1. D. Gandolfo, M. M. Rahmatullaev, U. A. Rozikov, “Boundary Conditions for Translation-Invariant Gibbs Measures of the Potts Model on Cayley Trees”, J Stat Phys, 167:5 (2017), 1164  crossref
  2. R. M. Khakimov, F. Kh. Khaidarov, “Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree”, Theoret. and Math. Phys., 189:2 (2016), 1651–1659  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  3. M. M. Rahmatullaev, “On weakly periodic Gibbs measures of the Potts model with a special external field on a Cayley tree”, Zhurn. matem. fiz., anal., geom., 12:4 (2016), 302–314  mathnet  crossref  mathscinet
  4. Eshkabilov Yu.Kh., Nodirov Sh.D., Haydarov F.H., “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943  crossref  mathscinet  zmath  isi  scopus
  5. Eshkabilov Yu.Kh., Bobonazarov Sh.P., Teshaboev R.I., “Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree”, Nanosyst.-Phys. Chem. Math., 7:5 (2016), 893–899  crossref  isi
  6. Rakhmatullaev M.M., “On Weakly Periodic Gibbs Measures for the Potts Model with External Field on the Cayley Tree”, Ukr. Math. J., 68:4 (2016), 598–611  crossref  mathscinet  isi  scopus
  7. Haydarov F., Khakimov R., “An improvement of extremality regions for Gibbs measures of the Potts model on a Cayley tree”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F., Rakhimov I., IOP Publishing Ltd, 2016, 012019  crossref  isi  scopus
  8. N. M. Khatamov, G. T. Madgoziev, “Gibbs measures for a generalized Potts model with the interaction radius two on a Cayley tree”, Theoret. and Math. Phys., 183:3 (2015), 836–845  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  9. M. M. Rahmatullaev, “A weakly periodic Gibbs measure for the ferromagnetic Potts model on a Cayley tree”, Siberian Math. J., 56:5 (2015), 929–935  mathnet  crossref  crossref  isi  elib
  10. R. M. Khakimov, “Localization of translation-invariant Gibbs measures for the Potts and “solid-on-solid” models on a Cayley tree”, Theoret. and Math. Phys., 179:1 (2014), 405–415  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  11. Rustamjon M. Khakimov, “New periodic Gibbs measures for $q$-state Potts model on a Cayley tree”, Zhurn. SFU. Ser. Matem. i fiz., 7:3 (2014), 297–304  mathnet
  12. M. M. Rakhmatullaev, “The existence of weakly periodic Gibbs measures for the Potts model on a Cayley tree”, Theoret. and Math. Phys., 180:3 (2014), 1019–1029  mathnet  crossref  crossref  mathscinet  isi  elib
  13. C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of the Translation-Invariant Splitting Gibbs Measures for the Potts Model on a Cayley Tree”, J Stat Phys, 156:1 (2014), 189  crossref
  14. U. A. Rozikov, R. M. Khakimov, “Periodic Gibbs measures for the Potts model on the Cayley tree”, Theoret. and Math. Phys., 175:2 (2013), 699–709  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  15. F. M. Mukhamedov, H. Akin, “The $p$-adic Potts model on the Cayley tree of order three”, Theoret. and Math. Phys., 176:3 (2013), 1267–1279  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  16. O. N. Khakimov, “$p$-Adic Gibbs measures for the hard core model with three states on the Cayley tree”, Theoret. and Math. Phys., 177:1 (2013), 1339–1351  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  17. Rozikov U.A., “Gibbs Measures on Cayley Trees: Results and Open Problems”, Rev. Math. Phys., 25:1 (2013), 1330001  crossref  isi
  18. Mukhamedov F., Akin H., “Phase Transitions for P-Adic Potts Model on the Cayley Tree of Order Three”, J. Stat. Mech.-Theory Exp., 2013, P07014  crossref  isi
  19. Eshkabilov Yu.Kh., Haydarov F.H., Rozikov U.A., “Uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree”, Math. Phys. Anal. Geom., 16:1 (2013), 1–17  crossref  isi
  20. Mukhamedov F., “On Dynamical Systems and Phase Transitions for Q+1-State P-Adic Potts Model on the Cayley Tree”, Math. Phys. Anal. Geom., 16:1 (2013), 49–87  crossref  isi
Previous
1
2
3
Next