-
Fedunyk-Yaremchuk V O. Hembars'ka S.B., “Approximation of Classes of Periodic Functions of Several Variables With Given Majorant of Mixed Moduli of Continuity”, Carpathian Math. Publ., 13:3 (2021), 838–850
-
Duan L., Ye P., “Randomized Approximation Numbers on Besov Classes With Mixed Smoothness”, Int. J. Wavelets Multiresolut. Inf. Process., 18:4 (2020), 2050023
-
Yanchenko S.Ya., “Approximation of the Nikol'Skii-Besov Functional Classes By Entire Functions of a Special Form”, Carpathian Math. Publ., 12:1 (2020), 148–156
-
Duan L. Ye P., “Exact Asymptotic Orders of Various Randomized Widths on Besov Classes”, Commun. Pure Appl. Anal, 19:8 (2020), 3957–3971
-
Yanchenko S.Ya., Radchenko O.Ya., “Approximating Characteristics of the Nikol'Skii-Besov Classes (S1,Theta B)-B-R(R-D)”, Ukr. Math. J., 71:10 (2020), 1608–1626
-
Fedunyk-Yaremchuk O.V. Hembars'Kyi M.V. Hembars'Ka S.B., “Approximative Characteristics of the Nikol'Skii-Besov-Type Classes of Periodic Functions in the Space B-Infinity,B-1”, Carpathian Math. Publ., 12:2 (2020), 376–391
-
Fedunyk-Yaremchuk V O., Hembars'ka S.B., “Estimates of approximative characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables with given majorant of mixed moduli of continuity in the space $L_q$”, Carpathian Math. Publ., 11:2 (2019), 281–295
-
Pozhars'ka K.V., “Estimates For the Entropy Numbers of the Classes Bp, of Periodic Multivariable Functions in the Uniform Metric”, Ukr. Math. J., 70:9 (2019), 1439–1455
-
Ш. А. Балгимбаева, Т. И. Смирнов, “Оценки поперечников Фурье классов периодических функций с заданной мажорантой смешанного модуля гладкости”, Сиб. матем. журн., 59:2 (2018), 277–292
; Sh. A. Balgimbayeva, T. I. Smirnov, “Estimates of the Fourier widths of the classes of periodic functions with given majorant of the mixed modulus of smoothness”, Siberian Math. J., 59:2 (2018), 217–230
-
Balgimbayeva S. Smirnov T., “Nonlinear wavelet approximation of periodic function classes with generalized mixed smoothnes”, Anal. Math., 43:1 (2017), 1–26
-
Wang H., Wang K., “Optimal Recovery of Besov Classes of Generalized Smoothness and Sobolev Classes on the Sphere”, J. Complex., 32:1 (2016), 40–52
-
Stasyuk S.A., “Best m-Term Trigonometric Approximation for Periodic Functions with Low Mixed Smoothness from the Nikol'skii–Besov-Type Classes”, Ukr. Math. J., 68:7 (2016), 1121–1145
-
Ш. А. Балгимбаева, Т. И. Смирнов, “Оценки поперечников Фурье классов периодических функций со смешанным модулем гладкости”, Тр. ИММ УрО РАН, 21, № 4, 2015, 78–94
-
Stasyuk S.A. Yanchenko S.Ya., “Approximation of Functions From Nikolskii-Besov Type Classes of Generalized Mixed Smoothness”, Anal. Math., 41:4 (2015), 311–334
-
С. А. Стасюк, “Приближение суммами Фурье и колмогоровские поперечники классов $\mathbf{MB}^\Omega_{p,\theta}$ периодических функций нескольких переменных”, Тр. ИММ УрО РАН, 20, № 1, 2014, 247–257
-
А. Ф. Конограй, “Оценки аппроксимативных характеристик классов $B^{\Omega}_{p,\theta}$ периодических функций многих переменных с заданной мажорантой смешанных модулей непрерывности”, Матем. заметки, 95:5 (2014), 734–749
; A. F. Konograj, “Estimates of the Approximation Characteristics of the Classes $B^{\Omega}_{p,\theta}$ of Periodic Functions of Several Variables with Given Majorant of Mixed Moduli of Continuity”, Math. Notes, 95:5 (2014), 656–669
-
С. А. Стасюк, “Наилучшее приближение периодических функций нескольких переменных из классов $MB^\omega_{p,\theta}$ в равномерной метрике”, Тр. ИММ УрО РАН, 18, № 4, 2012, 258–266
-
Wang H., Tang S., “Widths of Besov Classes of Generalized Smoothness on the Sphere”, J. Complex., 28:4 (2012), 468–488
-
Duan L., Ye P., “Kolmogorov and Linear Widths on Generalized Besov Classes in the Monte Carlo Setting”, Theoretical and Mathematical Foundations of Computer Science, Communications in Computer and Information Science, 164, ed. Zhou Q., Springer-Verlag Berlin, 2011, 70–76
-
С. А. Стасюк, “Наилучшие приближения периодических функций многих переменных из классов $B^\Omega_{p,\theta}$”, Матем. заметки, 87:1 (2010), 108–121
; S. A. Stasyuk, “Best Approximations of Periodic Functions of Several Variables from the Classes $B^\Omega_{p,\theta}$”, Math. Notes, 87:1 (2010), 102–114