1. Wilde M.M. Winter A. Yang D., “Strong Converse For the Classical Capacity of Entanglement-Breaking and Hadamard Channels Via a Sandwiched R,Nyi Relative Entropy”, Commun. Math. Phys., 331:2 (2014), 593–622  crossref  isi  elib
  2. Berta M. Renes J.M. Wilde M.M., “Identifying the Information Gain of a Quantum Measurement”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 331–335  isi
  3. Lupo C. Mancini S. Wilde M.M., “Stochastic Resonance in Gaussian Quantum Channels”, J. Phys. A-Math. Theor., 46:4 (2013), 045306  crossref  isi  elib
  4. М. Е. Широков, “Условия обратимости квантового канала и их применение”, Матем. сб., 204:8 (2013), 137–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; M. E. Shirokov, “Reversibility conditions for quantum channels and their applications”, Sb. Math., 204:8 (2013), 1215–1237  crossref  isi  elib
  5. Sun M., Peng X., Guo H., “An Improved Two-Way Continuous-Variable Quantum Key Distribution Protocol with Added Noise in Homodyne Detection”, J. Phys. B-At. Mol. Opt. Phys., 46:8 (2013), 085501  crossref  isi  elib
  6. А. С. Холево, “Информационная емкость квантовой наблюдаемой”, Пробл. передачи информ., 48:1 (2012), 3–14  mathnet; A. S. Holevo, “Information capacity of a quantum observable”, Problems Inform. Transmission, 48:1 (2012), 1–10  crossref  isi
  7. Sun M. Peng X. Shen Yu. Guo H., “Security of a New Two-Way Continuous-Variable Quantum Key Distribution Protocol”, Int. J. Quantum Inf., 10:5 (2012), 1250059  crossref  isi  elib
  8. Weedbrook Ch. Pirandola S. Garcia-Patron R. Cerf N.J. Ralph T.C. Shapiro J.H. Lloyd S., “Gaussian Quantum Information”, Rev. Mod. Phys., 84:2 (2012), 621–669  crossref  isi  elib
  9. Holevo A.S. Giovannetti V., “Quantum Channels and their Entropic Characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001  crossref  isi  elib
  10. Giovannetti V., Holevo A.S., Lloyd S., Maccone L., “Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results”, Journal of Physics A-Mathematical and Theoretical, 43:41 (2010), 415305  crossref  isi
  11. Brandao Fernando G. S. L., Horodecki M., “On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture”, Open Systems & Information Dynamics, 17:1 (2010), 31–52  crossref  isi
  12. King Ch., “Remarks on the Additivity Conjectures for Quantum Channels”, Entropy and the Quantum, Contemporary Mathematics, 529, 2010, 177–188  crossref  isi
  13. Daems, D, “Transitions in the Communication Capacity of Dissipative Qubit Channels”, Physical Review Letters, 102:18 (2009), 180503  crossref  adsnasa  isi
  14. Hayden, P, “Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1”, Communications in Mathematical Physics, 284:1 (2008), 263  crossref  mathscinet  zmath  adsnasa  isi
  15. Amosov, GG, “Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension”, Physical Review A, 75:6 (2007), 060304  crossref  mathscinet  adsnasa  isi  elib
  16. Hayashi, M, “Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding”, Physical Review A, 76:6 (2007), 062301  crossref  isi
  17. М. Е. Широков, “О структуре оптимальных множеств квантового канала”, Пробл. передачи информ., 42:4 (2006), 23–40  mathnet  mathscinet; M. E. Shirokov, “On the Structure of Optimal Sets for a Quantum Channel”, Problems Inform. Transmission, 42:4 (2006), 282–297  crossref
  18. Karpov, E, “Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions”, Physical Review A, 74:3 (2006), 032320  crossref  mathscinet  adsnasa  isi  elib
  19. Giovannetti, V, “Conditions for multiplicativity of maximal l(p)-norms of channels for fixed integer p”, Journal of Mathematical Physics, 46:4 (2005), 042105  crossref  mathscinet  zmath  adsnasa  isi
  20. Shor, PW, “The classical capacity achievable by a quantum channel assisted by a limited entanglement”, Quantum Information & Computation, 4:6–7 (2004), 537  mathscinet  zmath  isi
Предыдущая
1
2
3
4
Следующая