-
Ю. М. Арлинский, А. Б. Попов, “Об $m$-аккретивных расширениях секториального оператора”, Матем. сб., 204:8 (2013), 3–40
; Yu. M. Arlinskii, A. B. Popov, “$m$-Accretive extensions of a sectorial operator”, Sb. Math., 204:8 (2013), 1085–1121
-
Bilender P. Allahverdiev, “Extensions of symmetric second-order difference operators with matrix coefficients”, Journal of Difference Equations and Applications, 2012, 1
-
Goryunov A.S., Mikhailets V.A., “Regularization of Two-Term Differential Equations with Singular Coefficients by Quasiderivatives”, Ukr. Math. J., 63:9 (2012), 1361–1378
-
Y. Arlinskiǐ, Operator Methods for Boundary Value Problems, 2012, 35
-
В. И. Могилевский, “Описание обобщенных резольвент и характеристических матриц дифференциальных операторов посредством граничного параметра”, Матем. заметки, 90:4 (2011), 558–583
; V. I. Mogilevskii, “Description of Generalized Resolvents and Characteristic Matrices of Differential Operators in Terms of the Boundary Parameter”, Math. Notes, 90:4 (2011), 548–570
-
Behrndt J., Hassi S., de Snoo H., Wietsma R., “Square-Integrable Solutions and Weyl Functions for Singular Canonical Systems”, Math. Nachr., 284:11-12 (2011), 1334–1384
-
Behrndt J., Langer M., “On the Adjoint of a Symmetric Operator”, J. Lond. Math. Soc.-Second Ser., 82:Part 3 (2010), 563–580
-
Aliev B.A., “Solvability of the Boundary-Value Problem for the Second-Order Elliptic Differential-Operator Equation with Spectral Parameter in the Equation and Boundary Conditions”, Ukr. Math. J., 62:1 (2010), 1–14
-
V. M. Bruk, “On linear relations generated by nonnegative operator function and degenerate elliptic differential-operator expression”, Журн. матем. физ., анал., геом., 5:2 (2009), 123–144
-
Kiselev A.V., “Similarity Problem for Non-Self-Adjoint Extensions of Symmetric Operators”, Methods of Spectral Analysis in Mathematical Physics, Operator Theory Advances and Applications, 186, eds. Janas J., Kurasov P., Laptev A., Naboko S., Stolz G., Birkhauser Verlag Ag, 2009, 267–283
-
Behrndt J., Hassi S., de Snoo H., “Boundary Relations, Unitary Colligations, and Functional Models”, Complex Anal. Oper. Theory, 3:1 (2009), 57–98
-
Arlinskii Yu. Tsekanovskii E., “M. Krein's Research on Semi-Bounded Operators, its Contemporary Developments, and Applications”, Modern Analysis and Applications: Mark Krein Centenary Conference, Vol 1, Operator Theory Advances and Applications, 190, ed. Adamyan V. Berezansky Y. Gohberg I. Gorbachuk M. Gorbachuk V. Kochubei A. Langer H. Popov G., Birkhauser Verlag Ag, 2009, 65–112
-
В. М. Брук, “Об обобщенных резольвентах линейных отношений, порожденных неотрицательной операторной функцией и дифференциальным выражением эллиптического типа”, Изв. вузов. Матем., 2008, № 11, 12–26
; V. M. Bruk, “Generalized resolvents of linear relations generated by a nonnegative operator function and a differential elliptic-type expression”, Russian Math. (Iz. VUZ), 52:11 (2008), 10–22
-
JOCHEN BRÜNING, VLADIMIR GEYLER, KONSTANTIN PANKRASHKIN, “SPECTRA OF SELF-ADJOINT EXTENSIONS AND APPLICATIONS TO SOLVABLE Schrödinger OPERATORS”, Rev. Math. Phys, 20:01 (2008), 1
-
Ryzhov V., “Functional Model of a Class of Non-Selfadjoint Extensions of Symmetric Operators”, Operator Theory, Analysis and Mathematical Physics, Operator Theory : Advances and Applications, 174, eds. Janas J., Kurasov P., Laptev A., Naboko S., Stolz G., Birkhauser Verlag Ag, 2007, 117–158
-
V. M. Bruk, “On spaces of boundary values for relations generated by a formally selfadjoint expression and a nonnegative operator function”, Журн. матем. физ., анал., геом., 2:3 (2006), 268–277
-
B.P. Allahverdiev, “Dissipative discrete Hamiltonian systems”, Computers & Mathematics with Applications, 49:7-8 (2005), 1139
-
Arlinskii Y. Tsekanovskii E., “The Von Neumann Problem for Nonnegative Symmetric Operators”, Integr. Equ. Oper. Theory, 51:3 (2005), 319–356
-
Allahverdiev B., “Extensions, Dilations and Functional Models of Infinite Jacobi Matrix”, Czech. Math. J., 55:3 (2005), 593–609
-
B.P. Allahverdiev, “Dissipative Second-Order Difference Operators with General Boundary Conditions”, Journal of Difference Equations and Applications, 10:1 (2004), 1