0126	0126	.0126	0127	70
71	.0127	0127	.0127	0127	0127	.0127	0127	77
78	.0127	0127	.0127	0127	0127	.0128	0128	84
85	.0128	0128	.0128	0128	0128	.0128	0128	91
92	.0128	0128	.0128	0128	0128	.0128	0128	98
99	.0128	0128	.0128	0128	0128	.0128	0128	105
106	.0128	0128	.0128	0128	0129	.0128	0129	112
113	.0128	0129	.0129	0129	0131	.0129	0129	119
120	.0129	0129	.0129	0129	.0125	.0129	0129	126
127	.0129	0129	.0129	0129	.0129	.0129	0129	133
134	.0129	0129	.0129	0129	.0129	.0129	0129	140
141	.0129	0129	.0129	0129	.0129	.0129	0129	147
148	.0129	0129	.0129	0129	.0129	.0129	0129	154
155	.0129	0129	.0129	0129	.0129	.0129	0129	161
162	.0129	0129	.0129	0129	.0129	.0129	0129	168
169	.0129	0129	.0129	0129	.0129	.0129	0129	175
176	.0129	0129	.0129	0129	.0129	.0129	0129	182
183	.0129	0129	.0129	0129	.0129	.0129	0129	189
190	.0129	0129	.0129	0129	.0129	.0118	0129	196
197	.0129	0129	.0129	0129	.0129	0129	0129	203
204	.0129	0129	.0129	0129	.0129	0129	0129	210
211	.0129	0129	.0129	0129	.0129	0129	0129	217

Таблица 4. Приращение элементов табл. 5 по столбцам, $k=15,\ldots,217$

n	α_n	$\alpha_{n\pm 1}$	$\alpha_{n\perp 2}$	$\alpha_{n\perp 3}$	$\alpha_{n \perp 4}$	$\alpha_{n\perp 5}$	$\alpha_{n\perp 6}$	n+6
1	.4295	1410	.1762	.2322	.1943	.2207	.2328	7
8	.2333	.2391	.2425	.2414	.2419	.2429	.2448	14
15	.2446	.2458	.2465	.2463	.2464	.2467	.2474	21
22	.2473	.2478	.2481	.2480	.2480	.2482	.2485	28
29	.2484	.2487	.2489	.2488	.2489	.2489	.2492	35
36	.2491	.2493	.2493	.2493	.2493	.2494	.2495	42
43	.2495	.2496	.2496	.2496	.2496	.2497	.2498	49
50	.2497	.2498	.2498	.2498	.2498	.2499	.2499	56
57	.2499	.2500	.2500	.2500	.2500	.2500	.2500	63
64	.2500	.2501	.2501	.2501	.2501	.2501	.2501	70
71	.2501	.2501	.2501	.2501	.2501	.2501	.2502	77
78	.2501	.2502	.2502	.2502	.2502	.2502	.2502	84
85	.2502	.2502	.2502	.2502	.2502	.2502	.2502	91
92	.2502	.2502	.2502	.2502	.2502	.2502	.2502	98
99	.2502	.2502	.2502	.2502	.2502	.2502	.2502	105
106	.2502	.2502	.2502	.2502	.2502	.2502	.2502	112
113	.2502	.2502	.2502	.2502	.2500	.2502	.2502	119
120	.2501	.2502	.2501	.2501	.2501	.2501	.2501	126
127	.2501	.2501	.2501	.2501	.2501	.2501	.2501	133
134	.2501	.2501	.2501	.2501	.2501	.2501	.2501	140
141	.2501	.2501	.2500	.2500	.2500	.2500	.2500	147
148	.2500	.2500	.2500	.2500	.2500	.2500	.2500	154
155	.2500	.2500	.2500	.2500	.2499	.2500	.2500	161
162	.2499	.2499	.2499	.2499	.2499	.2499	.2499	168
169	.2499	.2499	.2499	.2499	.2499	.2499	.2499	175

