-
BiYun Tang, YongYi Lan, “Multiplicity of solutions for the Kirchhoff equation with critical nonlinearity in high dimension”, Math Methods in App Sciences, 44:17 (2021), 13133
-
Zhongxiang Wang, Gao Jia, “Existence and multiplicity of nontrivial solutions to the modified
Kirchhoff equation without the growth and Ambrosetti–Rabinowitz conditions”, Electron. J. Qual. Theory Differ. Equ., 2021, no. 83, 1
-
Juntao Sun, Kuan-Hsiang Wang, Tsung-fang Wu, “On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms”, Journal of Mathematical Physics, 62:3 (2021)
-
A. S. Berdyshev, S. E. Aitzhanov, G. O. Zhumagul, “Solvability of Pseudoparabolic Equations with Non-Linear Boundary Condition”, Lobachevskii J Math, 41:9 (2020), 1772
-
Honglv Ma, Jin Zhang, Chengkui Zhong, “Attractors for the degenerate Kirchhoff wave model with strong damping: Existence and the fractal dimension”, Journal of Mathematical Analysis and Applications, 484:1 (2020), 123670
-
Pietro Baldi, Emanuele Haus, “On the existence time for the Kirchhoff equation with periodic boundary conditions”, Nonlinearity, 33:1 (2020), 196
-
Fágner D. Araruna, Anderson L. A. Araujo, Aldo T. Lourêdo, “Decay of solution for degenerate Kirchhoff equation with general nonlinearity”, Math Methods in App Sciences, 43:5 (2020), 2695
-
Daisuke Naimen, Masataka Shibata, “Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension”, Nonlinear Analysis, 186 (2019), 187
-
Tokio Matsuyama, Michael Ruzhansky, “On the Gevrey well-posedness of the Kirchhoff equation”, JAMA, 137:1 (2019), 449
-
Fágner Dias Araruna, Frederico de Oliveira Matias, Milton de Lacerda Oliveira, Shirley Maria Santos e Souza, SEMA SIMAI Springer Series, 17, Recent Advances in PDEs: Analysis, Numerics and Control, 2018, 17
-
Haroldo Rodrigues Clark, Ronald Ramos Guardia, “Uniform stabilization of Kirchhoff problems without damping”, Math Methods in App Sciences, 41:17 (2018), 7667
-
Tokio Matsuyama, Michael Ruzhansky, “Almost global well-posedness of Kirchhoff equation with Gevrey data”, Comptes Rendus. Mathématique, 355:5 (2017), 522
-
Riccardo Montalto, “Quasi-periodic solutions of forced Kirchhoff equation”, Nonlinear Differ. Equ. Appl., 24:1 (2017)
-
Tokio Matsuyama, Michael Ruzhansky, Trends in Mathematics, New Trends in Analysis and Interdisciplinary Applications, 2017, 313
-
Fumihiko Hirosawa, “A class of non-analytic functions for the global solvability of Kirchhoff equation”, Nonlinear Analysis: Theory, Methods & Applications, 116 (2015), 37
-
Kh. Zennir, S. Zitouni, “On the absence of solutions to damped system of nonlinear wave equations of Kirchhoff-type”, Владикавк. матем. журн., 17:4 (2015), 44–58
-
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 285
-
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 219
-
Igor Chueshov, Universitext, Dynamics of Quasi-Stable Dissipative Systems, 2015, 1
-
Tokio Matsuyama, Michael Ruzhansky, Springer Proceedings in Mathematics & Statistics, 116, Analytic Methods in Interdisciplinary Applications, 2015, 81