-
Maltsev A.Ya., “On the Analytical Properties of the Magneto-Conductivity in the Case of Presence of Stable Open Electron Trajectories on a Complex Fermi Surface”, J. Exp. Theor. Phys., 124:5 (2017), 805–831
-
Artur Avila, Pascal Hubert, Alexandra Skripchenko, “Diffusion for chaotic plane sections of 3-periodic surfaces”, Invent. Math., 206:1 (2016), 109–146
-
I. Dynnikov, A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Тр. ММО, 76, № 2, МЦНМО, М., 2015, 287–308 ; Trans. Moscow Math. Soc., 76:2 (2015), 251–269
-
Alexandra Skripchenko, “On connectedness of chaotic sections of some 3-periodic surfaces”, Ann Glob Anal Geom, 43:3 (2013), 253
-
Giovanni Forni, “On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations”, JMD, 6:2 (2012), 139
-
Sergey P. Novikov, Visions in Mathematics, 2010, 406
-
DeLeo, R, “Geometry of plane sections of the infinite regular skew polyhedron {4,6|4}”, Geometriae Dedicata, 138:1 (2009), 51
-
И. А. Дынников, “Системы наложений отрезков и плоские сечения 3-периодических поверхностей”, Геометрия, топология и математическая физика. I, Сборник статей. К 70-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 263, МАИК «Наука/Интерпериодика», М., 2008, 72–84 ; I. A. Dynnikov, “Interval Identification Systems and Plane Sections of 3-Periodic Surfaces”, Proc. Steklov Inst. Math., 263 (2008), 65–77
-
Р. Де Лео, И. А. Дынников, “Пример фрактального множества направлений плоскостей,
дающих хаотическое пересечение
с фиксированной 3-периодической поверхностью”, УМН, 62:5(377) (2007), 151–152 ; R. De Leo, I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface”, Russian Math. Surveys, 62:5 (2007), 990–992
-
De Leo, R, “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Experimental Mathematics, 15:1 (2006), 109
-
Maltsev A.Y., Novikov S.P., “Topology, quasiperiodic functions, and the transport phenomena”, Topology in Condensed Matter, Springer Series in Solid-State Sciences, 150, 2006, 31–59
-
Zorich A., “Flat surfaces”, Frontiers in Number Theory, Physics and Geometry I - ON RANDOM MATRICES, ZETA FUNCTIONS, AND DYNAMICAL SYSTEMS, 2006, 439–585
-
Anton Zorich, Frontiers in Number Theory, Physics, and Geometry I, 2006, 437
-
Д. В. Аносов, Е. В. Жужома, “Нелокальное асимптотическое поведение кривых и слоев ламинаций на универсальных накрывающих”, Труды МИАН, 249, Наука, МАИК «Наука/Интерпериодика», М., 2005, 3–239 ; D. V. Anosov, E. V. Zhuzhoma, “Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings”, Proc. Steklov Inst. Math., 249 (2005), 1–221
-
И. А. Дынников, С. П. Новиков, “Топология квазипериодических функций на плоскости”, УМН, 60:1(361) (2005), 3–28 ; I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26
-
Р. Де Лео, “Доказательство гипотезы Дынникова о расположении зон устойчивости в задаче Новикова о плоских сечениях периодических поверхностей”, УМН, 60:3(363) (2005), 169–170 ; R. De Leo, “Proof of Dynnikov's conjecture on the location of stability zones in the Novikov problem on planar sections of periodic surfaces”, Russian Math. Surveys, 60:3 (2005), 566–567
-
De Leo, R, “First-principles generation of stereographic maps for high-field magneto resistance in normal metals: An application to Au and Ag”, Physica B-Condensed Matter, 362:1–4 (2005), 62
-
Arnold's Problems, 2005, 181
-
Andrei Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J Math Phys (N Y ), 45:3 (2004), 1128
-
De Leo, R, “Topological effects in the magnetoresi stance of Au and Ag”, Physics Letters A, 332:5–6 (2004), 469