Таблица 5. Правильный выбор знака у величины φ_2 ($\varphi_2 < 0$), приводит к нижеследующим значениям величин α_k , $k = 1, \ldots, 175$ (столбец 7 для α_k соответствует величине $k = 0 \pmod{7}$)

n								n+6
1	.3590	.7821	.0769	.9359	.2051	.6538	.4872	7
8	.3718	.7692	.0897	.9487	.1923	.6667	.4744	14
15	.3846	.7564	.1026	.9615	.1795	.6795	.4615	21
22	.3974	.7436	.1154	.9744	.1667	.6923	.4487	28
29	.4103	.7308	.1282	.9872	.1538	.7051	.4359	35
36	.4231	.7179	.1410	1.0000	.1410	.7179	.4231	42
43	.4359	.7051	.1538	.9872	.1282	.7308	.4103	49
50	.4487	.6923	.1667	.9744	.1154	.7436	.3974	56
57	.4615	.6795	.1795	.9615	.1026	.7564	.3846	63
64	.4744	.6667	.1923	.9487	.0897	.7692	.3718	70
71	.4872	.6538	.2051	.9359	.0769	.7821	.3590	77
78	.5000	.6410	.2179	.9231	.0641	.7949	.3462	84
85	.5128	.6282	.2308	.9103	.0513	.8077	.3333	91
92	.5256	.6154	.2436	.8974	.0385	.8205	.3205	98
99	.5385	.6026	.2564	.8846	.0256	.8333	.3077	105
106	.5513	.5897	.2692	.8718	.0128	.8462	.2949	112
113	.5641	.5769	.2821	.8590	.0000	.8590	.2821	119
120	.5769	.5641	.2949	.8462	.0128	.8718	.2692	126
127	.5897	.5513	.3077	.8333	.0256	.8846	.2564	133
134	.6026	.5385	.3205	.8205	.0385	.8974	.2436	140
141	.6154	.5256	.3333	.8077	.0513	.9103	.2308	147
148	.6282	.5128	.3462	.7949	.0641	.9231	.2179	154
155	.6410	.5000	.3590	.7821	.0769	.9359	.2051	161
162	.6538	.4872	.3718	.7692	.0897	.9487	.1923	168
169	.6667	.4744	.3846	.7564	.1026	.9615	.1795	175
176	.6795	.4615	.3974	.7436	.1154	.9744	.1667	182
183	.6923	.4487	.4103	.7308	.1282	.9872	.1538	189
190	.7051	.4359	.4231	.7179	.1410	1.0000	.1410	196
197	.7179	.4231	.4359	.7051	.1538	.9872	.1282	203
204	.7308	.4103	.4487	.6923	.1667	.9744	.1154	210
211	.7436	.3974	.4615	.6795	.1795	.9615	.1026	217

Таблица 6. Значения $\cos(2k\beta+2\alpha)$, вычисленные для $k=1,\ldots,217$ при $\beta=\varphi_1+\varphi_2=89\pi/156$ и $\alpha=\pi/4$

1	35897	78205	.14879	.03553	10870	.05882	03398	7
8	.03399	02164	.01748	.01732	01475	.01436	00990	14
15	.01145	00818	.00927	.00746	00562	.00683	00468	21
22	.00605	00420	.00603	.00403	00232	.00388	00242	28
29	.00367	00231	.00426	.00233	00058	.00235	00118	35
36	.00236	00124	.00315	00133	.00051	.00143	00041	42
43	.00156	00057	.00240	00070	.00129	.00085	.00010	49
50	.00103	00012	.00187	00029	.00191	.00045	.00045	56
57	.00067	.00018	.00149	.00000	.00246	.00019	.00069	63
64	.00042	.00039	.00120	.00019	.00299	.00000	.00087	70
71	.00025	.00053	.00099	.00032	.00357	00012	.00099	77
78	.00013	.00062	.00084	.00040	.00428	00020	.00108	84
85	.00006	.00068	.00072	.00045	.00523	00025	.00113	91
92	.00001	.00071	.00064	.00048	.00665	00027	.00117	98
99	00001	.00072	.00059	.00048	.00906	00027	.00119	105
106	00001	.00071	.00056	.00047	.01366	00025	.00120	112
113	.00001	.00069	.00055	.00044	.00000	00022	.00120	119
120	.00003	.00066	.00055	.00040	.01337	00018	.00120	126
127	.00007	.00061	.00057	.00035	.00864	00013	.00119	133
134	.00012	.00056	.00059	.00029	.00622	00007	.00117	140
141	.00018	.00051	.00063	.00023	.00485	00001	.00116	147
148	.00024	.00045	.00068	.00016	.00400	.00006	.00115	154
155	.00031	.00038	.00073	.00008	.00344	.00014	.00114	161
162	.00038	.00031	.00079	.00000	.00306	.00022	.00114	168
169	.00046	.00024	.00085	00008	.00280	.00030	.00115	175
176	.00054	.00016	.00092	00016	.00261	.00039	.00117	182
183	.00063	.00008	.00099	00025	.00248	.00048	.00121	189
190	.00072	.00000	.00107	00034	.00240	00058	.00126	196
197	.00081	00008	.00115	00044	.00235	00067	.00135	203
204	.00090	00016	.00124	00053	.00232	00077	.00148	210
211	.00100	00024	.00132	00063	.00231	00087	.00166	217

