-
Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites, “Deformations of Symmetric Simple Modular Lie (Super)Algebras”, SIGMA, 19 (2023), 031, 66 pp.
-
Sofiane Bouarroudj, Pavel Grozman, Alexei Lebedev, Dimitry Leites, Irina Shchepochkina, “Simple Vectorial Lie Algebras in Characteristic 2 and their Superizations”, SIGMA, 16 (2020), 089, 101 pp.
-
Д. А. Лейтес, “Две проблемы в теории дифференциальных уравнений”, ТМФ, 198:2 (2019), 309–325
; D. A. Leites, “Two problems in the theory of differential equations”, Theoret. and Math. Phys., 198:2 (2019), 271–283
-
Bouarroudj S., Leites D., “Invariant Differential Operators in Positive Characteristic”, J. Algebra, 499 (2018), 281–297
-
Bouarroudj S., Krutov A., Leites D., Shchepochkina I., “Non-Degenerate Invariant (Super)Symmetric Bilinear Forms on Simple Lie (Super)Algebras”, Algebr. Represent. Theory, 21:5 (2018), 897–941
-
С. Е. Конштейн, И. В. Тютин, “Деформации антискобки с грассманозначными параметрами деформации”, ТМФ, 183:1 (2015), 62–77
; S. E. Konstein, I. V. Tyutin, “Deformations of the antibracket with Grassmann-valued deformation parameters”, Theoret. and Math. Phys., 183:1 (2015), 501–515
-
Batalin I.A., Lavrov P.M., “Extended SIGMA-Model in Nontrivially Deformed Field-Antifield Formalism”, Mod. Phys. Lett. A, 30:29 (2015), 1550141
-
Igor A. Batalin, Peter M. Lavrov, “Does the nontrivially deformed field–antifield formalism exist?”, Int. J. Mod. Phys. A, 30:16 (2015), 1550090
-
С. Буаррудж, А. В. Лебедев, Ф. Вагеманн, “Деформации алгебры Ли $\mathfrak o(5)$ в характеристиках $3$ и $2$”, Матем. заметки, 89:6 (2011), 808–824
; S. Bouarroudj, A. V. Lebedev, F. Vagemann, “Deformations of the Lie Algebra $\mathfrak{o}(5)$ in Characteristics $3$ and $2$”, Math. Notes, 89:6 (2011), 777–791
-
Lebedev A., “Analogs of the Orthogonal, Hamiltonian, Poisson, and Contact Lie Superalgebras in Characteristic 2”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 217–251
-
Iyer U.N., Leites D., Messaoudene M., Shchepochkina I., “Examples of Simple Vectorial Lie Algebras in Characteristic 2”, J Nonlinear Math Phys, 17, Suppl. 1 (2010), 311–374
-
Batalin I.A., Bering K., “Path integral formulation with deformed antibracket”, Phys Lett B, 694:2 (2010), 158–166
-
Popowicz Z., “Does the supersymmetric integrability imply the integrability of Bosonic sector”, Nonlinear and Modern Mathematical Physics, AIP Conference Proceedings, 1212, 2010, 50–57
-
С. Е. Конштейн, А. Г. Смирнов, И. В. Тютин, “Когомологии Хохшильда и деформации поточечного суперпроизведения”, ТМФ, 158:3 (2009), 323–346
; S. E. Konstein, A. G. Smirnov, I. V. Tyutin, “Hochschild cohomologies and deformations of the pointwise superproduct”, Theoret. and Math. Phys., 158:3 (2009), 271–292
-
Sofiane Bouarroudj, Pavel Grozman, Dimitry Leites, “Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix”, SIGMA, 5 (2009), 060, 63 pp.
-
Popowicz, Z, “Odd Hamiltonian structure for supersymmetric Sawada-Kotera equation”, Physics Letters A, 373:37 (2009), 3315
-
С. Е. Конштейн, И. В. Тютин, “Деформации невырожденных постоянных скобки и антискобки Пуассона на суперпространстве произвольной размерности”, ТМФ, 155:1 (2008), 109–116
; S. E. Konstein, I. V. Tyutin, “Deformations of the nondegenerate constant Poisson bracket and
antibracket on superspaces of an arbitrary superdimension”, Theoret. and Math. Phys., 155:1 (2008), 598–605
-
С. Е. Конштейн, И. В. Тютин, “Общая форма деформации суперскобки Пуассона на $(2,n)$-мерном суперпространстве”, ТМФ, 155:2 (2008), 265–286
; S. E. Konstein, I. V. Tyutin, “General form of the deformation of the Poisson superbracket on a $(2,n)$-dimensional superspace”, Theoret. and Math. Phys., 155:2 (2008), 734–753
-
Konstein, SE, “Deformations and central extensions of the antibracket superalgebra”, Journal of Mathematical Physics, 49:7 (2008), 072103
-
С. Е. Конштейн, А. Г. Смирнов, И. В. Тютин, “Общий вид деформации суперскобки Пуассона”, ТМФ, 148:2 (2006), 163–178
; S. E. Konstein, A. G. Smirnov, I. V. Tyutin, “General form of the deformation of the Poisson superbracket”, Theoret. and Math. Phys., 148:2 (2006), 1011–1024