-
Mariusz Lemańczyk, Mathematics of Complexity and Dynamical Systems, 2012, 1618
-
Emmanuel Roy, “Maharam extension and stationary stable processes”, Ann. Probab., 40:3 (2012)
-
Barndorff-Nielsen O.E., “Stationary infinitely divisible processes”, Brazilian Journal of Probability and Statistics, 25:3 (2011), 294–322
-
Magdziarz M., Weron A., “Ergodic properties of anomalous diffusion processes”, Ann Physics, 326:9 (2011), 2431–2443
-
Weron A., Magdziarz M., “Generalization of the Khinchin Theorem to Levy Flights”, Physical Review Letters, 105:26 (2010), 260603
-
Zakhar Kabluchko, Martin Schlather, “Ergodic properties of max-infinitely divisible processes”, Stochastic Processes and their Applications, 120:3 (2010), 281
-
Marcin Magdziarz, Joseph Klafter, “Detecting origins of subdiffusion:P-variation test for confined systems”, Phys. Rev. E, 82:1 (2010)
-
M. Magdziarz, “A note on Maruyama's mixing theorem”, Теория вероятн. и ее примен., 54:2 (2009), 407–409 ; Theory Probab. Appl., 54:2 (2010), 322–324
-
Mariusz Lemańczyk, Encyclopedia of Complexity and Systems Science, 2009, 8554
-
EMMANUEL ROY, “Poisson suspensions and infinite ergodic theory”, Ergod. Th. Dynam. Sys., 29:2 (2009), 667
-
M. M. Rao, “Random Measures and Applications”, Stochastic Analysis and Applications, 27:5 (2009), 1014
-
Marcin Magdziarz, “Correlation cascades, ergodic properties and long memory of infinitely divisible processes”, Stochastic Processes and their Applications, 119:10 (2009), 3416
-
Jesus Perez Colino, “Dynamic Interest-Rate Modelling in Incomplete Markets”, SSRN Journal, 2008
-
Emmanuel Roy, “Ergodic properties of Poissonian ID processes”, Ann. Probab., 35:2 (2007)
-
Ole E. Barndorff-Nielsen, Makoto Maejima, Ken-iti Sato, “Infinite Divisibility for Stochastic Processes and Time Change”, J Theor Probab, 19:2 (2006), 411
-
Stanisław Kwapień, Jan Rosiński, “Asymptotic bounds for infinitely divisible sequences”, Stochastic Processes and their Applications, 116:11 (2006), 1622
-
Michael B. Marcus, Jan Rosiński, “Continuity and Boundedness of Infinitely Divisible Processes: A Poisson Point Process Approach”, J Theor Probab, 18:1 (2005), 109
-
Robert L. Wolpert, Murad S. Taqqu, “Fractional Ornstein–Uhlenbeck Lévy processes and the Telecom process: Upstairs and downstairs”, Signal Processing, 85:8 (2005), 1523
-
Tucker McElroy, Dimitris N. Politis, “Large sample theory for statistics of stable moving averages”, Journal of Nonparametric Statistics, 16:3-4 (2004), 623
-
J. M. P. Albin, Gennady Samorodnitsky, “On overload in a storage model, with a self-similar and infinitely divisible input”, Ann. Appl. Probab., 14:2 (2004)