-
Agouzal A., Lipnikov K., Vassilevski Yu.V., “On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes”, Math Comput Simulation, 81:10 (2011), 1949–1961
-
Davies D.R., Wilson C.R., Kramer S.C., “Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics”, Geochemistry Geophysics Geosystems, 12 (2011), Q06001
-
A. Agouzal, K. N. Lipnikov, Yu. V. Vassilevski, “Hessian-free metric-based mesh adaptation via geometry of interpolation error”, Ж. вычисл. матем. и матем. физ., 50:1 (2010), 131–145
; Comput. Math. Math. Phys., 50:1 (2010), 124–138
-
Agouzal A., Lipnikov K., Vassilevski Yu., “Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes”, Mathematical Modelling of Natural Phenomena, 5, Suppl. S:7 (2010), 91–96
-
Agouzal A., Vassilevski Yu.V., “Minimization of gradient errors of piecewise linear interpolation on simplicial meshes”, Comput Methods Appl Mech Engrg, 199:33–36 (2010), 2195–2203
-
Agouzal A., Debit N., “Quasi-Optimal Triangulations for Gradient Nonconforming Interpolates of Piecewise Regular Functions”, Mathematical Modelling of Natural Phenomena, 5, Suppl. S:7 (2010), 78–83
-
Huang W., Kamenski L., Lang J., “A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates”, J Comput Phys, 229:6 (2010), 2179–2198
-
Agouzal A., Lipnikov K., Vassilevski Yu., “Adaptive Solution of PDEs on Anisotropic Triangular Meshes”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 2010, 1558–1561
-
Agouzal A., Debit N., “Quasi-Optimal Meshes for Gradient Nonconforming Approximations”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 2010, 1562–1565
-
В. Н. Чугунов, “Алгоритм построения конформной квазииерархической треугольной сетки, слабо $\delta$-аппроксимирующей заданные ломаные”, Ж. вычисл. матем. и матем. физ., 49:5 (2009), 874–878
; V. N. Chugunov, “Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines”, Comput. Math. Math. Phys., 495:5 (2009), 842–845
-
Piggott M.D., Farrell P.E., Wilson C.R., Gorman G.J., Pain C.C., “Anisotropic mesh adaptivity for multi-scale ocean modelling”, Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 367:1907 (2009), 4591–4611
-
Farrell P.E., Piggott M.D., Pain C.C., Gorman G.J., Wilson C.R., “Conservative interpolation between unstructured meshes via supermesh construction”, Comput Methods Appl Mech Engrg, 198:33–36 (2009), 2632–2642
-
Agouzal A., Lipnikov K., Vassilevski Yu., “Anisotropic Mesh Adaptation for Solution of Finite Element Problems Using Hierarchical Edge-Based Error Estimates”, Proceedings of the 18th International Meshing Roundtable, 2009, 595–610
-
Agouzal A., Lipnikov K., Vassilevski Yu., “Generation of quasi-optimal meshes based on a posteriori error estimates”, Proceedings of the 16th International Meshing Roundtable, 2008, 139–148
-
Lipnikov K., Vassilevski Yu., “Analysis of Hessian recovery methods for generating adaptive meshes”, Proceedings of the 15th International Meshing Roundtable, 2006, 163–171
-
Ю. В. Василевский, К. Н. Липников, “Оценки ошибки для управляемых адаптивных алгоритмов на основе восстановления гессиана”, Ж. вычисл. матем. и матем. физ., 45:8 (2005), 1424–1434
; Yu. V. Vassilevski, K. N. Lipnikov, “Error bounds for controllable adaptive algorithms based on a Hessian recovery”, Comput. Math. Math. Phys., 45:8 (2005), 1374–1384 -
Vassilevski Y.V., Agouzal A., “Unified asymptotic analysis of interpolation errors for optimal meshes”, Doklady Mathematics, 72:3 (2005), 879–882
-
Oh S., Yim J.W., “Optimal finite element mesh for elliptic equation of divergence form”, Applied Mathematics and Computation, 162:2 (2005), 969–989
-
Lipnikov K., Vassilevski Y., “On control of adaptation in parallel mesh generation”, Engineering With Computers, 20:3 (2004), 193–201
-
Ю. В. Василевский, К. Н. Липников, “Оптимальные триангуляции: существование, аппроксимация и двойное дифференцирование $P_1$ конечно-элементных функций”, Ж. вычисл. матем. и матем. физ., 43:6 (2003), 866–874
; Yu. V. Vassilevski, K. N. Lipnikov, “Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions”, Comput. Math. Math. Phys., 43:6 (2003), 827–835