-
Cristiano Spotti, Song Sun, Chengjian Yao, “Existence and deformations of Kähler–Einstein metrics on smoothable Q-Fano varieties”, Duke Math. J., 165:16 (2016)
-
Damião.J.. Araújo, Gleydson Ricarte, E.V.. Teixeira, “Geometric gradient estimates for solutions to degenerate elliptic equations”, Calc. Var, 2014
-
Ben Andrews, Mat Langford, “Cylindrical estimates for hypersurfaces moving by convex curvature functions”, Anal. PDE, 7:5 (2014), 1091
-
Valentino Tosatti, Yu Wang, Ben Weinkove, Xiaokui Yang, “
$$C^{2,\alpha }$$
C 2 , α estimates for nonlinear elliptic equations in complex and almost complex geometry”, Calc. Var, 2014
-
M.N.. Ivaki, “Convex bodies with pinched Mahler volume under the centro-affine normal flows”, Calc. Var, 2014
-
Zbigniew Błocki, “Cauchy–Riemann meet Monge–Ampère”, Bull. Math. Sci., 4:3 (2014), 433
-
Jian Song, Ben Weinkove, Lecture Notes in Mathematics, 2086, An Introduction to the Kähler-Ricci Flow, 2013, 89
-
Ryushi GOTO, “Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities”, J. Math. Soc. Japan, 64:3 (2012)
-
H. Kim, M. Safonov, “Boundary Harnack principle for second order elliptic equations with unbounded drift”, J Math Sci, 2011
-
Limei Da, 2011 Fourth International Symposium on Knowledge Acquisition and Modeling, 2011, 211
-
Michael E. Taylor, Applied Mathematical Sciences, 115, Partial Differential Equations I, 2011, 105
-
Yi Cao, Dongsheng Li, Lihe Wang, “Classical solutions of fully nonlinear parabolic equations”, Arch. Math., 95:1 (2010), 53
-
Luis A. Caffarelli, Panagiotis E. Souganidis, “A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs”, Comm Pure Appl Math, 61:1 (2008), 1
-
Herbert Koch, Giovanni Leoni, Massimiliano Morini, “On optimal regularity of free boundary problems and a conjecture of De Giorgi”, Comm Pure Appl Math, 58:8 (2005), 1051
-
Hung-Ju Kuo, Neil S. Trudinger, Progress in Nonlinear Differential Equations and Their Applications, 61, Trends in Partial Differential Equations of Mathematical Physics, 2005, 275
-
Sun-Yung Alice Chang, Paul C. Yang, “The inequality of Moser and Trudinger and applications to conformal geometry”, Comm Pure Appl Math, 56:8 (2003), 1135
-
Mariko Arisawa, “Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 20:2 (2003), 293
-
Reiner Schätzle, International Mathematical Series, 1, Nonlinear Problems in Mathematical Physics and Related Topics I, 2002, 317
-
Jay Kovats, “Real analytic solutions of parabolic equations with time-measurable coefficients”, Proc. Amer. Math. Soc., 130:4 (2001), 1055
-
Michael E. Taylor, Applied Mathematical Sciences, 117, Partial Differential Equations III, 1996, 89