-
Kuramochi Yu., “Entanglement-Breaking Channels With General Outcome Operator Algebras”, J. Math. Phys., 59:10 (2018), 102206
-
Fiedler L., Naaijkens P., Osborne T.J., “Jones index, secret sharing and total quantum dimension”, New J. Phys., 19 (2017), 023039
-
A. S. Holevo, “On the quantum Gaussian optimizers conjecture in the case $q=p$”, Russian Math. Surveys, 72:6 (2017), 1177–1179
-
Li Yu., “Complete Order Structures For Completely Bounded Maps Involving Trace Class Operators”, Houst. J. Math., 43:4 (2017), 1165–1185
-
Frank R.L., Lieb E.H., “Norms of Quantum Gaussian Multi-Mode Channels”, J. Math. Phys., 58:6 (2017), 062204
-
Giacomini F., Castro-Ruiz E., Brukner C., “Indefinite causal structures for continuous-variable systems”, New J. Phys., 18 (2016), 113026
-
Buscemi F., Das S., Wilde M.M., “Approximate reversibility in the context of entropy gain, information gain, and complete positivity”, Phys. Rev. A, 93:6 (2016), 062314
-
Stormer E., “The Analogue of Choi Matrices For a Class of Linear Maps on Von Neumann Algebras”, Int. J. Math., 26:2 (2015), 1550018
-
Alazzawi S., Baumgartner B., “Generalized Kraus Operators and Generators of Quantum Dynamical Semigroups”, Rev. Math. Phys., 27:7 (2015), 1550016
-
Yuan Li, Hong-Ke Du, “Interpolations of entanglement breaking channels and equivalent conditions for completely positive maps”, Journal of Functional Analysis, 268:11 (2015), 3566
-
A. S. Holevo, “Gaussian classical-quantum channels: gain from entanglement-assistance”, Problems Inform. Transmission, 50:1 (2014), 1–14
-
Majewski W.A., “On Positive Maps in Quantum Information”, Russ. J. Math. Phys., 21:3 (2014), 362–372
-
Sun X.-H., Li Yu., “Some Characterizations of Quantum Channel in Infinite Hilbert Spaces”, J. Math. Phys., 55:5 (2014), 053511
-
Hansen F., “Trace Functions With Applications in Quantum Physics”, J. Stat. Phys., 154:3 (2014), 807–818
-
Alexander S. Holevo, 2013 IEEE International Symposium on Information Theory, 2013, 176
-
Holevo A.S., “The Choi-Jamiolkowski forms of quantum Gaussian channels”, J Math Phys, 52:4 (2011), 042202