-
Alessandro Arsie, Paolo Lorenzoni, “On bi-Hamiltonian deformations of exact pencils of hydrodynamic type”, J. Phys. A: Math. Theor., 44:22 (2011), 225205
-
Athanasios S. Fokas, A. Alexandrou. Himonas, “Well-Posedness of an Integrable Generalization of the Nonlinear Schrödinger Equation on the Circle”, Lett Math Phys, 96:1-3 (2011), 169
-
Joel Ekstrand, Maxim Zabzine, “Courant-like brackets and loop spaces”, J. High Energ. Phys., 2011:3 (2011)
-
Rémi Léandre, M. N. Hounkonnou, “A Lie Algebroid on the Wiener Space”, Advances in Mathematical Physics, 2010:1 (2010)
-
Aliaa Barakat, Alberto De Sole, Victor G. Kac, “Poisson vertex algebras in the theory of Hamiltonian equations”, Jpn. J. Math., 4:2 (2009), 141
-
Yong-Geun Oh, Jae-Suk Park, “Deformations of coisotropic submanifolds and strong homotopy Lie algebroids”, Invent. math., 161:2 (2005), 287
-
HONGWEI LONG, ISABEL SIMÃO, “A NOTE ON THE ESSENTIAL SELF-ADJOINTNESS OF ORNSTEIN–UHLENBECK OPERATORS PERTURBED BY A DISSIPATIVE DRIFT AND A POTENTIAL”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 07:02 (2004), 249
-
A B Yanovski, “Bi-Hamiltonian formulation of the O(3) chiral fields equations hierarchy via a polynomial bundle”, J. Phys. A: Math. Gen., 31:43 (1998), 8709
-
Benno Fuchssteiner, Algebraic Aspects of Integrable Systems, 1997, 131
-
Kaoru Ikeda, “The higher order Hamiltonian structures for the modified classical Yang-Baxter equation”, Commun.Math. Phys., 180:3 (1996), 757
-
A.S. Fokas, “On a class of physically important integrable equations”, Physica D: Nonlinear Phenomena, 87:1-4 (1995), 145
-
A. S. Fokas, KdV '95, 1995, 295
-
P McCloud, “Jet bundles in quantum field theory: the BRST–BV method”, Class. Quantum Grav., 11:3 (1994), 567
-
C. Athorne, I. Ya. Dorfman, “The Hamiltonian structure of the (2+1)-dimensional Ablowitz–Kaup–Newell–Segur hierarchy”, Journal of Mathematical Physics, 34:8 (1993), 3507
-
G Landi, G Marmo, G Vilasi, “Remarks on the complete integrability of dynamical systems with fermionic variables”, J. Phys. A: Math. Gen., 25:16 (1992), 4413
-
Giuseppe Marmo, Gaetano Vilasi, “When do recursion operators generate new conservation laws?”, Physics Letters B, 277:1-2 (1992), 137
-
Hongwei Zhang, Gui-zhang Tu, Walter Oevel, Benno Fuchssteiner, “Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure”, Journal of Mathematical Physics, 32:7 (1991), 1908
-
I. Dorfman, Research Reports in Physics, Nonlinear Evolution Equations and Dynamical Systems, 1991, 127
-
A. S. Fokas, P. M. Santini, The IMA Volumes in Mathematics and Its Applications, 25, Solitons in Physics, Mathematics, and Nonlinear Optics, 1990, 79
-
M. Chaichian, Z. Popowicz, P. Prešnajder, “q-Virasoro algebra and its relation to the q-deformed KdV system”, Physics Letters B, 249:1 (1990), 63