1. B. A. Rogozin, S. G. Foss, “The recurrency of oscillating random walks”, Theory Probab. Appl., 23:1 (1978), 155–162  mathnet  mathnet  crossref
  2. J. Michael Harrison, “The supremum distribution of a Lévy process with no negative jumps”, Advances in Applied Probability, 9:2 (1977), 417  crossref
  3. J. Michael Harrison, “The supremum distribution of a Lévy process with no negative jumps”, Adv. Appl. Probab., 9:02 (1977), 417  crossref
  4. A. A. Mogul'skiǐ, “On the distribution of the first jump for a process with independent increments”, Theory Probab. Appl., 21:3 (1977), 470–481  mathnet  mathnet  crossref
  5. N. H. Bingham, “Fluctuation theory in continuous time”, Advances in Applied Probability, 7:4 (1975), 705  crossref
  6. D. V. Gusak, S. I. Peresypkina, “Distribution of the exit time and value for homogeneous processes with independent increments given on a finite Markov chain”, Ukr Math J, 26:3 (1975), 239  crossref
  7. N. H. Bingham, “Fluctuation theory in continuous time”, Adv. Appl. Probab., 7:04 (1975), 705  crossref
  8. E. A. Pechersky, “Some identities related to the exit of a random walk out of a segment and a semi-interval”, Theory Probab. Appl., 19:1 (1974), 106–121  mathnet  mathnet  crossref
  9. “Summary of Reports Made at Sessions of the Seminar on Probability Theory and Mathematical Statistics at T. G. Shevchenko Kiev State University”, Theory Probab. Appl., 19:2 (1975), 413–427  mathnet  mathnet  crossref
  10. I. Blake, W. Lindsey, “Level-crossing problems for random processes”, IEEE Trans. Inform. Theory, 19:3 (1973), 295  crossref
  11. N.U. Prabhu, Michael Rubinovitch, “Further results for ladder processes in continuous time”, Stochastic Processes and their Applications, 1:2 (1973), 151  crossref
  12. V. B. Nevzorov, “On the joint distribution of random variables connected with fluctuations of a stable process”, Theory Probab. Appl., 18:3 (1973), 161–169  mathnet  mathnet  crossref
  13. B. A. Rogozin, “The distribution of the first ladder moment and height and fluctuations of random walk”, Theory Probab. Appl., 16:4 (1971), 575–595  mathnet  mathnet  crossref
Previous
1
2
3
4