Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  


Course by A. Soldatenkov "Introduction to Kähler geometry"
February 8–April 26, 2022, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online

We kindly ask all participants, including remote ones and those
watching recorded videos, to register at https://forms.gle/nmBrx2jeJD2V21LX7.


One of the central approaches to the study of complex algebraic varieties is via Hodge theory. It provides, in particular, a connection between algebro-geometric properties of the varieties and their topology. It turns out that Hodge theory can be applied to a wider and more natural class of complex manifolds, namely to Kähler manifolds. These are complex manifolds that carry a special Riemannian metric called Kähler metric. Apart from complex projective manifolds this class contains, for example, all compact complex tori, and a general complex torus is not an algebraic variety. In the course we will give an introduction to the theory of Kähler manifolds.

Prerequisites for the course include: basic theory of differentiable manifolds (vector bundles, connections, differential forms, etc.), sheaf theory (resolutions, cohomology), basic algebraic topology and complex analysis. We will also have to assume without proof some facts about elliptic differential operators that can be found in the literature. The course will be aimed at master students and post-graduates, but motivated bachelor students will also be welcomed. Subjects marked with (*) in the list below are more difficult and will be discussed if time permits.

Tentative syllabus:

  1. Hermitian bundles, connections, curvature, Chern classes.
  2. Kähler metrics, differential operators on Kähler manifolds.
  3. Hodge decomposition, Hodge structures on the cohomology of Kähler manifolds.
  4. Lefschetz decomposition and Lefschetz theorems.
  5. Positive bundles, Kodaira embedding theorem.
  6. (*) Deformations of complex structures and variations of Hodge structures.
  7. (*) Calabi's conjecture, Calabi-Yau manifolds, hyperkähler manifolds.

Literature:

  1. Voisin C. Hodge theory and complex algebraic geometry. Vol I, II. Cambridge University Press, 2002
  2. Wells, R. O. Differential analysis on complex manifolds. Springer-Verlag, 1980
  3. Huybrechts D. Complex geometry. And introduction. Springer, 2005
  4. Moroianu A. Lectures on Kähler geometry. Cambridge University Press, 2007
  5. Demailly J.-P. Complex analytic and differential geometry, online book https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
  6. Besse A. Einstein manifolds, Springer-Verlag, 1987

Please, address Andrey Soldatenkov, aosoldatenkov@gmail.com, for Zoom data.

Financial support. The course is supported by the Ministry of Science and Higher Education of the Russian Federation (the grant to the Steklov International Mathematical Center, Agreement no. 075-15-2022-265).

Lecturer
Soldatenkov Andrey

Institutions
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Steklov International Mathematical Center


Course by A. Soldatenkov "Introduction to Kähler geometry", February 8–April 26, 2022

April 26, 2022 (Tue)
1. Lecture 11. Introduction to Kähler geometry
A. Soldatenkov
April 26, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

April 19, 2022 (Tue)
2. Lecture 10. Introduction to Kähler geometry
A. Soldatenkov
April 19, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

April 12, 2022 (Tue)
3. Lecture 9. Introduction to Kähler geometry
A. Soldatenkov
April 12, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

April 5, 2022 (Tue)
4. Lecture 8. Introduction to Kähler geometry
A. Soldatenkov
April 5, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

March 29, 2022 (Tue)
5. Lecture 7. Introduction to Kähler geometry
A. Soldatenkov
March 29, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

March 22, 2022 (Tue)
6. Lecture 6. Introduction to Kähler geometry
A. Soldatenkov
March 22, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

March 15, 2022 (Tue)
7. Lecture 5. Introduction to Kähler geometry
A. Soldatenkov
March 15, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

March 1, 2022 (Tue)
8. Lecture 4. Introduction to Kähler geometry
A. Soldatenkov
March 1, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

February 22, 2022 (Tue)
9. Lecture 3. Introduction to Kähler geometry
A. Soldatenkov
February 22, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

February 15, 2022 (Tue)
10. Lecture 2. Introduction to Kähler geometry
A. Soldatenkov
February 15, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  

February 8, 2022 (Tue)
11. Lecture 1. Introduction to Kähler geometry
A. Soldatenkov
February 8, 2022 18:00, Steklov Mathematical Institute, Room 530 (8 Gubkina) + online
A. Soldatenkov
  
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024