-
Wilde M.M. Winter A. Yang D., “Strong Converse For the Classical Capacity of Entanglement-Breaking and Hadamard Channels Via a Sandwiched R,Nyi Relative Entropy”, Commun. Math. Phys., 331:2 (2014), 593–622
-
Berta M. Renes J.M. Wilde M.M., “Identifying the Information Gain of a Quantum Measurement”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 331–335
-
Lupo C. Mancini S. Wilde M.M., “Stochastic Resonance in Gaussian Quantum Channels”, J. Phys. A-Math. Theor., 46:4 (2013), 045306
-
М. Е. Широков, “Условия обратимости квантового канала и их применение”, Матем. сб., 204:8 (2013), 137–160
; M. E. Shirokov, “Reversibility conditions for quantum channels and their applications”, Sb. Math., 204:8 (2013), 1215–1237
-
Sun M., Peng X., Guo H., “An Improved Two-Way Continuous-Variable Quantum Key Distribution Protocol with Added Noise in Homodyne Detection”, J. Phys. B-At. Mol. Opt. Phys., 46:8 (2013), 085501
-
А. С. Холево, “Информационная емкость квантовой наблюдаемой”, Пробл. передачи информ., 48:1 (2012), 3–14
; A. S. Holevo, “Information capacity of a quantum observable”, Problems Inform. Transmission, 48:1 (2012), 1–10
-
Sun M. Peng X. Shen Yu. Guo H., “Security of a New Two-Way Continuous-Variable Quantum Key Distribution Protocol”, Int. J. Quantum Inf., 10:5 (2012), 1250059
-
Weedbrook Ch. Pirandola S. Garcia-Patron R. Cerf N.J. Ralph T.C. Shapiro J.H. Lloyd S., “Gaussian Quantum Information”, Rev. Mod. Phys., 84:2 (2012), 621–669
-
Holevo A.S. Giovannetti V., “Quantum Channels and their Entropic Characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001
-
Giovannetti V., Holevo A.S., Lloyd S., Maccone L., “Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results”, Journal of Physics A-Mathematical and Theoretical, 43:41 (2010), 415305
-
Brandao Fernando G. S. L., Horodecki M., “On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture”, Open Systems & Information Dynamics, 17:1 (2010), 31–52
-
King Ch., “Remarks on the Additivity Conjectures for Quantum Channels”, Entropy and the Quantum, Contemporary Mathematics, 529, 2010, 177–188
-
Daems, D, “Transitions in the Communication Capacity of Dissipative Qubit Channels”, Physical Review Letters, 102:18 (2009), 180503
-
Hayden, P, “Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1”, Communications in Mathematical Physics, 284:1 (2008), 263
-
Amosov, GG, “Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension”, Physical Review A, 75:6 (2007), 060304
-
Hayashi, M, “Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding”, Physical Review A, 76:6 (2007), 062301
-
М. Е. Широков, “О структуре оптимальных множеств квантового канала”, Пробл. передачи информ., 42:4 (2006), 23–40
; M. E. Shirokov, “On the Structure of Optimal Sets for a Quantum Channel”, Problems Inform. Transmission, 42:4 (2006), 282–297
-
Karpov, E, “Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions”, Physical Review A, 74:3 (2006), 032320
-
Giovannetti, V, “Conditions for multiplicativity of maximal l(p)-norms of channels for fixed integer p”, Journal of Mathematical Physics, 46:4 (2005), 042105
-
Shor, PW, “The classical capacity achievable by a quantum channel assisted by a limited entanglement”, Quantum Information & Computation, 4:6–7 (2004), 537