Таблица 7. Разности между соответствующими значениями ψ_k и $\cos(2k\beta+2\alpha)$ из табл. 3 и б

Таблица 8. Координаты лежащего во втором квадранте полюса $p(n) = u_n + iv_n = R_n e^{i\beta_n}$ аппроксимаций Паде $\{[n/2]_{\nu}\}$ – строки 2 таблицы Паде функции частоты ν , для $n = 171, \ldots, 217$ (столбец 1 – *x*-координата u_n этого полюса; столбец 2 – его *y*-координата v_n ; столбец 3 – величина радиуса R_n ; столбец 4 – аргумент β_n , $\pi/2 < \beta_n < \pi$; столбец 5 – $R_n - R$; столбец 6 – разность $\beta_n - \beta$ при R = 3.42, $\beta = 1.79232$)

n	u_n	v_n	R_n	β_n	Δy_n	$R_n - R$	$\beta_n - \beta$
171	75802	3.36607	3.45037	1.79230	.0000216	.0303661	.0000232
172	75800	3.36573	3.45002	1.79231	.0003457	.0300243	.0000071
173	75802	3.36572	3.45002	1.79232	.0000053	.0300231	.0000015
174	75786	3.36543	3.44971	1.79229	.0002892	.0297061	.0000281
175	75798	3.36532	3.44963	1.79233	.0001074	.0296280	0000131
176	75778	3.36518	3.44944	1.79228	.0001475	.0294392	.0000354
177	75788	3.36493	3.44922	1.79233	.0002465	.0292218	0000101
178	75775	3.36491	3.44917	1.79229	.0000235	.0291708	.0000246
179	75774	3.36459	3.44886	1.79231	.0003182	.0288576	.0000079
180	75775	3.36458	3.44886	1.79231	.0000029	.0288571	.0000046
181	75761	3.36431	3.44856	1.79229	.0002715	.0285610	.0000276
182	75772	3.36422	3.44849	1.79233	.0000934	.0284940	0000095
183	75753	3.36408	3.44831	1.79228	.0001426	.0283133	.0000350
184	75763	3.36385	3.44812	1.79233	.0002226	.0281182	0000075
185	75751	3.36383	3.44807	1.79229	.0000253	.0280665	.0000257
186	75750	3.36354	3.44778	1.79231	.0002936	.0277788	.0000087
187	75750	3.36353	3.44778	1.79231	.0000011	.0277787	.0000074
188	75738	3.36328	3.44750	1.79229	.0002555	.0275015	.0000271
189	75748	3.36320	3.44744	1.79233	.0000812	.0274442	0000062
190	75730	3.36306	3.44727	1.79228	.0001380	.0272709	.0000347
191	75740	3.36286	3.44710	1.79232	.0002014	.0270955	0000052
192	75728	3.36283	3.44704	1.79229	.0000269	.0270431	.0000267
193	75728	3.36256	3.44678	1.79231	.0002714	.0267784	.0000094
194	75728	3.36256	3.44678	1.79231	0000003	.0267784	.0000098
195	75716	3.36232	3.44652	1.79229	.0002408	.0265184	.0000267
196	75725	3.36225	3.44647	1.79232	.0000705	.0264694	0000033
197	75709	3.36212	3.44630	1.79228	.0001338	.0263030	.0000344
198	75718	3.36193	3.44615	1.79232	.0001825	.0261450	0000031
199	75707	3.36190	3.44609	1.79229	.0000284	.0260921	.0000276
200	75707	3.36165	3.44585	1.79231	.0002514	.0258480	.0000101
201	75707	3.36165	3.44585	1.79231	0000013	.0258479	.0000119
202	75696	3.36143	3.44560	1.79229	.0002274	.0256036	.0000263
203	75704	3.36137	3.44556	1.79232	.0000612	.0255618	0000007
204	75689	3.36124	3.44540	1.79228	.0001297	.0254019	.0000341
205	75698	3.36107	3.44526	1.79232	.0001656	.0252595	0000011
206	75687	3.36104	3.44521	1.79229	.0000298	.0252061	.0000283
207	75688	3.36081	3.44498	1.79231	.0002332	.0249807	.0000107
208	75687	3.36081	3.44498	1.79231	0000019	.0249803	.0000139
209	75678	3.36059	3.44475	1.79229	.0002151	.0247504	.0000260
210	75685	3.36054	3.44471	1.79232	.0000531	.0247148	.0000017
211	75671	3.36042	3.44456	1.79229	.0001259	.0245609	.0000338
212	75679	3.36026	3.44443	1.79232	.0001504	.0244324	.0000007
213	75669	3.36023	3.44438	1.79229	.0000311	.0243786	.0000289
214	75670	3.36002	3.44417	1.79231	.0002166	.0241702	.0000113

