1. BiYun Tang, YongYi Lan, “Multiplicity of solutions for the Kirchhoff equation with critical nonlinearity in high dimension”, Math Methods in App Sciences, 44:17 (2021), 13133  crossref
  2. Zhongxiang Wang, Gao Jia, “Existence and multiplicity of nontrivial solutions to the modified Kirchhoff equation without the growth and Ambrosetti–Rabinowitz conditions”, Electron. J. Qual. Theory Differ. Equ., 2021, no. 83, 1  crossref
  3. Juntao Sun, Kuan-Hsiang Wang, Tsung-fang Wu, “On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms”, Journal of Mathematical Physics, 62:3 (2021)  crossref
  4. A. S. Berdyshev, S. E. Aitzhanov, G. O. Zhumagul, “Solvability of Pseudoparabolic Equations with Non-Linear Boundary Condition”, Lobachevskii J Math, 41:9 (2020), 1772  crossref
  5. Honglv Ma, Jin Zhang, Chengkui Zhong, “Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension”, Journal of Mathematical Analysis and Applications, 484:1 (2020), 123670  crossref
  6. Pietro Baldi, Emanuele Haus, “On the existence time for the Kirchhoff equation with periodic boundary conditions”, Nonlinearity, 33:1 (2020), 196  crossref
  7. Fágner D. Araruna, Anderson L. A. Araujo, Aldo T. Lourêdo, “Decay of solution for degenerate Kirchhoff equation with general nonlinearity”, Math Methods in App Sciences, 43:5 (2020), 2695  crossref
  8. Daisuke Naimen, Masataka Shibata, “Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension”, Nonlinear Analysis, 186 (2019), 187  crossref
  9. Tokio Matsuyama, Michael Ruzhansky, “On the Gevrey well-posedness of the Kirchhoff equation”, JAMA, 137:1 (2019), 449  crossref
  10. Fágner Dias Araruna, Frederico de Oliveira Matias, Milton de Lacerda Oliveira, Shirley Maria Santos e Souza, SEMA SIMAI Springer Series, 17, Recent Advances in PDEs: Analysis, Numerics and Control, 2018, 17  crossref
  11. Haroldo Rodrigues Clark, Ronald Ramos Guardia, “Uniform stabilization of Kirchhoff problems without damping”, Math Methods in App Sciences, 41:17 (2018), 7667  crossref
  12. Tokio Matsuyama, Michael Ruzhansky, “Almost global well-posedness of Kirchhoff equation with Gevrey data”, Comptes Rendus. Mathématique, 355:5 (2017), 522  crossref
  13. Riccardo Montalto, “Quasi-periodic solutions of forced Kirchhoff equation”, Nonlinear Differ. Equ. Appl., 24:1 (2017)  crossref
  14. Tokio Matsuyama, Michael Ruzhansky, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 313  crossref
  15. Fumihiko Hirosawa, “A class of non-analytic functions for the global solvability of Kirchhoff equation”, Nonlinear Analysis: Theory, Methods & Applications, 116 (2015), 37  crossref  mathscinet  zmath
  16. Kh. Zennir, S. Zitouni, “On the absence of solutions to damped system of nonlinear wave equations of Kirchhoff-type”, Владикавк. матем. журн., 17:4 (2015), 44–58  mathnet
  17. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 285  crossref
  18. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 219  crossref
  19. Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 1  crossref
  20. Tokio Matsuyama, Michael Ruzhansky, Springer Proceedings in Mathematics & Statistics, 116, Analytic Methods in Interdisciplinary Applications, 2015, 81  crossref
Предыдущая
1
2
3
4
5
6
Следующая