-
Alexander Pushnitski, “Estimates for the spectral shift function of the polyharmonic operator”, J Math Phys (N Y ), 40:11 (1999), 5578
-
Ching-Hua Chang, Chung-Wei Ha, “Sharp inequalities of singular values of smooth kernels”, Integr equ oper theory, 35:1 (1999), 20
-
D. Yafaev, Mathematical Results in Quantum Mechanics, 1999, 373
-
М. С. Агранович, Б. А. Амосов, “Оценки $s$-чисел и спектральные асимптотики для интегральных операторов типа потенциала на негладких поверхностях”, Функц. анализ и его прил., 30:2 (1996), 1–18
; M. S. Agranovich, B. A. Amosov, “Estimates of $s$-Numbers and Spectral Asymptotics for Integral Operators of Potential Type on Nonsmooth Surfaces”, Funct. Anal. Appl., 30:2 (1996), 75–89
-
Vu Kim Tuan, Rudolf Gorenflo, “asymptottcs of singular values of volterra integral operators”, Numerical Functional Analysis and Optimization, 17:3-4 (1996), 453
-
Che Kao Fong, Pei Yuan Wu, “Band-diagonal operators”, Linear Algebra and its Applications, 248 (1996), 185
-
V. Olevskii, M. Solomyak, “An estimate for Schur multipliers in Sp-classes”, Linear Algebra and its Applications, 208-209 (1994), 57
-
К. Т. Мынбаев, “О приближении интегральных операторов, их ядер и решений интегральных уравнений Фредгольма II рода в связи с оператором типа Штурма–Лиувилля”, Изв. РАН. Сер. матем., 57:1 (1993), 192–201
; K. T. Mynbaev, “On approximation of integral operators, their kernels, and solutions of Fredholm integral equations of the second kind in connection with an operator of Sturm-Liouville type”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 173–182
-
L. Pandolfi, “An integral equation approach to the singular values of a system with distributed output delays”, Systems & Control Letters, 20:6 (1993), 447
-
S. Prössdorf, Encyclopaedia of Mathematical Sciences, 27, Analysis IV, 1991, 1
-
Hui-Hsiung Kuo, Andrzej Russek, “White noise approach to stochastic integration”, Journal of Multivariate Analysis, 24:2 (1988), 218
-
В. Н. Темляков, “Оценки наилучших билинейных приближений функций
двух переменных и некоторые их приложения”, Матем. сб., 134(176):1(9) (1987), 93–107
; V. N. Temlyakov, “Estimates of the best bilinear approximations of functions of two
variables and some of their applications”, Math. USSR-Sb., 62:1 (1989), 95–109
-
Gerd Grubb, Lecture Notes in Mathematics, 1218, Schrödinger Operators, Aarhus 1985, 1986, 136
-
S. Richter, H. König, “Eigenvalues of Integral Operators Defined by Analytic Kernels”, Math Nachr, 119:1 (1984), 141
-
Gerd Grubb, “Singular Green operators and their spectral asymptotics”, Duke Math. J., 51:3 (1984)
-
D. M. O'Brien, “A simple test for nuclearity of integral operators on L2( Rn)”, J Austral Math Soc, 33:2 (1982), 193
-
Т. Н. Козубенко, Б. Д. Котляр, “О сингулярных числах операторов, повышающих гладкость, в анизотропном случае”, УМН, 35:4(214) (1980), 191–192
; T. N. Kozubenko, B. D. Kotlyar, “The singular numbers of operators increasing smoothness in the anisotropic case”, Russian Math. Surveys, 35:4 (1980), 171–172
-
Arne Jensen, “Spectral properties of Schrödinger operators and
time-decay of the wave functions results in L2(Rm), m≥5”, Duke Math. J., 47:1 (1980)
-
Д. Р. Яфаев, “О сингулярном спектре в системе трех частиц”, Матем. сб., 106(148):4(8) (1978), 622–640
; D. R. Yafaev, “On the singular spectrum in a system of three particles”, Math. USSR-Sb., 35:2 (1979), 283–300