n	u_n	v_n	R_n	β_n	Δy_n	$R_n - R$	$\beta_n - \beta$
215	75668	3.36002	3.44417	1.79230	0000023	.0241693	.0000156
216	75660	3.35982	3.44395	1.79229	.0002037	.0239527	.0000257
217	75667	3.35977	3.44392	1.79232	.0000460	.0239225	.0000038

Таблица 9. Приращение x-координаты полюса $\Delta u_n = u_n - u_{n+2}$

n	Δu_n	Δu_{n+1}	Δu_{n+2}	Δu_{n+3}	Δu_{n+4}	Δu_{n+5}	Δu_{n+6}	n+6
8	.035872	.131113	.017434	.059615	.024858	.021639	.029304	14
15	.005113	.025795	.002520	.017023	.006298	.007822	.010161	21
22	.002021	.010806	.000776	.008144	.002640	.004149	.005019	28
29	.001136	.005901	.000327	.004798	.001378	.002611	.002939	35
36	.000754	.003700	.000165	.003173	.000813	.001815	.001904	42
43	.000551	.002526	.000095	.002259	.000519	.001346	.001317	49
50	.000429	.001828	.000060	.001693	.000349	.001045	.000955	56
57	.000349	.001379	.000042	.001317	.000244	.000840	.000717	63
64	.000294	.001073	.000032	.001055	.000175	.000693	.000553	70
71	.000253	.000856	.000026	.000864	.000128	.000583	.000435	77
78	.000222	.000697	.000023	.000721	.000095	.000500	.000348	84
85	.000198	.000576	.000021	.000611	.000071	.000434	.000282	91
92	.000178	.000483	.000020	.000524	.000054	.000381	.000232	98
99	.000162	.000409	.000020	.000454	.000041	.000338	.000192	105
106	.000149	.000350	.000020	.000397	.000031	.000302	.000160	112
113	.000138	.000302	.000020	.000350	.000024	.000273	.000134	119
120	.000128	.000262	.000020	.000310	.000018	.000247	.000113	126
127	.000120	.000229	.000020	.000277	.000014	.000225	.000096	133
134	.000113	.000201	.000021	.000249	.000010	.000206	.000082	140
141	.000107	.000177	.000021	.000224	.000008	.000190	.000070	147
148	.000101	.000157	.000021	.000203	.000006	.000175	.000060	154
155	.000096	.000139	.000022	.000184	.000004	.000162	.000051	161
162	.000091	.000124	.000022	.000168	.000003	.000151	.000044	168
169	.000087	.000111	.000022	.000153	.000002	.000141	.000038	175
176	.000083	.000099	.000023	.000141	.000002	.000131	.000032	182
183	.000080	.000089	.000023	.000129	.000001	.000123	.000028	189
190	.000076	.000080	.000023	.000119	.000001	.000115	.000024	196
197	.000073	.000072	.000023	.000109	.000001	.000108	.000020	203
204	.000070	.000065	.000024	.000101	.000001	.000102	.000017	210
211	.000068	.000059	.000024	.000093	.000001	.000096	.000015	217

