1. Cotter S.L., Kevrekidis I.G., Russell P.T., “Transport Map Accelerated Adaptive Importance Sampling, and Application to Inverse Problems Arising From Multiscale Stochastic Reaction Networks”, SIAM-ASA J. Uncertain. Quantif., 8:4 (2020), 1383–1413  crossref  mathscinet  isi  scopus
  2. Jaini P., Kobyzev I., Yu Ya., Brubaker M.A., “Tails of Lipschitz Triangular Flows”, Proceedings of Machine Learning Research, 119, eds. Daume H., Singh A., Jmlr-Journal Machine Learning Research, 2020  isi
  3. Wang J., Sun S., Yu Ya., Advances in Neural Information Processing Systems 32 (Nips 2019), Advances in Neural Information Processing Systems, 32, eds. Wallach H., Larochelle H., Beygelzimer A., d'Alche-Buc F., Fox E., Garnett R., Neural Information Processing Systems (Nips), 2019  isi
  4. D. B. Bukin, E. P. Krugova, “On Triangular Mappings of Gaussian Measures”, Матем. заметки, 106:5 (2019), 843–845  mathnet  isi  scopus; D. B. Bukin, E. P. Krugova, “On Triangular Mappings of Gaussian Measures”, Math. Notes, 106:5 (2019), 843–845  mathnet  crossref
  5. Spantini A., Bigoni D., Marzouk Y., “Inference Via Low-Dimensional Couplings”, J. Mach. Learn. Res., 19 (2018), 66  mathscinet  zmath  isi
  6. Dmitry V. Bukin, Elena P. Krugova, “Transportation costs for optimal and triangular transformations of Gaussian measures”, Theory Stoch. Process., 23(39):2 (2018), 21–32  mathnet
  7. Backhoff J., Beiglbock M., Lin Y., Zalashko A., “Causal Transport in Discrete Time and Applications”, SIAM J. Optim., 27:4 (2017), 2528–2562  crossref  mathscinet  zmath  isi
  8. В. И. Богачев, А. Н. Калинин, С. Н. Попова, “О равенстве значений в задачах Монжа и Канторовича”, Вероятность и статистика. 25, Посвящается памяти Владимира Николаевича СУДАКОВА, Зап. научн. сем. ПОМИ, 457, ПОМИ, СПб., 2017, 53–73  mathnet  mathscinet  zmath; V. I. Bogachev, A. N. Kalinin, S. N. Popova, “On the equality of values in the Monge and Kantorovich problems”, J. Math. Sci. (N. Y.), 238:4 (2019), 377–389  crossref
  9. Morrison R.E., Baptista R., Marzouk Y., Advances in Neural Information Processing Systems 30 (Nips 2017), Advances in Neural Information Processing Systems, 30, eds. Guyon I., Luxburg U., Bengio S., Wallach H., Fergus R., Vishwanathan S., Garnett R., Neural Information Processing Systems (Nips), 2017  isi
  10. Д. Б. Букин, “О задаче Канторовича для нелинейных образов меры Винера”, Матем. заметки, 100:5 (2016), 682–688  mathnet  crossref  mathscinet  elib; D. B. Bukin, “On the Kantorovich Problem for Nonlinear Images of the Wiener Measure”, Math. Notes, 100:5 (2016), 660–665  crossref  isi
  11. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 433  crossref
  12. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 927  crossref
  13. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 505  crossref
  14. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 1087  crossref
  15. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 329  crossref
  16. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 795  crossref
  17. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 217  crossref
  18. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 307  crossref
  19. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 529  crossref
  20. Antonio F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise, 2015, 903  crossref
Предыдущая
1
2
3
4
5
Следующая