1. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Investigation of the Generalized Anderson Impurity Model”, 3rd International Conference on Nanotechnologies and Biomedical Engineering, Ifmbe Proceedings, 55, ed. Sontea V. Tiginyanu I., Springer, 2016, 209–212  crossref  isi
  2. A. Sherman, NATO Science for Peace and Security Series A: Chemistry and Biology, Nanomaterials for Security, 2016, 57  crossref
  3. Alexei Sherman, “Pseudogaps in the three-band Hubbard model”, Eur. Phys. J. B, 89:4 (2016)  crossref
  4. Tong N.-H., “Equation-of-Motion Series Expansion of Double-Time Green'S Functions”, Phys. Rev. B, 92:16 (2015), 165126  crossref  isi
  5. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, “The theory of nonequilibrium Anderson impurity model for strongly correlated electron systems”, Low Temperature Physics, 41:5 (2015), 401  crossref
  6. A. Sherman, “The Mott transition in the strong coupling perturbation theory”, Physica B: Condensed Matter, 456 (2015), 35  crossref
  7. Alexandra Raeber, David A. Mazziotti, “Large eigenvalue of the cumulant part of the two-electron reduced density matrix as a measure of off-diagonal long-range order”, Phys. Rev. A, 92:5 (2015)  crossref
  8. Gang Li, “Hidden physics in the dual-fermion approach: A special case of a nonlocal expansion scheme”, Phys. Rev. B, 91:16 (2015)  crossref
  9. Alexei Sherman, “The Hubbard model in the strong coupling theory at arbitrary filling”, Physica Status Solidi (b), 252:9 (2015), 2006  crossref
  10. A. Sherman, “Low-frequency quantum oscillations due to strong electron correlations”, Physics Letters A, 379:34-35 (2015), 1912  crossref
  11. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Diagram theory for the twofold-degenerate Anderson impurity model”, Theoret. and Math. Phys., 178:1 (2014), 115–129  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  12. V. A. Moskalenko, L. A. Dohotaru, D. F. Digor, I. D. Chebotar', “Dynamics of phonon clouds of correlated polarons”, Theoret. and Math. Phys., 179:2 (2014), 588–595  mathnet  crossref  crossref  adsnasa  isi  elib
  13. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Strong Coupling Diagrammatic Approach To the Anderson-Holstein Hamiltonian”, Proc. Rom. Acad. Ser. A-Math. Phys., 15:2 (2014), 139–145  isi
  14. Julie T. Skolnik, David A. Mazziotti, “Cumulant reduced density matrices as measures of statistical dependence and entanglement between electronic quantum domains with application to photosynthetic light harvesting”, Phys. Rev. A, 88:3 (2013)  crossref
  15. Moskalenko V.A. Dohotaru L.A. Digor D.F. Cebotari I.D., “Stationary Property of the Thermodynamic Potential of the Hubbard Model in Strong Coupling Diagrammatic Approach for Superconducting State”, Low Temp. Phys., 38:10 (2012), 922–929  crossref  isi
  16. V. A. Moskalenko, L. A. Dohotaru, I. D. Chebotar', D. F. Digor, “The diagram theory for the degenerate two-orbital Hubbard model”, Theoret. and Math. Phys., 168:3 (2011), 1278–1289  mathnet  crossref  crossref  mathscinet  adsnasa  isi
  17. V. A. Moskalenko, L. A. Dohotaru, R. Citro, “Diagram theory for the periodic Anderson model: Stationarity of the thermodynamic potential”, Theoret. and Math. Phys., 162:3 (2010), 366–382  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
  18. Moskalenko V.A., Dohotaru L.A., “Diagrammatic analysis of the Hubbard model: Stationary property of the thermodynamic potential”, Physics of Particles and Nuclei, 41:7 (2010), 1039–1043  crossref  isi
  19. Moskalenko V.A., Dohotaru L.A., “Diagrammatic theory for periodic anderson model”, Physics of Particles and Nuclei, 41:7 (2010), 1044–1049  crossref  isi
  20. Moskalenko V.A., Dohotaru L.A., Cebotari I.D., “Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential”, Zh Èksper Teoret Fiz, 111:1 (2010), 97–103  crossref  isi
Previous
1
2
3
4
5
Next