n	$\sqrt{\Delta_n}$	$\sqrt{\Delta_{n+1}}$	$\sqrt{\Delta_{n+2}}$	$\sqrt{\Delta_{n+3}}$	$\sqrt{\Delta_{n+4}}$	$\sqrt{\Delta_{n+5}}$	$\sqrt{\Delta_{n+6}}$	n+6
8	3.2520	3.3476	3.3047	3.3644	3.3497	3.3652	3.3795	14
15	3.3684	3.3934	3.3780	3.3962	3.3905	3.3948	3.4009	21
22	3.3948	3.4062	3.3982	3.4069	3.4038	3.4056	3.4089	28
29	3.4051	3.4116	3.4067	3.4117	3.4098	3.4107	3.4128	35
36	3.4102	3.4144	3.4111	3.4144	3.4130	3.4135	3.4150	42
43	3.4131	3.4160	3.4136	3.4159	3.4149	3.4153	3.4163	49
50	3.4149	3.4170	3.4152	3.4169	3.4162	3.4164	3.4172	56
57	3.4161	3.4177	3.4163	3.4176	3.4170	3.4172	3.4178	63
64	3.4169	3.4182	3.4170	3.4181	3.4176	3.4177	3.4182	70
71	3.4175	3.4186	3.4176	3.4185	3.4180	3.4182	3.4186	77
78	3.4179	3.4188	3.4180	3.4188	3.4184	3.4185	3.4188	84
85	3.4183	3.4191	3.4183	3.4190	3.4186	3.4187	3.4190	91
92	3.4185	3.4192	3.4186	3.4192	3.4189	3.4189	3.4192	98
99	3.4188	3.4194	3.4188	3.4193	3.4190	3.4191	3.4193	105
106	3.4189	3.4195	3.4190	3.4194	3.4192	3.4192	3.4194	112
113	3.4191	3.4195	3.4191	3.4195	3.4193	3.4193	3.4195	119
120	3.4192	3.4196	3.4192	3.4196	3.4194	3.4194	3.4196	126
127	3.4193	3.4197	3.4193	3.4197	3.4195	3.4195	3.4196	133
134	3.4194	3.4197	3.4194	3.4197	3.4195	3.4196	3.4197	140
141	3.4195	3.4198	3.4195	3.4198	3.4196	3.4196	3.4197	147
148	3.4195	3.4198	3.4195	3.4198	3.4196	3.4197	3.4198	154
155	3.4196	3.4199	3.4196	3.4198	3.4197	3.4197	3.4198	161
162	3.4196	3.4199	3.4196	3.4199	3.4197	3.4198	3.4198	168
169	3.4197	3.4199	3.4197	3.4199	3.4197	3.4198	3.4199	175
176	3.4197	3.4199	3.4197	3.4199	3.4198	3.4198	3.4199	182
183	3.4198	3.4200	3.4197	3.4199	3.4198	3.4199	3.4199	189
190	3.4198	3.4200	3.4198	3.4200	3.4198	3.4199	3.4199	196
197	3.4198	3.4200	3.4198	3.4200	3.4198	3.4199	3.4199	203
204	3.4198	3.4200	3.4198	3.4200	3.4199	3.4199	3.4200	210

Таблица 10. Приближенные значения для величины радиуса *R*, вычисленные по уточняющей формуле (43):

Таблица 11. Величины r_n , v_n и w_n , вычисленные соответственно по формулам (45), (46) и (47) (сравнение численных значений, найденных для s_n по "уточняющей" формуле (46), в которой участвует величина $\cos(2(n+1)\beta + \alpha)$ при $\beta = \varphi_1 + \varphi_2$, $\alpha = \pi/4$, и для w_n по формуле (47) показывает, что уточнение найденной по формуле (45) величины $r_n \approx 1$ с помощью формулы (46) для s_n всегда приводит к более точному результату, чем использование более грубой формулы (47) для w_n)

n	r_n	s_n	w_n
171	1.00002911	1.00001026	.99996150
172	1.00019817	1.00006796	1.00013134
173	1.00000067	1.00000018	.99993461
174	1.00018382	1.00006332	1.00011851
175	1.00004531	1.00001525	.99998074
176	1.00010946	1.00003793	1.00004562
177	1.00012602	1.00004291	1.00006290
178	1.00002959	1.00001041	.99996717
179	1.00018165	1.00006220	1.00011992
180	1.0000026	1.00000006	.99993921
181	1.00017176	1.00005909	1.00011138
182	1.00003883	1.00001303	.99997911
183	1.00010482	1.00003627	1.00004575
184	1.00011318	1.00003848	1.00005474
185	1.00003001	1.00001054	.99997220
186	1.00016688	1.00005707	1.00010968
187	1.00000005	1.00000000	.99994346
188	1.00016082	1.00005526	1.00010483
189	1.00003325	1.00001113	.99997784
190	1.00010054	1.00003475	1.00004571
191	1.00010179	1.00003456	1.00004754
192	1.00003039	1.00001066	.99997670
193	1.00015361	1.00005246	1.00010047
194	1.00000000	1.00000000	.99994740
195	1.00015088	1.00005178	1.00009882
196	1.00002843	1.00000949	.99997690
197	1.00009657	1.00003335	1.00004556
198	1.00009167	1.00003106	1.00004117
199	1.00003072	1.00001075	.99998072
200	1.00014165	1.00004832	1.00009215
201	1.00000008	1.00000004	.99995106
202	1.00014179	1.00004861	1.00009326
203	1.00002426	1.00000807	.99997620
204	1.00009287	1.00003204	1.00004528
205	1.00008265	1.00002796	1.00003552
206	1.00003100	1.00001084	.99998432
207	1.00013083	1.00004457	1.00008460
208	1.0000026	1.00000011	.99995448
209	1.00013346	1.00004571	1.00008811
210	1.00002065	1.00000685	.99997573
211	1.00008941	1.00003082	1.00004491
212	1.00007459	1.00002519	1.00003051
213	1.00003124	1.00001091	.99998757

n	r_n	s_n	w_n
214	1.00012101	1.00004117	1.00007774
215	1.00000053	1.00000021	.99995766
216	1.00012580	1.00004304	1.00008333
217	1.00001752	1.00000579	.99997544

