-
I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854
-
M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theoret. and Math. Phys., 215:2 (2023), 667–690
-
M. N. Kuznetsova, “Construction of localized particular solutions of chains with three independent variables”, Theoret. and Math. Phys., 216:2 (2023), 1158–1167
-
I. T. Habibullin, A. R. Khakimova, “On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras”, Theoret. and Math. Phys., 217:1 (2023), 1541–1573
-
Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204
-
Ismagil T. Habibullin, Aigul R. Khakimova, Alfya U. Sakieva, “Miura-Type Transformations for Integrable Lattices in 3D”, Mathematics, 11:16 (2023), 3522
-
I. T. Habibullin, A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theoret. and Math. Phys., 213:2 (2022), 1589–1612
-
I. T. Habibullin, A. R. Khakimova, “Algebraic reductions of discrete equations of Hirota-Miwa type”, Ufa Math. J., 14:4 (2022), 113–126
-
D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69
-
Habibullin I.T. Kuznetsova M.N., “An Algebraic Criterion of the Darboux Integrability of Differential-Difference Equations and Systems”, J. Phys. A-Math. Theor., 54:50 (2021), 505201
-
Habibullin I.T. Khakimova A.R., “Characteristic Lie Algebras of Integrable Differential-Difference Equations in 3D”, J. Phys. A-Math. Theor., 54:29 (2021), 295202
-
I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices
via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581
-
I. T. Habibullin, M. N. Kuznetsova, A. U. Sakieva, “Integrability conditions for two-dimensional Toda-like equations”, J. Phys. A-Math. Theor., 53:39 (2020), 395203
-
I. Habibullin, A. Khakimova, “Integrable boundary conditions for the Hirota-Miwa equation and lie algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413
-
S. V. Smirnov, “Factorization of Darboux–Laplace transformations for discrete hyperbolic operators”, Theoret. and Math. Phys., 199:2 (2019), 621–636
-
Ch. Athorne, H. Yilmaz, “Twisted Laplace maps”, J. Phys. A-Math. Theor., 52:22 (2019), 225201
-
I. T. Habibullin, A. R. Khakimova, “Discrete exponential type systems on a quad graph, corresponding to the affine lie algebras a(n)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202
-
W. Fu, “Direct linearisation of the discrete-time two-dimensional Toda lattices”, J. Phys. A-Math. Theor., 51:33 (2018), 334001
-
M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105
-
Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.