-
A. Khludnev, “Rigidity parameter identification for thin inclusions located inside elastic bodies”, J. Optim. Theory Appl., 172:1 (2017), 281–297
-
E. V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Industr. Math., 10:3 (2016), 435–443
-
I. V. Frankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Industr. Math., 10:3 (2016), 333–340
-
N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, J. Math. Sci., 228:4 (2018), 409–420
-
A. M. Khludnev, T. S. Popova, “Ob ierarkhii tonkikh vklyuchenii v uprugikh telakh”, Matematicheskie zametki SVFU, 23:1 (2016), 87–107
-
A. Khludnev, T. Popova, “Junction problem for rigid and semirigid inclusions in elastic bodies”, Arch. Appl. Mech., 86:9 (2016), 1565–1577
-
V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, ZAMM Z. Angew. Math. Phys., 67:3 (2016), 71
-
N. P. Lazarev, “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, ZAMM Z. Angew. Math. Mech., 96:4 (2016), 509–518
-
N. P. Lazarev, H. Itou, N. V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80
-
N. Lazarev, T. Popova, G. Semenova, “Existence of an optimal size of a rigid inclusion for an equilibrium problem of a Timoshenko plate with Signorini-type boundary condition”, J. Inequal. Appl., 2016, 18
-
E. V. Pyatkina, “On control problem for two-layers elastic body with a crack”, J. Math. Sci., 230:1 (2018), 159–166
-
A. M. Khludnev, “Optimalnoe upravlenie vklyucheniyami v uprugom tele, peresekayuschimi vneshnyuyu granitsu”, Sib. zhurn. industr. matem., 18:4 (2015), 75–87
-
N. A. Nikolaeva, “Method of fictitious areas in a task about balance of a plate of Kirchhoff–Lyava”, J. Math. Sci., 221:6 (2017), 872–882
-
Lazarev N., “Existence of An Optimal Size of a Delaminated Rigid Inclusion Embedded in the Kirchhoff-Love Plate”, Bound. Value Probl., 2015, 180
-
Khludnev A.M., “Optimal Control of a Thin Rigid Inclusion Intersecting the Boundary of An Elastic Body”, Pmm-J. Appl. Math. Mech., 79:5 (2015), 493–499