§6. Рисунки

Рис. 1. Предельный цикл для свободного уравнения Ван дер Поля

$$\frac{d^2U}{dt^2} + \varepsilon (U^2 - 1)\frac{dU}{dt} + U = 0, \qquad U = U(t;\varepsilon),$$

в фазовой плоскости (U, \dot{U}) при $\varepsilon = 0$, построенный с помощью: a) частичных сумм S_{80} ряда (18); b) диагональной аппроксимации Паде [40/40] ряда (18)

Рис. 2. Предельный цикл для свободного уравнения Ван дер Поля в фазовой плоскости (U, \dot{U}) при $\varepsilon = 1.64$, построенный с помощью: а) частичных сумм S_{80} ряда (18) (отчетливо видно возникновение "хаотичности" на двух участках траектории); b) диагональной аппроксимации Паде [40/40] ряда (18)

Рис. 3. Предельный цикл для свободного уравнения Ван дер Поля в фазовой плоскости (U, \dot{U}) при $\varepsilon = 1.66$, построенный с помощью: а) частичных сумм S_{80} ряда (18) (траектория становится "хаотической" на всем участке); b) диагональной аппроксимации Паде [40/40] ряда (18)

Рис. 4. Предельный цикл для свободного уравнения Ван дер Поля в фазовой плоскости (U, \dot{U}) при а) $\varepsilon = 2.5$, b) $\varepsilon = 3.4$ построенный с помощью диагональной аппроксимации Паде [40/40] ряда (18)

Рис. 5. Полюсы ("темные" кружки) и нули ("белые" кружки) диагональных аппроксимаций Паде $\left[40/40\right]_f$ для функции

$$f(z) = \sqrt{(z - e_1)(z - e_2)} - z \in H(\infty)$$

в случае $e_{1,2} = Re^{\pm i\varphi}$, где R = 1.1, $\varphi = 2\pi/5$: а) расположение полюсов и нулей соответствует отрезку, соединяющему точки $z = e_1$ и $z = e_2$ и являющемуся компактом минимальной емкости; b) расположение полюсов и нулей соответствует окружности, проходящей через обе точки ветвления и начало координат

Рис. 6. Полюсы ("темные" кружки) и нули ("белые" кружки) диагональных аппроксимаций Паде [38/38]_f для эллиптической функции

$$f(\zeta) = \sqrt{(\zeta - e_1) \cdots (\zeta - e_4)} - \zeta^2 + \frac{\zeta(e_1 + \dots + e_4)}{2}$$

а) в случае $e_{1,2} = Re^{\pm i\varphi}$, $e_{3,4} = re^{\pm i\psi}$, где R = 1.1, r = 1, $\varphi \approx 0.35\pi$, $\psi \approx 0.9\pi$ (расположение полюсов и нулей соответствует дугам S_1 и S_2 , образующим компакт минимальной емкости; при этом полюсы и нули фактически перемежаются); b) в плоскости переменного $z = 1/\zeta$

Рис. 7. Полюсы ("темные" кружки) и нули ("белые" кружки) диагональных аппроксимаций Паде $[38/38]_f$ для эллиптической функции

$$f(\zeta) = \sqrt{(\zeta - e_1) \cdots (\zeta - e_4)} - \zeta^2 + \frac{\zeta(e_1 + \cdots + e_4)}{2}$$

а) в случае $e_{1,2}=Re^{\pm i\varphi},\,e_{3,4}=re^{\pm i\psi},$ где $R=1.1,\,r=1,\,\varphi=\pi/5,\,\psi=4\pi/5$ (расположение полюсов и нулей соответствует дугам S_1 и S_2 , образующим компакт минимальной емкости); b) в плоскости переменного $z=1/\zeta$

b)

Рис. 8. Полюсы ("темные" кружки) и нули ("белые" кружки) диагональных аппроксимаций Паде $\left[40/40\right]_f$ для гиперэллиптической функции

$$f(\zeta) = \sqrt{(\zeta - e_1) \cdots (\zeta - e_6)} - \zeta^3 - \alpha \zeta^2 - \beta \zeta$$

