1. Ekaterina Amerik, Misha Verbitsky, “Hyperbolic geometry of the ample cone of a hyperkähler manifold”, Res Math Sci, 3:1 (2016)  crossref
  2. Nikon Kurnosov, “Absolutely trianalytic tori in the generalized Kummer variety”, Advances in Mathematics, 298 (2016), 473  crossref
  3. Priska Jahnke, Ivo Radloff, “Projective uniformization, extremal Chern classes and quaternionic Shimura curves”, Math. Ann, 2015  crossref  mathscinet  zmath
  4. Ekaterina Amerik, Misha Verbitsky, “Teichmüller space for hyperkähler and symplectic structures”, Journal of Geometry and Physics, 2015  crossref  mathscinet
  5. Jean-Pierre Demailly, Springer Proceedings in Mathematics & Statistics, 144, Complex Analysis and Geometry, 2015, 119  crossref
  6. Misha Verbitsky, “Ergodic complex structures on hyperkähler manifolds”, Acta Math., 215:1 (2015), 161  crossref
  7. Tim Kirschner, Lecture Notes in Mathematics, 2140, Period Mappings with Applications to Symplectic Complex Spaces, 2015, 143  crossref
  8. E. Amerik, M. Verbitsky, “Rational Curves on Hyperkähler Manifolds”, Int Math Res Notices, 2015, rnv133  crossref
  9. F. Campana, J.-P. Demailly, Th. Peternell, Recent Advances in Algebraic Geometry, 2015, 71  crossref
  10. Qilin Yang, “Vanishing Theorems on Compact Hyper-kähler Manifolds”, Geometry, 2014 (2014), 1  crossref
  11. Grgoire Menet, “Duality for relative Prymians associated to K3 double covers of del Pezzo surfaces of degree 2”, Math. Z, 2014  crossref  mathscinet  zmath
  12. Ljudmila Kamenova, Misha Verbitsky, “Families of Lagrangian fibrations on hyperkähler manifolds”, Advances in Mathematics, 260 (2014), 401  crossref  mathscinet  zmath
  13. Grégoire Menet, “Beauville–Bogomolov lattice for a singular symplectic variety of dimension 4”, Journal of Pure and Applied Algebra, 2014  crossref  mathscinet
  14. Misha Verbitsky, “Degenerate twistor spaces for hyperkähler manifolds”, Journal of Geometry and Physics, 2014  crossref  mathscinet
  15. Andrey Soldatenkov, Misha Verbitsky, “<mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>k</mml:mi></mml:math>-symplectic structures and absolutely trianalytic subvarieties in hyperkähler manifolds”, Journal of Geometry and Physics, 2014  crossref
  16. Ljudmila Kamenova, Steven Lu, Misha Verbitsky, “Kobayashi pseudometric on hyperkähler manifolds”, Journal of the London Mathematical Society, 90:2 (2014), 436  crossref
  17. Sasha Ananʼin, Misha Verbitsky, “Any component of moduli of polarized hyperkähler manifolds is dense in its deformation space”, Journal de Mathématiques Pures et Appliquées, 2013  crossref  mathscinet  zmath
  18. Justin Sawon, “Fibrations on four-folds with trivial canonical bundles”, Geom Dedicata, 2013  crossref  mathscinet
  19. Misha Verbitsky, “Mapping class group and a global Torelli theorem for hyperkähler manifolds”, Duke Math. J., 162:15 (2013)  crossref
  20. Tien-Cuong Dinh, Viêt-Anh Nguyên, “On the Lefschetz and Hodge–Riemann theorems”, Illinois J. Math., 57:1 (2013)  crossref
Предыдущая
1
2
3
Следующая