1. Behzad Azmi, “Stabilization of 3D Navier–Stokes Equations to Trajectories by Finite-Dimensional RHC”, Appl Math Optim, 86:3 (2022)  crossref
  2. Amosova V E., “Exact Local Controllability of a Two-Dimensional Viscous Gas Flow”, Differ. Equ., 56:11 (2020), 1416–1439  crossref  isi
  3. Marinoschi G., “Exact Controllability in Minimal Time of the Navier-Stokes Periodic Flow in a 2D-Channel”, SIAM J. Control Optim., 58:6 (2020), 3658–3683  crossref  isi
  4. Jean-Michel Coron, Frédéric Marbach, Franck Sueur, Ping Zhang, “Controllability of the Navier–Stokes Equation in a Rectangle with a Little Help of a Distributed Phantom Force”, Ann. PDE, 5:2 (2019)  crossref
  5. Duy Phan, Rodrigues S.S., “Stabilization to Trajectories For Parabolic Equations”, Math. Control Signal Syst., 30:2 (2018), 11  crossref  mathscinet  zmath  isi  scopus
  6. Cung The Anh, Vu Manh Toi, “Local Exact Controllability to Trajectories of the Magneto-Micropolar Fluid Equations”, Evol. Equ. Control Theory, 6:3 (2017), 357–379  crossref  mathscinet  zmath  isi  scopus
  7. Imanuvilov O.Yu., Yamamoto M., “Global Uniqueness in Inverse Boundary Value Problems For the Navier–Stokes Equations and Lame System in Two Dimensions”, Inverse Probl., 31:3 (2015), 035004  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  8. Chowdhury Sh., “Approximate Controllability For Linearized Compressible Barotropic Navier–Stokes System in One and Two Dimensions”, J. Math. Anal. Appl., 422:2 (2015), 1034–1057  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  9. E. V. Amosova, “Karlemanovskaya otsenka reshenii zadachi Neimana dlya parabolicheskogo uravneniya”, Dalnevost. matem. zhurn., 15:1 (2015), 3–20  mathnet  elib
  10. Rodrigues S.S., “Local Exact Boundary Controllability of 3D Navier–Stokes Equations”, Nonlinear Anal.-Theory Methods Appl., 95 (2014), 175–190  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  11. Lorenzi A., Munteanu I., “Recovering a Constant in the Two-Dimensional Navier–Stokes System With No Initial Condition”, Appl. Math. Optim., 70:2 (2014), 309–344  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  12. Olivier Glass, Lecture Notes in Mathematics, 2048, Control of Partial Differential Equations, 2012, 131  crossref
  13. Barbu V., Rodrigues S.S., Shirikyan A., “Internal Exponential Stabilization to a Nonstationary Solution for 3D Navier–Stokes Equations”, SIAM J Control Optim, 49:4 (2011), 1454–1478  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
  14. Garcia G.C., Osses A., Puel J.P., “A Null Controllability Data Assimilation Methodology Applied to a Large Scale Ocean Circulation Model”, M2AN Math Model Numer Anal, 45:2 (2011), 361–386  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  15. Amosova E.V., “Exact Local Controllability for the Equations of Viscous Gas Dynamics”, Differ Equ, 47:12 (2011), 1776–1795  crossref  mathscinet  zmath  isi  elib  elib  scopus
  16. Fan, J, “Well-posedness of an inverse problem of Navier–Stokes equations with the final overdetermination”, Journal of Inverse and Ill-Posed Problems, 17:6 (2009), 565  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
  17. T. Tachim Medjo, R. Temam, M. Ziane, “Optimal and Robust Control of Fluid Flows: Some Theoretical and Computational Aspects”, Appl Mech Rev, 61:1 (2008), 010802  crossref  zmath  isi  scopus  scopus  scopus
  18. Guerrero, S, “On the controllability of the hydrostatic Stokes equations”, Journal of Mathematical Fluid Mechanics, 10:3 (2008), 402  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
  19. Fernandez-Cara, E, “Local exact controllability of micropolar fluids”, Journal of Mathematical Fluid Mechanics, 9:3 (2007), 419  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
  20. J.-M. Coron, “Some open problems on the control of nonlinear partial differential equations”, Perspectives in Nonlinear Partial Differential Equations held in honor of Haim Brezis, Cont. Math., 446, 2007, 215–243  crossref  mathscinet  zmath  isi
1
2
Next