а) в случае $e_{1,2} = re^{\pm i\varphi}$, $e_{3,4} = Re^{\pm i\psi}$, $e_{5,6} = \rho e^{\pm i\theta}$, где r = 0.9, R = 1.1, $\rho = 1.0$ (расположение полюсов и нулей соответствует трем дугам S_1 , S_2 и S_3 , образующим компакт минимальной емкости); b) в плоскости переменного $z = 1/\zeta$

Рис. 9. Полюсы ("темные" кружки) и нули ("белые" кружки): а) диагональных аппроксимаций Паде $[34/34]_{\nu}$ для функции частоты ν в плоскости переменного $z = \varepsilon^2$; b) диагональных аппроксимаций Паде $[32/32]_{\nu}, \ldots, [36/36]_{\nu}$ для функции частоты ν в плоскости переменного $z = \varepsilon^2$ (на вещественной прямой располагаются "ложные" нули и полюсы аппроксимаций Паде)

Рис. 10. Полюсы ("темные" кружки) и нули ("белые" кружки): а) диагональных аппроксимаций Паде $[34/34]_f$ для функции $f = \nu'/\nu$ в плоскости переменного $z = \varepsilon^2$; b) диагональных аппроксимаций Паде $[32/32]_f, \ldots, [36/36]_f$ для функции $f = \nu'/\nu$ в плоскости переменного $z = \varepsilon^2$

Список литературы

- Е.Ф. Мищенко, Н.Х. Розов, Дифференциальные уравнения с малым параметром и релаксационные колебания, Наука, М., 1975.
- [2] Е.Ф. Мищенко, Ю.С. Колесов, А.Ю. Колесов, Н.Х. Розов, Периодические движения и бифуркационные процессы в сингулярно возмущенных системах, Физматлит, М., 1995.
- [3] C. M. Andersen, J. F. Geer, "Power series expansions for the frequency and period of the limit cycle of the van der Pol equation", SIAM J. Appl. Math., 42:3 (1982), 678–693.
- [4] M. B. Dadfar, J. F. Geer, C. M. Andersen, "Perturbation analysis of the limit cycle of the free van der Pol equation", SIAM J. Appl. Math., 44:5 (1984), 881–895.
- [5] Дж. Бейкер, П. Грейвс-Моррис, Аппроксимации Паде, Мир, М., 1986.
- [6] I. V. Andrianov, "Application of Padé-approximants in perturbation methods", Adv. in Mech., 14:2 (1991), 3–25.
- [7] А.А. Гончар, "Полюсы строк таблицы Паде и мероморфное продолжение функций", Матем. сб., 115:4 (1981), 590–613.
- [8] С.П. Суетин, "Об одной обратной задаче для *m*-й строки таблицы Паде", *Матем. сб.*, 124:2 (1984), 238–250.
- С.П. Суетин, "Аппроксимации Паде и эффективное аналитическое продолжение степенного ряда", УМН, 57:1 (2002), 45–142.
- [10] R. de Montessus, "Sur les fractions continues algébriques", Bull. Soc. Math. France, **30** (1902), 28–36.
- [11] А. А. Гончар, "О сходимости обобщенных аппроксимаций Паде мероморфных функций", Матем. сб., 98:4 (1975), 564–577.
- [12] J. Hadamard, "Essai sur l'étude des fonctions données par leur développement de Taylor", J. Math. Pures Appl., 8 (1892), 101–186; Thèse, Gauthier-Villars et Fils., Paris, 1892.
- [13] Г. М. Голузин, Геометрическая теория функций комплексного переменного, Наука, М., 1966.
- [14] С.П. Суетин, "О полюсах *т*-й строки таблицы Паде", *Матем. сб.*, **120**:4 (1983), 500–504.
- [15] E. Fabry, "Sur les points singuliers d'une fonction donnée par son développement en série et l'impossibilité du prolongement analytique dans des cas très génèraux", Ann. Sci. École Norm. Sup. (3), 13:3 (1896), 367–399.
- [16] Л. Бибербах, Аналитическое продолжение, Наука, М., 1967.
- [17] П. Л. Чебышёв, "О непрерывных дробях", Ученые зап. Имп. акад. наук, III (1855), 636–664; франц. пер.: Р. Tchébycheff, "Sur les fractions continues", J. Math. Pures Appl. Sér. 2, 3 (1858), 289–323; Полное собрание сочинений, т. 2, Изд-во АН СССР, М., 1948, 103–126.
- [18] A. Markoff, "Deux démonstrations de la convergence de certaines fractions continues", Acta Math., 19:1 (1895), 93–104; рус. пер.: А. А. Марков, "Два доказательства сходимости некоторых непрерывных дробей", Избранные труды по теории непрерывных дробей и теории функций, наименее уклоняющихся от нуля, Гостехиздат, М., 1948, 106–119.
- [19] Г. Сегё, Ортогональные многочлены, Физматгиз, М., 1962.
- [20] А. А. Гончар, "О сходимости аппроксимаций Паде для некоторых классов мероморфных функций", Матем. сб., 97:4 (1975), 607–629.
- [21] Е.А. Рахманов, "О сходимости диагональных аппроксимаций Паде", Матем. сб., 104:2 (1977), 271–291.
- [22] S. Dumas, Sur le développement des fonctions elliptiques en fractions continues, Thèse, Zürich, 1908.
- [23] В.И. Буслаев, "О гипотезе Бейкера–Гаммеля–Уиллса в теории аппроксимаций Паде", Матем. сб., 193:6 (2002), 25–38.
- [24] С. П. Суетин, "Об асимптотических свойствах полюсов диагональных аппроксимаций Паде для некоторых обобщений марковских функций", Матем. сб., 193:12 (2002), 105–133.
- [25] С. П. Суетин, "Об интерполяционных свойствах диагональных аппроксимаций Паде эллиптических функций", УМН, 59:4 (2004), 201–202.
- [26] J. Nuttall, "Asymptotics of diagonal Hermite–Padé polynomials", J. Approx. Theory, 42:4 (1984), 299–386.

