1. A. T. Fomenko, V. V. Vedyushkina, “Singularities of integrable Liouville systems, reduction of integrals to lower degree and topological billiards: recent results”, Theor. Appl. Mech., 46:1 (2019), 47–63  mathnet  crossref
  2. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  3. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107  mathnet  crossref  mathscinet  zmath  isi
  4. A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333  crossref  mathscinet  zmath  isi
  5. V. V. Vedyushkina, A. T. Fomenko, “Topological obstacles to the realizability of integrable Hamiltonian systems by billiards”, Dokl. Math., 100:2 (2019), 463–466  crossref  mathscinet  zmath  isi
  6. A. T. Fomenko, V. V. Vedyushkina, “Topological billiards, conservation laws and classification of trajectories”, Functional Analysis and Geometry: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 733, ed. P. Kuchment, E. Semenov, Amer. Math. Soc., 2019, 129–148  crossref  mathscinet  zmath  isi  scopus
  7. E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci., 259:5 (2021), 656–675  mathnet  crossref
  8. S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, J. Math. Sci., 259:5 (2021), 712–729  mathnet  crossref
  9. V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
  10. V. V. Vedyushkina, A. T. Fomenko, I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176  mathnet  crossref  crossref  zmath  isi  elib  scopus
  11. V. A. Moskvin, “Topology of Liouville bundles of integrable billiard in non-convex domains”, Moscow University Mathematics Bulletin, 73:3 (2018), 103–110  mathnet  crossref  mathscinet  zmath  isi
  12. K. I. Solodskikh, “Graph-manifolds and integrable Hamiltonian systems”, Sb. Math., 209:5 (2018), 739–758  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  13. V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow University Mathematics Bulletin, 73:4 (2018), 150–155  mathnet  crossref  mathscinet  zmath  isi
  14. V. V. Vedyushkina, I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  15. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  16. V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, ed. V. Sadovnichiy, M. Zgurovsky, Springer, Cham, 2016, 13–33  crossref  mathscinet  zmath  isi  scopus
  17. Fokicheva V.V., Fomenko A.T., “Integriruemye billiardy modeliruyut vazhnye integriruemye sluchai dinamiki tverdogo tela”, Doklady Akademii nauk, 465 (2015), 150  crossref  mathscinet  zmath  isi  elib
  18. E. A. Kudryavtseva, “Liouville integrable generalized billiard flows and Poncelet type theorems”, J. Math. Sci., 225:4 (2017), 611–638  mathnet  crossref  mathscinet  elib
Previous
1
2
3