-
Л. Д. Фаддеев, “Как я работал с Виктором Поповым”, Зап. научн. сем. ПОМИ, 224 (1995), 5–9
; L. D. Faddeev, “How I came to work with Victor Popov”, J. Math. Sci. (New York), 88:2 (1998), 111–113
-
Herbert W. Hamber, Ruth M. Williams, “Discrete gravity in one dimension”, Nuclear Physics B, 451:1-2 (1995), 305
-
A. M. Khvedelidze, V. V. Papoyan, V. N. Pervushin, “Gaugeless reduction of gravity and the evolution of the Universe”, Phys. Rev. D, 51:10 (1995), 5654
-
Herbert W. Hamber, Ruth M. Williams, “Newtonian potential in quantum Regge gravity”, Nuclear Physics B, 435:1-2 (1995), 361
-
S Carlip, “A phase space path integral for (2+1)-dimensional gravity”, Class. Quantum Grav., 12:9 (1995), 2201
-
Herbert W. Hamber, “Invariant correlations in simplicial gravity”, Phys. Rev. D, 50:6 (1994), 3932
-
Damiano Anselmi, “δ(0)divergences and the functional integration measure”, Phys. Rev. D, 48:2 (1993), 680
-
James B. Hartle, “The spacetime approach to quantum mechanics”, Vistas in Astronomy, 37 (1993), 569
-
Herbert W. Hamber, Ruth M. Williams, “Simplicial quantum gravity in three dimensions: Analytical and numerical results”, Phys. Rev. D, 47:2 (1993), 510
-
Damiano Anselmi, “Functional integration measure in quantum gravity”, Phys. Rev. D, 45:12 (1992), 4473
-
Wolfgang Beirl, Erwin Gerstenmayer, Harold Markum, “Influence of the measure on simplicial quantum gravity in four dimensions”, Phys. Rev. Lett., 69:5 (1992), 713
-
Herbert W. Hamber, “Phases of simplicial quantum gravity”, Nuclear Physics B - Proceedings Supplements, 25 (1992), 150
-
Jemal Guven, Michael P. Ryan, “Functional integrals and canonical quantum gravity”, Phys. Rev. D, 45:10 (1992), 3559
-
Jemal Guven, J. David Vergara, “Geometric construction of the measure: Minisuperspace quantum gravity and the relativistic particle compared”, Phys. Rev. D, 44:4 (1991), 1050
-
Zvi Bern, Steven K. Blau, Emil Mottola, “General covariance of the path integral for quantum gravity”, Phys. Rev. D, 43:4 (1991), 1212
-
J Louko, “Discontinuity in quantum gravity at Lambda to 0?”, Class. Quantum Grav., 8:2 (1991), L37
-
Eric Laenen, Peter van Nieuwenhuizen, “The regularized phase space path integral measure for Maxwell fields coupled to background gravity”, Annals of Physics, 207:1 (1991), 77
-
Jonathan J. Halliwell, James B. Hartle, “Wave functions constructed from an invariant sum over histories satisfy constraints”, Phys. Rev. D, 43:4 (1991), 1170
-
Herbert W. Hamber, “Critical behavior in simplicial quantum gravity”, Nuclear Physics B - Proceedings Supplements, 20 (1991), 728
-
Pawel O. Mazur, Emil Mottola, “The path integral measure, conformal factor problem and stability of the ground state of quantum gravity”, Nuclear Physics B, 341:1 (1990), 187