1. Agouzal A., Lipnikov K., Vassilevski Yu.V., “On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes”, Math Comput Simulation, 81:10 (2011), 1949–1961  crossref  mathscinet  zmath  isi  elib  scopus
  2. Davies D.R., Wilson C.R., Kramer S.C., “Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics”, Geochemistry Geophysics Geosystems, 12 (2011), Q06001  crossref  adsnasa  isi  scopus
  3. A. Agouzal, K. N. Lipnikov, Yu. V. Vassilevski, “Hessian-free metric-based mesh adaptation via geometry of interpolation error”, Ж. вычисл. матем. и матем. физ., 50:1 (2010), 131–145  mathnet  mathscinet; Comput. Math. Math. Phys., 50:1 (2010), 124–138  crossref
  4. Agouzal A., Lipnikov K., Vassilevski Yu., “Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes”, Mathematical Modelling of Natural Phenomena, 5, Suppl. S:7 (2010), 91–96  crossref  mathscinet  isi  scopus
  5. Agouzal A., Vassilevski Yu.V., “Minimization of gradient errors of piecewise linear interpolation on simplicial meshes”, Comput Methods Appl Mech Engrg, 199:33–36 (2010), 2195–2203  crossref  mathscinet  zmath  adsnasa  isi  scopus
  6. Agouzal A., Debit N., “Quasi-Optimal Triangulations for Gradient Nonconforming Interpolates of Piecewise Regular Functions”, Mathematical Modelling of Natural Phenomena, 5, Suppl. S:7 (2010), 78–83  crossref  mathscinet  zmath  isi  scopus
  7. Huang W., Kamenski L., Lang J., “A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates”, J Comput Phys, 229:6 (2010), 2179–2198  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  8. Agouzal A., Lipnikov K., Vassilevski Yu., “Adaptive Solution of PDEs on Anisotropic Triangular Meshes”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 2010, 1558–1561  crossref  adsnasa  isi  scopus
  9. Agouzal A., Debit N., “Quasi-Optimal Meshes for Gradient Nonconforming Approximations”, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1281, 2010, 1562–1565  crossref  adsnasa  isi  scopus
  10. В. Н. Чугунов, “Алгоритм построения конформной квазииерархической треугольной сетки, слабо $\delta$-аппроксимирующей заданные ломаные”, Ж. вычисл. матем. и матем. физ., 49:5 (2009), 874–878  mathnet  zmath; V. N. Chugunov, “Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines”, Comput. Math. Math. Phys., 495:5 (2009), 842–845  crossref  isi
  11. Piggott M.D., Farrell P.E., Wilson C.R., Gorman G.J., Pain C.C., “Anisotropic mesh adaptivity for multi-scale ocean modelling”, Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 367:1907 (2009), 4591–4611  crossref  mathscinet  zmath  adsnasa  isi  scopus
  12. Farrell P.E., Piggott M.D., Pain C.C., Gorman G.J., Wilson C.R., “Conservative interpolation between unstructured meshes via supermesh construction”, Comput Methods Appl Mech Engrg, 198:33–36 (2009), 2632–2642  crossref  mathscinet  zmath  adsnasa  isi  scopus
  13. Agouzal A., Lipnikov K., Vassilevski Yu., “Anisotropic Mesh Adaptation for Solution of Finite Element Problems Using Hierarchical Edge-Based Error Estimates”, Proceedings of the 18th International Meshing Roundtable, 2009, 595–610  crossref  isi  scopus
  14. Agouzal A., Lipnikov K., Vassilevski Yu., “Generation of quasi-optimal meshes based on a posteriori error estimates”, Proceedings of the 16th International Meshing Roundtable, 2008, 139–148  crossref  isi  scopus
  15. Lipnikov K., Vassilevski Yu., “Analysis of Hessian recovery methods for generating adaptive meshes”, Proceedings of the 15th International Meshing Roundtable, 2006, 163–171  crossref  isi  scopus
  16. Ю. В. Василевский, К. Н. Липников, “Оценки ошибки для управляемых адаптивных алгоритмов на основе восстановления гессиана”, Ж. вычисл. матем. и матем. физ., 45:8 (2005), 1424–1434  mathnet  mathscinet  zmath; Yu. V. Vassilevski, K. N. Lipnikov, “Error bounds for controllable adaptive algorithms based on a Hessian recovery”, Comput. Math. Math. Phys., 45:8 (2005), 1374–1384
  17. Vassilevski Y.V., Agouzal A., “Unified asymptotic analysis of interpolation errors for optimal meshes”, Doklady Mathematics, 72:3 (2005), 879–882  mathscinet  zmath  isi  elib
  18. Oh S., Yim J.W., “Optimal finite element mesh for elliptic equation of divergence form”, Applied Mathematics and Computation, 162:2 (2005), 969–989  crossref  mathscinet  zmath  isi  scopus
  19. Lipnikov K., Vassilevski Y., “On control of adaptation in parallel mesh generation”, Engineering With Computers, 20:3 (2004), 193–201  crossref  isi  scopus
  20. Ю. В. Василевский, К. Н. Липников, “Оптимальные триангуляции: существование, аппроксимация и двойное дифференцирование $P_1$ конечно-элементных функций”, Ж. вычисл. матем. и матем. физ., 43:6 (2003), 866–874  mathnet  mathscinet  zmath; Yu. V. Vassilevski, K. N. Lipnikov, “Optimal triangulations: existence, approximations, and double differentiation of $P_1$ finite element functions”, Comput. Math. Math. Phys., 43:6 (2003), 827–835  elib
Предыдущая
1
2
3
Следующая