1. Lai L., Yu P., “A Note on the Number of Irrational Odd Zeta Values”, Compos. Math., 156:8 (2020), 1699–1717  crossref  mathscinet  isi
  2. Dixit A., Maji B., “Generalized Lambert Series and Arithmetic Nature of Odd Zeta Values”, Proc. R. Soc. Edinb. Sect. A-Math., 150:2 (2020), 741–769  crossref  mathscinet  isi  scopus
  3. Johannes Singer, Springer Proceedings in Mathematics & Statistics, 314, Periods in Quantum Field Theory and Arithmetic, 2020, 293  crossref
  4. Hervé Queffélec, Martine Queffélec, Texts and Readings in Mathematics, 80, Diophantine Approximation and Dirichlet Series, 2020, 69  crossref
  5. Iyad SUWAN, “Multilevel Evaluation of the General Dirichlet Series”, Advances in the Theory of Nonlinear Analysis and its Application, 4:4 (2020), 443  crossref
  6. Fischler S., Sprang J., Zudilin W., “Many Odd Zeta Values Are Irrational”, Compos. Math., 155:5 (2019), 938–952  crossref  mathscinet  isi
  7. Soria Lorente A., “On Zudilin-Like Rational Approximations to ? (5)”, Notes Number Theory Discret. Math., 24:2 (2018), 104–116  crossref  isi
  8. Xu C., “Some Evaluation of Infinite Series Involving Trigonometric and Hyperbolic Functions”, Results Math., 73:4 (2018), UNSP 128  crossref  mathscinet  isi  scopus
  9. Anthony Sofo, Mathematical Analysis and Applications, 2018, 631  crossref
  10. Dupont C., “Relative Cohomology of Bi-Arrangements”, Trans. Am. Math. Soc., 369:11 (2017), 8105–8160  crossref  mathscinet  zmath  isi  scopus  scopus
  11. Gencev M., “Generalization of the Non-Local Derangement Identity and Applications to Multiple Zeta-Type Series”, Mon.heft. Math., 184:2 (2017), 217–243  crossref  mathscinet  zmath  isi  scopus  scopus
  12. Orr D., “Generalized Rational Zeta Series For Zeta( 2N) and Zeta( 2N+1)”, Integral Transform. Spec. Funct., 28:12 (2017), 966–987  crossref  mathscinet  zmath  isi  scopus  scopus
  13. Alzer H., Sondow J., “a Parameterized Series Representation For Apery'S Constant Zeta(3)”, 20, no. 7, 2016, 1380–1386  mathscinet  zmath  isi
  14. Gauthier C., “Irrationality of Gamma, Zeta(M) and Beta(M)”, 37, no. 1, 2015, 41–52  crossref  isi  scopus  scopus
  15. Junesang Choi, “Rapidly Converging Series for from Fourier Series”, Abstract and Applied Analysis, 2014 (2014), 1  crossref  mathscinet  zmath  isi  scopus  scopus
  16. Simon Dauguet, Wadim Zudilin, “On simultaneous diophantine approximations to <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>ζ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math altimg="si2.gif" overflow="scroll" xmlns”, Journal of Number Theory, 145 (2014), 362  crossref  mathscinet  zmath  isi  scopus  scopus
  17. Junesang Choi, “EVALUATION OF CERTAIN ALTERNATING SERIES”, Honam Mathematical Journal, 36:2 (2014), 263  crossref  mathscinet  zmath
  18. J.-P. Allouche, “Paperfolding infinite products and the gamma function”, Journal of Number Theory, 2014  crossref  mathscinet  isi  scopus  scopus
  19. M. Ram Murty, Purusottam Rath, Transcendental Numbers, 2014, 75  crossref
  20. Kh. Hessami Pilehrood, T. Hessami Pilehrood, “On a continued fraction expansion for Eulerʼs constant”, Journal of Number Theory, 133:2 (2013), 769  crossref  mathscinet  zmath  isi  scopus  scopus
Предыдущая
1
2
3
4
Следующая