- [27] H. Stahl, "Orthogonal polynomials with complex valued weight function. I", Constr. Approx., 2:1 (1986), 225–240; "Orthogonal polynomials with complex valued weight function. II", Constr. Approx., 2:1 (1986), 241–251.
- [28] А. А. Гончар, "О равномерной сходимости диагональных аппроксимаций Паде", Матем. сб., 118:4 (1982), 535–556.
- [29] А. А. Гончар, "О сходимости диагональных аппроксимаций Паде в сферической метрике", Математические структуры. Вычислительная математика. Математическое моделирование, т. 2, Труды, посвященные семидесятилетию академика Л. Илиева, София, 1984, 29–35.
- [30] С. П. Суетин, "О сходимости чебышёвских непрерывных дробей для эллиптических функций", Матем. сб., 194:12 (2003), 63–92.
- [31] А.А. Гончар, "Аналитическая функция", Математическая энциклопедия, Изд-во "Советская энциклопедия", М., 1977, 261–268.
- [32] Е. М. Чирка, "Аналитическое продолжение", Математическая энциклопедия, Изд-во "Советская энциклопедия", М., 1977, 283–285.
- [33] J. Nuttall, "Sets of minimal capacity, Padé approximations and the bubble problem", *Bifurcation Phenomena in Mathematical Physics and Related Topics*, NATO Adv. Stud. Inst. Ser. Ser. C: Math. Phys. Sci., 54, D. Reidel Publ., Dordrecht, 1980, 185–201.
- [34] I. V. Andrianov, J. Awrejcewicz, "New trends in asymptotic approaches: summation and interpolation methods", Appl. Mech. Rev., 54:1 (2001), 69–92.
- [35] З.И. Крупка, В.Г. Новиков, В.Б. Уваров, Применение метода суммирования степенных рядов с помощью аппроксимаций Паде для расчета зонной структуры спектра электронов в веществе, Препринт № 44, Ин-т прикл. матем. им. М.В. Келдыша РАН, М., 1985.
- [36] J. M. McNamee, "A 2002 update of the supplementary bibliography on roots of polynomials", J. Comput. Appl. Math., 142:2 (2002), 433–434.
- [37] А. А. Дородницын, "Асимптотическое решение уравнения Ван дер Поля", Прикл. матем. мех., 11:3 (1947), 313–328.

Научное издание

Современные проблемы математики

Выпуск 14

Сергей Павлович Суетин

Численный анализ некоторых характеристик предельного цикла свободного уравнения Ван дер Поля

Компьютерная верстка: Ю.А. Пулырев

Сдано в набор 24.05.2010. Подписано в печать 24.08.2010. Формат 60×90/16. Усл. печ. л. 17.75. Тираж 200 экз.

Отпечатано в Математическом институте им. В. А. Стеклова РАН Москва, 119991, ул. Губкина, 8. http://www.mi.ras.ru/spm/ e-mail: spm@mi.ras.ru